Package 'SIMLR'

April 11, 2023

Version 1.24.3 **Date** 2023-01-09

Title Single-cell Interpretation via Multi-kernel LeaRning (SIMLR)

Depends R (>= 4.1.0),

Imports parallel, Matrix, stats, methods, Rcpp, pracma, RcppAnnoy, RSpectra

Suggests BiocGenerics, BiocStyle, testthat, knitr, igraph

Description Single-cell RNA-seq technologies enable high throughput gene expression measurement of individual cells, and allow the discovery of heterogeneity within cell populations. Measurement of cell-to-cell gene expression similarity is critical for the identification, visualization and analysis of cell populations. However, single-cell data introduce challenges to conventional measures of gene expression similarity because of the high level of noise, outliers and dropouts. We develop a novel similarity-learning framework, SIMLR (Single-cell Interpretation via Multi-kernel LeaRning), which learns an appropriate distance metric from the data for dimension reduction, clustering and visualization.

Encoding UTF-8
License file LICENSE

URL https://github.com/BatzoglouLabSU/SIMLR

BugReports https://github.com/BatzoglouLabSU/SIMLR

biocViews ImmunoOncology, Clustering, GeneExpression, Sequencing, SingleCell

RoxygenNote 7.2.3

LinkingTo Rcpp

NeedsCompilation yes

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/SIMLR

git_branch RELEASE_3_16

git_last_commit 10cd5ee

git_last_commit_date 2023-01-23

2 BuettnerFlorian

Date/Publication 2023-04-10

```
Author Daniele Ramazzotti [aut] (<a href="https://orcid.org/0000-0002-6087-2666">https://orcid.org/0000-0002-6087-2666</a>),
Bo Wang [aut],
Luca De Sano [cre, aut] (<a href="https://orcid.org/0000-0002-9618-3774">https://orcid.org/0000-0002-9618-3774</a>),
Serafim Batzoglou [ctb]
```

Maintainer Luca De Sano < luca.desano@gmail.com>

R topics documented:

	BuettnerFlorian	2
	CIMLR	
	CIMLR_Estimate_Number_of_Clusters	3
	SIMLR	4
	SIMLR_Estimate_Number_of_Clusters	5
	SIMLR_Feature_Ranking	6
	SIMLR_Large_Scale	
	ZeiselAmit	7
Index		9
Buett	tnerFlorian test dataset for SIMLR	

Description

example dataset to test SIMLR from the work by Buettner, Florian, et al.

Usage

data(BuettnerFlorian)

Format

gene expression measurements of individual cells

Value

list of 6: in_X = input dataset as an $(m \times n)$ gene expression measurements of individual cells, n_clust = number of clusters (number of distinct true labels), true_labs = ground true of cluster assignments for each of the n_clust clusters, seed = seed used to compute the results for the example, results = result by SIMLR for the inputs defined as described, nmi = normalized mutual information as a measure of the inferred clusters compared to the true labels

Source

Buettner, Florian, et al. "Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells." Nature biotechnology 33.2 (2015): 155-160.

CIMLR 3

CIMLR	This function has been removed and it is now provided by the CIMLR
OZNEK	package, please refer to https://github.com/danro9685/CIMLR

Description

perform the CIMLR clustering algorithm

Usage

```
CIMLR(X, c, no.dim = NA, k = 10, cores.ratio = 1)
```

Arguments

X a list of multi-omic data each of which is an (m x n) data matrix of measurements

of cancer patients

c number of clusters to be estimated over X

 $\begin{array}{ll} \text{no.dim} & \text{number of dimensions} \\ k & \text{tuning parameter} \end{array}$

cores.ratio ratio of the number of cores to be used when computing the multi-kernel

Value

clusters the patients based on CIMLR and their similarities

Examples

```
## Not run:
data(GliomasReduced)
CIMLR(X = GliomasReduced$in_X, c = 3, cores.ratio = 0)
## End(Not run)
```

```
CIMLR_Estimate_Number_of_Clusters
```

This function has been removed and it is now provided by the CIMLR package, please refer to https://github.com/danro9685/CIMLR

Description

```
CIMLR_Estimate_Number_of_Clusters
```

Usage

```
CIMLR_Estimate_Number_of_Clusters(all_data, NUMC = 2:5, cores.ratio = 1)
```

4 SIMLR

Arguments

all_data is a list of multi-omic data each of which is an (m x n) data matrix of measure-

ments of cancer patients

NUMC vector of number of clusters to be considered

cores.ratio ratio of the number of cores to be used when computing the multi-kernel

Value

a list of 2 elements: K1 and K2 with an estimation of the best clusters (the lower values the better) as discussed in the original paper of SIMLR

Examples

```
## Not run:
data(GliomasReduced)
CIMLR_Estimate_Number_of_Clusters(GliomasReduced$in_X,
    NUMC = 2:5,
    cores.ratio = 0)
## End(Not run)
```

SIMLR

SIMLR

Description

perform the SIMLR clustering algorithm

Usage

```
SIMLR(
   X,
   c,
   no.dim = NA,
   k = 10,
   if.impute = FALSE,
   normalize = FALSE,
   cores.ratio = 1
)
```

Arguments

X an $(m \ x \ n)$ data matrix of gene expression measurements of individual cells or

and object of class SCESet

c number of clusters to be estimated over X

no.dim number of dimensions

k tuning parameter

if.impute should I traspose the input data?
normalize should I normalize the input data?

cores.ratio ratio of the number of cores to be used when computing the multi-kernel

Value

clusters the cells based on SIMLR and their similarities

list of 8 elements describing the clusters obtained by SIMLR, of which y are the resulting clusters: y = results of k-means clusterings, S = similarities computed by SIMLR, F = results from network diffiusion, ydata = data referring the the results by k-means, alphaK = clustering coefficients, execution.time = execution time of the present run, converge = iterative convergence values by T-SNE, LF = parameters of the clustering

Examples

```
data(BuettnerFlorian)
SIMLR(X = BuettnerFlorian$in_X, c = BuettnerFlorian$n_clust, cores.ratio = 0)
```

```
SIMLR_Estimate_Number_of_Clusters

SIMLR Estimate Number of Clusters
```

Description

estimate the number of clusters by means of two huristics as discussed in the SIMLR paper

Usage

```
SIMLR_Estimate_Number_of_Clusters(X, NUMC = 2:5, cores.ratio = 1)
```

Arguments

X an (m x n) data matrix of gene expression measurements of individual cells

NUMC vector of number of clusters to be considered

cores.ratio ratio of the number of cores to be used when computing the multi-kernel

Value

a list of 2 elements: K1 and K2 with an estimation of the best clusters (the lower values the better) as discussed in the original paper of SIMLR

SIMLR_Large_Scale

Examples

```
data(BuettnerFlorian)
SIMLR_Estimate_Number_of_Clusters(BuettnerFlorian$in_X,
    NUMC = 2:5,
    cores.ratio = 0)
```

SIMLR_Feature_Ranking SIMLR Feature Ranking

Description

perform the SIMLR feature ranking algorithm. This takes as input the original input data and the corresponding similarity matrix computed by SIMLR

Usage

```
SIMLR_Feature_Ranking(A, X)
```

Arguments

- A an (n x n) similarity matrix by SIMLR
- X an (m x n) data matrix of gene expression measurements of individual cells

Value

a list of 2 elements: pvalues and ranking ordering over the n covariates as estimated by the method

Examples

```
data(BuettnerFlorian)
SIMLR_Feature_Ranking(A = BuettnerFlorian$results$S, X = BuettnerFlorian$in_X)
```

SIMLR_Large_Scale SIMLR Large Scale

Description

perform the SIMLR clustering algorithm for large scale datasets

Usage

```
SIMLR_Large_Scale(X, c, k = 10, kk = 100, if.impute = FALSE, normalize = FALSE)
```

ZeiselAmit 7

Arguments

X	an $(m \ x \ n)$ data matrix of gene expression measurements of individual cells or and object of class SCESet
С	number of clusters to be estimated over X
k	tuning parameter
kk	number of principal components to be assessed in the PCA
if.impute	should I traspose the input data?
normalize	should I normalize the input data?

Value

clusters the cells based on SIMLR Large Scale and their similarities

list of 8 elements describing the clusters obtained by SIMLR, of which y are the resulting clusters: y = results of k-means clusterings, SO = similarities computed by SIMLR, F = results from the large scale iterative procedure, ydata = data referring the the results by k-means, alphaK = clustering coefficients, val = distances from the k-nearest neighbour search, ind = indeces from the k-nearest neighbour search, execution.time = execution time of the present run

Examples

```
data(ZeiselAmit)
resized = ZeiselAmit$in_X[, 1:340]
## Not run:
SIMLR_Large_Scale(X = resized, c = ZeiselAmit$n_clust, k = 5, kk = 5)
## End(Not run)
```

ZeiselAmit

test dataset for SIMLR large scale

Description

example dataset to test SIMLR large scale. This is a reduced version of the dataset from the work by Zeisel, Amit, et al.

Usage

```
data(ZeiselAmit)
```

Format

gene expression measurements of individual cells

Value

list of 6: in_X = input dataset as an $(m \times n)$ gene expression measurements of individual cells, n_clust = number of clusters (number of distinct true labels), true_labs = ground true of cluster assignments for each of the n_clust clusters, seed = seed used to compute the results for the example, results = result by SIMLR for the inputs defined as described, nmi = normalized mutual information as a measure of the inferred clusters compared to the true labels

Source

Zeisel, Amit, et al. "Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq." Science 347.6226 (2015): 1138-1142.

Index

```
BuettnerFlorian, 2

CIMLR, 3

CIMLR_Estimate_Number_of_Clusters, 3

SIMLR, 4

SIMLR_Estimate_Number_of_Clusters, 5

SIMLR_Feature_Ranking, 6

SIMLR_Large_Scale, 6

ZeiselAmit, 7
```