
Package ‘NxtIRFcore’
April 10, 2023

Title Core Engine for NxtIRF: a User-Friendly Intron Retention and
Alternative Splicing Analysis using the IRFinder Engine

Version 1.4.0

Date 2022-10-25

Description Interactively analyses Intron Retention and Alternative Splicing
Events (ASE) in RNA-seq data. NxtIRF quantifies ASE events in BAM files
aligned to the genome using a splice-aware aligner such as STAR. The core
quantitation algorithm relies on the IRFinder/C++ engine ported via Rcpp for
multi-platform compatibility. In addition, NxtIRF provides convenient
pipelines for downstream analysis and publication-ready visualisation tools.
Note that NxtIRFcore is now replaced by SpliceWiz in Bioconductor 3.16
onwards.

License MIT + file LICENSE

Depends NxtIRFdata

Imports methods, stats, utils, tools, parallel, magrittr, Rcpp (>=
1.0.5), data.table, fst, ggplot2, AnnotationHub, BiocFileCache,
BiocGenerics, BiocParallel, Biostrings, BSgenome, DelayedArray,
DelayedMatrixStats, genefilter, GenomeInfoDb, GenomicRanges,
HDF5Array, IRanges, plotly, R.utils, rhdf5, rtracklayer,
SummarizedExperiment, S4Vectors

LinkingTo Rcpp, zlibbioc, RcppProgress

Suggests knitr, rmarkdown, pheatmap, shiny, openssl, crayon, egg,
DESeq2, limma, DoubleExpSeq, Rsubread, testthat (>= 3.0.0)

VignetteBuilder knitr

biocViews Software, Transcriptomics, RNASeq, AlternativeSplicing,
Coverage, DifferentialSplicing

SystemRequirements C++11

Collate AllImports.R RcppExports.R AllClasses.R AllGenerics.R
NxtFilter-methods.R NxtSE-methods.R globals.R ggplot_themes.R
example_data.R wrappers.R make_plot_data.R Coverage.R utils.R
File_finders.R BuildRef.R STAR_utils.R Mappability.R IRFinder.R
CollateData.R MakeSE.R Filters.R ASE-methods.R
NxtIRFcore-package.R

1

2 R topics documented:

Encoding UTF-8

RoxygenNote 7.1.2

URL https://github.com/alexchwong/NxtIRFcore

BugReports https://support.bioconductor.org/

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/NxtIRFcore

git_branch RELEASE_3_16

git_last_commit c38d908

git_last_commit_date 2022-11-01

Date/Publication 2023-04-10

Author Alex Chit Hei Wong [aut, cre, cph],
William Ritchie [cph],
Ulf Schmitz [ctb]

Maintainer Alex Chit Hei Wong <a.wong@centenary.org.au>

R topics documented:

NxtIRFcore-package . 3
ASE-methods . 5
BuildReference . 9
CollateData . 15
CoordToGR . 17
Coverage . 18
example-NxtIRF-data . 21
Find_Samples . 23
IRFinder . 25
IsCOV . 28
MakeSE . 29
make_plot_data . 30
Mappability-methods . 33
NxtFilter-class . 36
NxtSE-class . 39
Plot_Coverage . 43
Run_NxtIRF_Filters . 47
STAR-methods . 49
theme_white . 53

Index 55

https://github.com/alexchwong/NxtIRFcore
https://support.bioconductor.org/

NxtIRFcore-package 3

NxtIRFcore-package NxtIRFcore: a command line interface for NxtIRF - IRFinder-based
differential Alternative Splicing and Intron Retention analysis

Description

(Important!) NxtIRFcore will be replaced by SpliceWiz from Bioconductor version 3.16 onwards.
SpliceWiz replaces the full functionality of NxtIRFcore, plus heaps more! NxtIRF is a compu-
tationally efficient and user friendly workflow that analyses aligned short-read RNA sequencing
for differential intron retention and alternative splicing. It utilises an improved IRFinder-based
OpenMP/C++ algorithm. A streamlined downstream analysis pipeline allows for GLM-based dif-
ferential IR and splicing analysis, suited for large datasets of up to hundreds of samples. Addi-
tionally NxtIRF provides a novel visualisation of per-nucleotide mean and variations of alignment
coverage across splice and IR events, grouped by user-defined experimental conditions.

Details

IRFinder is a well-established bioinformatic tool that measures intron retention (IR) in annotated
and novel retained introns in short-read RNA sequencing samples. It is a computationally-efficient
algorithm that measures alignment coverage across introns, accounting for regions of low-mappable
intronic regions. Unlike other algorithms that measure exon-intron spanning reads, IRFinder con-
siders the alignment coverage across the whole intron, allowing it to distinguish between full-length
and partial IR. This distinction is important as partial IR is often confounded with novel alternate
splice site usage, alternate transcription start site and intronic polyadenylation events.

NxtIRF is a R/Bioconductor package that provides a user-friendly workflow using the IRFinder
algorithm to perform both IR and alternative splicing analysis in large datasets. By incorporat-
ing the core C++ based IRFinder algorithm using Rcpp, NxtIRF is multi-platform and further
improves computational efficiency using OpenMP-based multi-threading. Besides analysing IR,
NxtIRF analyses other forms of alternative splicing events that depend on alternate splice site selec-
tion, including skipped exons, mutually exclusive exons, alternate 5’- and 3’- splice sites, alternate
first exons and alternate last exons.

Downstream, NxtIRF provides functions to collate individual NxtIRF/IRFinder outputs of multiple
samples in an experiment / dataset, and assembles these into a specialised NxtSE object that in-
herits the SummarizedExperiment class. Users can easily define experimental conditions, perform
differential analysis and filter out lowly-expressed splice events.

Finally, NxtIRF provides visualisation tools to illustrate alternative splicing using coverage plots,
including a novel method to normalise RNA-seq coverage grouped by experimental condition. This
approach accounts for variations introduced by sequenced library size and gene expression. NxtIRF
efficiently computes and visualises means and variations in per-nucleotide coverage depth across
alternate exons in genomic loci.

NxtIRFcore is the command line interface for R/Bioconductor. NxtIRF (coming soon) will feature
an interactive graphical user interface with additional functions.

Features include:

• Reference generation from user-supplied local and web resources, as well as connectivity to
the AnnotationHub repository for Ensembl-based genomes and gene annotations;

https://doi.org/10.1186/s13059-017-1184-4

4 NxtIRFcore-package

• OpenMP and BiocParallel-based multi-threaded support to process short-read BAM files using
the IRFinder algorithm written in native C++;

• Stores alignment coverage using the COV format, which is a binary compressed and indexed
format for rapid recall of RNA-seq coverage. In contrast to the BigWig format, COV files
store coverage of unstranded as well as stranded alignment coverage, and is much more space-
efficient, allowing for better portability;

• Memory-efficient collation of hundreds of samples using on-disk memory approaches and
H5-based assay storage;

• Streamlined user-friendly functions to construct multi-factor complex experimental designs,
and perform differential IR and alternative splicing analysis using well-established statistical
methods including limma and DESeq2;

• Advanced RNA-seq coverage visualisation, including the ability to combine RNA-seq cover-
age of multiple samples using advanced library normalisation methods across samples grouped
by conditions;

The main functions are:

• BuildReference - Prepares genome and gene annotation references from FASTA and GTF
files, and synthesises the NxtIRF reference for the IRFinder engine and NxtIRF-based down-
stream analysis.

• STAR-methods - (Optional) Provides wrapper functions to build the STAR genome reference
and alignment of short-read FASTQ raw sequencing files. This functionality is only available
on systems with STAR installed.

• IRFinder - OpenMP/C++ based IRFinder algorithm to analyse single or multiple BAM files
using the NxtIRF/IRFinder reference.

• CollateData - Collates an experiment based on multiple IRFinder outputs for individual sam-
ples, into one unified H5-based data structure.

• MakeSE - Constructs a NxtSE (H5-based SummarizedExperiment) object, specialised to house
measurements of retained introns and junction counts of alternative splice events.

• apply_filters - Use default or custom filters to remove alternative splicing or IR events pertain-
ing to low-abundance genes and transcripts.

• ASE-methods - one-step method to perform differential alternate splice event (ASE) analysis
on a NxtSE object using limma or DESeq2.

• make_plot_data: Functions that compile individual and group-mean percent spliced in (PSI)
values of IR and alternative splice events; useful to produce scatter plots or heatmaps.

• Plot_Coverage: Generate RNA-seq coverage plots of individual samples or across samples
grouped by user-specified conditions

See the NxtIRF vignette for worked examples on how to use NxtIRF

Author(s)

Alex Wong

../doc/NxtIRF.html

ASE-methods 5

References

Middleton R, Gao D, Thomas A, Singh B, Au A, Wong JJ, Bomane A, Cosson B, Eyras E, Rasko
JE, Ritchie W. IRFinder: assessing the impact of intron retention on mammalian gene expression.
Genome Biol. 2017 Mar 15;18(1):51. https://doi.org/10.1186/s13059-017-1184-4

ASE-methods Use Limma, DESeq2 or DoubleExpSeq to test for differential Alterna-
tive Splice Events

Description

Use Limma, DESeq2 or DoubleExpSeq to test for differential Alternative Splice Events

Usage

limma_ASE(
se,
test_factor,
test_nom,
test_denom,
batch1 = "",
batch2 = "",
filter_antiover = TRUE,
filter_antinear = FALSE

)

DESeq_ASE(
se,
test_factor,
test_nom,
test_denom,
batch1 = "",
batch2 = "",
n_threads = 1,
filter_antiover = TRUE,
filter_antinear = FALSE

)

DoubleExpSeq_ASE(
se,
test_factor,
test_nom,
test_denom,
filter_antiover = TRUE,
filter_antinear = FALSE

)

https://doi.org/10.1186/s13059-017-1184-4

6 ASE-methods

Arguments

se The NxtSE object created by MakeSE(). To reduce runtime and avoid excessive
multiple testing, consider filtering the object using apply_filters

test_factor The condition type which contains the contrasting variable

test_nom The nominator condition to test for differential ASE. Usually the "treatment"
condition

test_denom The denominator condition to test against for differential ASE. Usually the "con-
trol" condition

batch1, batch2 (Optional, limma and DESeq2 only) One or two condition types containing
batch information to account for.

filter_antiover, filter_antinear

Whether to remove novel IR events that overlap over or near anti-sense genes.
Default will exclude antiover but not antinear introns. These are ignored if
stranded RNA-seq protocols are used.

n_threads (DESeq2 only) How many threads to use for DESeq2 based analysis.

Details

Using limma, NxtIRF models included and excluded counts as log-normal distributed, whereas us-
ing DESeq2, NxtIRF models included and excluded counts as negative binomial distributed with
dispersion shrinkage according to their mean count expressions. For limma and DESeq2, differen-
tial ASE are considered as the "interaction" between included and excluded splice counts for each
sample. See this vignette for an explanation of how this is done.

Using DoubleExpSeq, included and excluded counts are modelled using the generalized beta prime
distribution, using empirical Bayes shrinkage to estimate dispersion.

EventType are as follow:

• IR = (novel) intron retention

• MXE = mutually exclusive exons

• SE = skipped exons

• AFE = alternate first exon

• ALE = alternate last exon

• A5SS = alternate 5’-splice site

• A3SS = alternate 3’-splice site

• RI = (known / annotated) intron retention.

NB: NxtIRF separately considers known "RI" and novel "IR" events separately:

• IR novel events are calculated using the IRFinder method, whereby spliced transcripts are all
isoforms that do not retain the intron, as estimated via the SpliceMax and SpliceOverMax
methods

• see CollateData.

https://rpubs.com/mikelove/ase

ASE-methods 7

• RI known retained introns are those that lie completely within a single exon of another tran-
script. (NB: in NxtIRFcore v1.1.1 and later, this encompasses exons from any transcript,
including retained_intron and sense_intronic transcripts). RI’s are calculated by con-
sidering the specific spliced intron as a binary event paired with its retention. The spliced
abundance is calculated exclusively by splice reads mapped to the specific intron boundaries.
Known retained introns are those where the intron retaining transcript is an annotated tran-
script. In NxtIRFcore version < 1.1.1, the IR-transcript’s transcript_biotype must not
be an retained_intron or sense_intronic.

NxtIRF considers "included" counts as those that represent abundance of the "included" isoform,
whereas "excluded" counts represent the abundance of the "excluded" isoform. For consistency, it
applies a convention whereby the "included" transcript is one where its splice junctions are by defi-
nition shorter than those of "excluded" transcripts. Specifically, this means the included / excluded
isoforms are as follows:

EventType Included Excluded
IR or RI Intron Retention Spliced Intron

MXE Upstream exon inclusion Downstream exon inclusion
SE Exon inclusion Exon skipping

AFE Downstream exon usage Upstream exon usage
ALE Upstream exon usage Downstream exon usage
A5SS Downstream 5’-SS Upstream 5’-SS
A3SS Upstream 3’-SS Downstream 3’-SS

Value

A data table containing the following:

• EventName: The name of the ASE event. This identifies each ASE in downstream functions
including make_diagonal, make_matrix, and Plot_Coverage

• EventType: The type of event. See details section above.

• EventRegion: The genomic coordinates the event occupies. This spans the most upstream and
most downstream splice junction involved in the ASE, and is use to guide the Plot_Coverage
function.

• NMD_direction: Indicates whether one isoform is a NMD substrate. +1 means included
isoform is NMD, -1 means the excluded isoform is NMD, and 0 means there is no change in
NMD status (i.e. both / neither are NMD)

• AvgPSI_nom, Avg_PSI_denom: the average percent spliced in / percent IR levels for the two
conditions being contrasted. nom and denom in column names are replaced with the condition
names

limma specific output

• logFC, AveExpr, t, P.Value, adj.P.Val, B: limma topTable columns of differential ASE. See
limma::topTable for details.

• inc/exc_(logFC, AveExpr, t, P.Value, adj.P.Val, B): limma results for differential testing for
raw included / excluded counts only

8 ASE-methods

DESeq2 specific output

• baseMean, log2FoldChange, lfcSE, stat, pvalue, padj: DESeq2 results columns for differential
ASE; see DESeq2::results for details.

• inc/exc_(baseMean, log2FoldChange, lfcSE, stat, pvalue, padj): DESeq2 results for differen-
tial testing for raw included / excluded counts only

DoubleExp specific output

• MLE_nom, MLE_denom: Expectation values for the two groups. nom and denom in column
names are replaced with the condition names

• MLE_LFC: Log2-fold change of the MLE

• P.Value, adj.P.Val: Nominal and BH-adjusted P values

• n_eff: Number of effective samples (i.e. non-zero or non-unity PSI)

• mDepth: Mean Depth of splice coverage in each of the two groups.

• Dispersion_Reduced, Dispersion_Full: Dispersion values for reduced and full models. See
DoubleExpSeq::DBGLM1 for details.

Functions

• limma_ASE: Use limma to perform differential ASE analysis of a filtered NxtSE object

• DESeq_ASE: Use DESeq2 to perform differential ASE analysis of a filtered NxtSE object

• DoubleExpSeq_ASE: Use DoubleExpSeq to perform differential ASE analysis of a filtered
NxtSE object (uses double exponential beta-binomial model) to estimate group dispersions,
followed by LRT

References

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015). ’limma powers differ-
ential expression analyses for RNA-sequencing and microarray studies.’ Nucleic Acids Research,
43(7), e47. https://doi.org/10.1093/nar/gkv007

Love MI, Huber W, Anders S (2014). ’Moderated estimation of fold change and dispersion for
RNA-seq data with DESeq2.’ Genome Biology, 15, 550. https://doi.org/10.1186/s13059-014-0550-8

Ruddy S, Johnson M, Purdom E (2016). ’Shrinkage of dispersion parameters in the binomial family,
with application to differential exon skipping.’ Ann. Appl. Stat. 10(2): 690-725. https://doi.
org/10.1214/15-AOAS871

Examples

see ?MakeSE on example code of generating this NxtSE object
se <- NxtIRF_example_NxtSE()

colData(se)$treatment <- rep(c("A", "B"), each = 3)

require("limma")
res_limma <- limma_ASE(se, "treatment", "A", "B")

require("DoubleExpSeq")

https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1214/15-AOAS871
https://doi.org/10.1214/15-AOAS871

BuildReference 9

res_DES <- DoubleExpSeq_ASE(se, "treatment", "A", "B")
Not run:

require("DESeq2")
res_DESeq <- DESeq_ASE(se, "treatment", "A", "B")

End(Not run)

BuildReference Builds reference files used by IRFinder / NxtIRF.

Description

These function builds the reference required by the IRFinder engine, as well as alternative splicing
annotation data for NxtIRF. See examples below for guides to making the NxtIRF reference.

Usage

GetReferenceResource(
reference_path = "./Reference",
fasta = "",
gtf = "",
overwrite = FALSE,
force_download = FALSE

)

BuildReference(
reference_path = "./Reference",
fasta = "",
gtf = "",
overwrite = FALSE,
force_download = FALSE,
chromosome_aliases = NULL,
genome_type = "",
nonPolyARef = "",
MappabilityRef = "",
BlacklistRef = "",
UseExtendedTranscripts = TRUE

)

GetNonPolyARef(genome_type)

BuildReference_Full(
reference_path,
fasta,
gtf,
chromosome_aliases = NULL,

10 BuildReference

overwrite = FALSE,
force_download = FALSE,
genome_type = genome_type,
use_STAR_mappability = FALSE,
nonPolyARef = GetNonPolyARef(genome_type),
BlacklistRef = "",
UseExtendedTranscripts = TRUE,
n_threads = 4

)

Arguments

reference_path (REQUIRED) The directory path to store the generated reference files

fasta The file path or web link to the user-supplied genome FASTA file. Alternatively,
the name of the AnnotationHub record containing the genome resource. May
be omitted if GetReferenceResource() has already been run using the same
reference_path.

gtf The file path or web link to the user-supplied transcript GTF file (or gzipped
GTF file). Alternatively, the name of the AnnotationHub record containing the
transcript GTF file. May be omitted if GetReferenceResource() has already
been run using the same reference_path.

overwrite (default FALSE) For GetReferenceResource(): if the genome FASTA and gene
annotation GTF files already exist in the resource subdirectory, it will not be
overwritten. For BuildReference() and BuildReference_Full(): the Nx-
tIRF reference will not be overwritten if one already exist. A reference is con-
sidered to exist if the file IRFinder.ref.gz is present inside reference_path.

force_download (default FALSE) When online resources are retrieved, a local copy is stored in
the NxtIRFcore BiocFileCache. Subsequent calls to the web resource will fetch
the local copy. Set force_download to TRUE will force the resource to be down-
loaded from the web. Set this to TRUE only if the web resource has been updated
since the last retrieval.

chromosome_aliases

(Highly optional) A 2-column data frame containing chromosome name con-
versions. If this is set, allows IRFinder to parse BAM files where alignments
are made to a genome whose chromosomes are named differently to the refer-
ence genome. The most common scenario is where Ensembl genome typically
use chromosomes "1", "2", ..., "X", "Y", whereas UCSC/Gencode genome use
"chr1", "chr2", ..., "chrX", "chrY". See example below. Refer to https://
github.com/dpryan79/ChromosomeMappings for a list of chromosome alias
resources.

genome_type Allows BuildReference() to select default nonPolyARef and MappabilityRef
for selected genomes. Allowed options are: hg38, hg19, mm10, and mm9.

nonPolyARef (Optional) A BED file of regions defining known non-polyadenylated transcripts.
This file is used for QC analysis of IRFinder-processed files to measure Poly-
A enrichment quality of samples. If omitted, and genome_type is defined, the
default for the specified genome will be used.

https://github.com/dpryan79/ChromosomeMappings
https://github.com/dpryan79/ChromosomeMappings

BuildReference 11

MappabilityRef (Optional) A BED file of low mappability regions due to repeat elements in the
genome. If omitted, the file generated by Mappability_CalculateExclusions()
will be used where available, and if this is not, the default file for the specified
genome_type will be used. If genome_type is not specified, MappabilityRef
is not used. See details.

BlacklistRef A BED file of regions to be otherwise excluded from IR analysis. If omitted, a
blacklist is not used (this is the default).

UseExtendedTranscripts

(default TRUE) Should non-protein-coding transcripts such as anti-sense and lin-
cRNA transcripts be included in searching for IR / AS events? Setting FALSE
(vanilla IRFinder) will exclude transcripts other than protein_coding and processed_transcript
transcripts from IR analysis.

use_STAR_mappability

(default FALSE) In BuildReference_Full(), whether to run STAR_Mappability
to calculate low-mappability regions. We recommend setting this to FALSE for
the common genomes (human and mouse), and to TRUE for genomes not sup-
ported by genome_type. When set to false, the MappabilityExclusion default
file corresponding to genome_type will automatically be used.

n_threads The number of threads used to generate the STAR reference and mappability
calculations. Multi-threading is not used for NxtIRF reference generation (but
multiple cores are utilised in data-table and fst file processing automatically,
where available). See STAR-methods

Details

GetReferenceResource() processes the files, downloads resources from web links or from AnnotationHub(),
and saves a local copy in the "resource" subdirectory within the given reference_path. Resources
are retrieved via either:

1. User-supplied FASTA and GTF file. This can be a file path, or a web link (e.g. ’http://’,
’https://’ or ’ftp://’). Use fasta and gtf to specify the files or web paths to use.

2. AnnotationHub genome and gene annotation (Ensembl): supply the names of the genome
sequence and gene annotations to fasta and gtf.

BuildReference() will first run GetReferenceResource() if resources are not yet saved locally
(i.e. GetReferenceResource() is not already run). Then, it creates the NxtIRF / IRFinder refer-
ences. Typical run-times are 5 to 10 minutes for human and mouse genomes (after resources are
downloaded).

NB: the parameters fasta and gtf can be omitted in BuildReference() if GetReferenceResource()
is already run.

Typical usage involves running BuildReference() for human and mouse genomes and specify-
ing the genome_type to use the default MappabilityRef and nonPolyARef files for the specified
genome. For non-human non-mouse genomes, use one of the following alternatives:

• Create the NxtIRF reference without using Mappability Exclusion regions. To do this, simply
run BuildReference() and omit MappabilityRef. This is acceptable assuming the introns
assessed are short and do not contain intronic repeats

12 BuildReference

• Calculating Mappability Exclusion regions using the STAR aligner, and building the NxtIRF
reference. This can be done using the BuildReference_Full() function, on systems where
STAR is installed

• Instead of using the STAR aligner, any genome splice-aware aligner could be used. See
Mappability-methods for details. After producing the MappabilityExclusion.bed.gz file
(in the Mappability subfolder), run BuildReference() using this file (or simply leave it
blank).

BED files are tab-separated text files containing 3 unnamed columns specifying chromosome, start
and end coordinates. To view an example BED file, open the file specified in the path returned by
GetNonPolyARef("hg38")

See examples below for common use cases.

Value

For GetReferenceResource: creates the following local resources:

• reference_path/resource/genome.2bit: Local copy of the genome sequences as a TwoBit-
File.

• reference_path/resource/transcripts.gtf.gz: Local copy of the gene annotation as a
gzip-compressed file. For BuildReference and BuildReference_Full: creates a NxtIRF
reference which is written to the given directory specified by reference_path. Files created
includes:

• reference_path/settings.Rds: An RDS file containing parameters used to generate the
NxtIRF reference

• reference_path/IRFinder.ref.gz: A gzipped text file containing collated IRFinder refer-
ence files. This file is used by IRFinder

• reference_path/fst/: Contains fst files for subsequent easy access to NxtIRF generated
references

• reference_path/cov_data.Rds: An RDS file containing data required to visualise genome
/ transcript tracks.

BuildReference_Full also creates a STAR reference located in the STAR subdirectory inside the
designated reference_path

For GetNonPolyARef: Returns the file path to the BED file for the nonPolyA loci for the specified
genome.

Functions

• GetReferenceResource: Processes / downloads a copy of the genome and gene annotations
and stores this in the "resource" subdirectory of the given reference path

• BuildReference: First calls GetReferenceResource() (if required). Afterwards creates the
NxtIRF reference in the given reference path

• GetNonPolyARef: Returns the path to the BED file containing coordinates of known non-
polyadenylated transcripts for genomes hg38, hg19, mm10 and mm9,

• BuildReference_Full: One-step function that fetches resources, creates a STAR reference
(including mappability calculations), then creates the NxtIRF reference

BuildReference 13

See Also

Mappability-methods for methods to calculate low mappability regions

STAR-methods for a list of STAR wrapper functions

AnnotationHub

Examples

Quick runnable example: generate a reference using NxtIRF's example genome

example_ref <- file.path(tempdir(), "Reference")
GetReferenceResource(

reference_path = example_ref,
fasta = chrZ_genome(),
gtf = chrZ_gtf()

)
BuildReference(

reference_path = example_ref
)

NB: the above is equivalent to:

example_ref <- file.path(tempdir(), "Reference")
BuildReference(

reference_path = example_ref,
fasta = chrZ_genome(),
gtf = chrZ_gtf()

)

Get the path to the Non-PolyA BED file for hg19

GetNonPolyARef("hg19")
Not run:

Long examples

Generate a NxtIRF reference from user supplied FASTA and GTF files for a
hg38-based genome:

BuildReference(
reference_path = "./Reference_user",
fasta = "genome.fa", gtf = "transcripts.gtf",
genome_type = "hg38"

)

NB: Setting `genome_type = hg38`, will automatically use default
nonPolyARef and MappabilityRef for `hg38`

14 BuildReference

Reference generation from Ensembl's FTP links:

FTP <- "ftp://ftp.ensembl.org/pub/release-94/"
BuildReference(

reference_path = "./Reference_FTP",
fasta = paste0(FTP, "fasta/homo_sapiens/dna/",

"Homo_sapiens.GRCh38.dna.primary_assembly.fa.gz"),
gtf = paste0(FTP, "gtf/homo_sapiens/",

"Homo_sapiens.GRCh38.94.chr.gtf.gz"),
genome_type = "hg38"

)

Get AnnotationHub record names for Ensembl release-94:

First, search for the relevant AnnotationHub record names:

ah <- AnnotationHub::AnnotationHub()
AnnotationHub::query(ah, c("Homo Sapiens", "release-94"))
snapshotDate(): 2021-09-23
$dataprovider: Ensembl
$species: Homo sapiens
$rdataclass: TwoBitFile, GRanges
additional mcols(): taxonomyid, genome, description, coordinate_1_based,
maintainer, rdatadateadded, preparerclass, tags,
rdatapath, sourceurl, sourcetype
retrieve records with, e.g., 'object[["AH64628"]]'
#
title
AH64628 | Homo_sapiens.GRCh38.94.abinitio.gtf
AH64629 | Homo_sapiens.GRCh38.94.chr.gtf
AH64630 | Homo_sapiens.GRCh38.94.chr_patch_hapl_scaff.gtf
AH64631 | Homo_sapiens.GRCh38.94.gtf
AH65744 | Homo_sapiens.GRCh38.cdna.all.2bit
AH65745 | Homo_sapiens.GRCh38.dna.primary_assembly.2bit
AH65746 | Homo_sapiens.GRCh38.dna_rm.primary_assembly.2bit
AH65747 | Homo_sapiens.GRCh38.dna_sm.primary_assembly.2bit
AH65748 | Homo_sapiens.GRCh38.ncrna.2bit

BuildReference(
reference_path = "./Reference_AH",
fasta = "AH65745",
gtf = "AH64631",
genome_type = "hg38"

)

Build a NxtIRF reference, setting chromosome aliases to allow
this reference to process BAM files aligned to UCSC-style genomes:

chrom.df <- GenomeInfoDb::genomeStyles()$Homo_sapiens

BuildReference(
reference_path = "./Reference_UCSC",
fasta = "AH65745",

CollateData 15

gtf = "AH64631",
genome_type = "hg38",
chromosome_aliases = chrom.df[, c("Ensembl", "UCSC")]

)

One-step generation of NxtIRF and STAR references, using 4 threads.
NB1: requires a linux-based system with STAR installed.
NB2: A STAR reference genome will be generated in the `STAR` subfolder
inside the given `reference_path`.
NB3: A custom Mappability Exclusion file will be calculated using STAR
and will be used to generate the NxtIRF reference.

BuildReference_Full(
reference_path = "./Reference_with_STAR",
fasta = "genome.fa", gtf = "transcripts.gtf",
genome_type = "",
use_STAR_mappability = TRUE,
n_threads = 4

)

NB: the above is equivalent to running the following in sequence:

GetReferenceResource(
reference_path = "./Reference_with_STAR",
fasta = "genome.fa", gtf = "transcripts.gtf"

)
STAR_buildRef(

reference_path = reference_path,
also_generate_mappability = TRUE,
n_threads = 4

)
BuildReference(

reference_path = "./Reference_with_STAR",
genome_type = ""

)

End(Not run)

CollateData Processes data from IRFinder output

Description

CollateData unifies a list of IRFinder output files belonging to an experiment.

Usage

CollateData(
Experiment,
reference_path,

16 CollateData

output_path,
IRMode = c("SpliceOverMax", "SpliceMax"),
overwrite = FALSE,
n_threads = 1,
samples_per_block = 16

)

Arguments

Experiment (Required) A 2 or 3 column data frame, ideally generated by Find_IRFinder_Output
or Find_Samples. The first column designate the sample names, and the 2nd
column contains the path to the IRFinder output file (of type sample.txt.gz).
(Optionally) a 3rd column contains the coverage files (of type sample.cov) of
the corresponding samples. NB: all other columns are ignored.

reference_path (Required) The path to the reference generated by BuildReference

output_path (Required) The path to contain the output files for this function

IRMode (default SpliceOverMax) The algorithm to calculate ’splice abundance’ in IR
quantification. Valid options are SpliceOverMax and SpliceMax. See details

overwrite (default FALSE) If CollateData() has previously been run using the same set
of samples, it will not be overwritten unless this is set to TRUE.

n_threads (default 1) The number of threads to use. On low memory systems, reduce the
number of n_threads and samples_per_block

samples_per_block

(default 16) How many samples to process per thread, maximum. Setting this to
a lower value may help in memory-constrained systems.

Details

All sample IRFinder outputs must be generated using the same reference.

The combination of junction counts and IR quantification from IRFinder is used to calculate per-
centage spliced in (PSI) of alternative splice events, and percent intron retention (PIR) of retained
introns. Also, QC information is extracted. Data is organised in a H5file and FST files for memory
and processor efficient downstream access using MakeSE.

The original IRFinder algorithm, see the following wiki, uses SpliceMax to estimate abundance
of spliced transcripts. This calculates the number of mapped splice events that share the boundary
coordinate of either the left or right flanking exon SpliceLeft,SpliceRight, estimating splice
abundance as the larger of the two values.

NxtIRF proposes a new algorithm,SpliceOverMax, to account for the possibility that the major
isoform shares neither boundary, but arises from either of the flanking "exon islands". Exon is-
lands are contiguous regions covered by exons from any transcript (except those designated as
retained_intron or sense_intronic), and are separated by obligate intronic regions (genomic
regions that are introns for all transcripts). For introns that are internal to a single exon island (i.e.
akin to "known-exon" introns from IRFinder), SpliceOverMax uses GenomicRanges::findOverlaps
to sum all splice reads that overlap the same genomic region as the intron of interest.

https://github.com/williamritchie/IRFinder/wiki/IRFinder-Output

CoordToGR 17

Value

CollateData() writes to the directory given by output_path. This output directory is portable
(i.e. it can be moved to a different location after running CollateData() before running MakeSE),
but individual files within the output folder should not be moved.

Also, the IRFinder and CollateData output folders should be copied to the same destination and
their relative paths preserved. Otherwise, the locations of the "COV" files will not be recorded in
the collated data and will have to be re-assigned using covfile(se)<-. See MakeSE

See Also

IRFinder, MakeSE

Examples

BuildReference(
reference_path = file.path(tempdir(), "Reference"),
fasta = chrZ_genome(),
gtf = chrZ_gtf()

)

bams <- NxtIRF_example_bams()
IRFinder(bams$path, bams$sample,

reference_path = file.path(tempdir(), "Reference"),
output_path = file.path(tempdir(), "IRFinder_output")

)

expr <- Find_IRFinder_Output(file.path(tempdir(), "IRFinder_output"))
CollateData(expr,

reference_path = file.path(tempdir(), "Reference"),
output_path = file.path(tempdir(), "NxtIRF_output")

)

CoordToGR Converts genomic coordinates into a GRanges object

Description

This function takes a string vector of genomic coordinates and converts it into a GRanges object.

Usage

CoordToGR(coordinates)

Arguments

coordinates A string vector of one or more genomic coordinates to be converted

18 Coverage

Details

Genomic coordinates can take one of the following syntax:

• seqnames:start

• seqnames:start-end

• seqnames:start-end/strand

The following examples are considered valid genomic coordinates:

• "chr1:21535"

• "chr3:10550-10730"

• "X:51231-51330/-"

• "chrM:2134-5232/+"

Value

A GRanges object that corresponds to the given coordinates

Examples

se <- NxtIRF_example_NxtSE()

coordinates <- rowData(se)$EventRegion

gr <- CoordToGR(coordinates)

Coverage Calls NxtIRF’s C++ function to retrieve coverage from a COV file

Description

This function returns an RLE / RLEList or data.frame containing coverage data from the given COV
file

COV files are generated by NxtIRF’s IRFinder and BAM2COV functions. It records alignment
coverage for each nucleotide in the given BAM file. It stores this data in "COV" format, which is an
indexed BGZF-compressed format specialised for the storage of unstranded and stranded alignment
coverage in RNA sequencing.

Unlike BigWig files, COV files store coverage for both positive and negative strands.

These functions retrieves coverage data from the specified COV file. They are computationally
efficient as they utilise random-access to rapidly search for the requested data from the COV file.

Coverage 19

Usage

GetCoverage(file, seqname = "", start = 0, end = 0, strand = c("*", "+", "-"))

GetCoverage_DF(
file,
seqname = "",
start = 0,
end = 0,
strand = c("*", "+", "-")

)

GetCoverageRegions(
file,
regions,
strandMode = c("unstranded", "forward", "reverse")

)

GetCoverageBins(
file,
region,
bins = 2000,
strandMode = c("unstranded", "forward", "reverse"),
bin_size

)

Arguments

file (Required) The file name of the COV file

seqname (Required for GetCoverage_DF) A string denoting the chromosome name. If
left blank in GetCoverage, retrieves RLEList containing coverage of the entire
file.

start, end 1-based genomic coordinates. If start = 0 and end = 0, will retrieve RLE of
specified chromosome.

strand Either "*", "+", or "-"

regions A GRanges object for a set of regions to obtain mean / total coverage from the
given COV file.

strandMode The stranded-ness of the RNA-seq experiment. "unstranded" means that an un-
stranded protocol was used. Stranded protocols can be either "forward", where
the first read is the same strand as the expressed transcript, or "reverse" where
the second strand is the same strand as the expressed transcript.

region In GetCoverageBins, a single query region as a GRanges object

bins In GetCoverageBins, the number of bins to divide the given region. If bin_size
is given, overrides this parameter

bin_size In GetCoverageBins, the number of nucleotides per bin

20 Coverage

Value

For GetCoverage: If seqname is left as "", returns an RLEList of the whole BAM file, with each
RLE in the list containing coverage data for one chromosome. Otherwise, returns an RLE contain-
ing coverage data for the requested genomic region

For GetCoverage_DF: Returns a two-column data frame, with the first column coordinate de-
noting genomic coordinate, and the second column value containing the coverage depth for each
coordinate nucleotide.

For GetCoverageRegions: Returns a GRanges object with an extra metacolumn: cov_mean, which
gives the mean coverage of each of the given ranges.

For GetCoverageBins: Returns a GRanges object which spans the given region, divided by the
number of bins or by width as given by bin_size. Mean coverage in each bin is calculated (re-
turned by the cov_mean metadata column). This function is useful for retrieving coverage of a large
region for visualisation, especially when the size of the region vastly exceeds the width of the figure.

Functions

• GetCoverage: Retrieves alignment coverage as an RLE or RLElist

• GetCoverage_DF: Retrieves alignment coverage as a data.frame

• GetCoverageRegions: Retrieves total and mean coverage of a GRanges object from a COV
file

• GetCoverageBins: Retrieves coverage of a single region from a COV file, binned by the given
number of bins or bin_size

Examples

se <- NxtIRF_example_NxtSE()

cov_file <- covfile(se)[1]

Retrieve Coverage as RLE

cov <- GetCoverage(cov_file, seqname = "chrZ",
start = 10000, end = 20000,
strand = "*"

)

Retrieve Coverage as data.frame

cov.df <- GetCoverage_DF(cov_file, seqname = "chrZ",
start = 10000, end = 20000,
strand = "*"

)

Retrieve mean coverage of 100-nt window regions as defined
in a GRanges object:

gr <- GenomicRanges::GRanges(
seqnames = "chrZ",

example-NxtIRF-data 21

ranges = IRanges::IRanges(
start = seq(1, 99901, by = 100),
end = seq(100, 100000, by = 100)

), strand = "-"
)

gr.unstranded <- GetCoverageRegions(cov_file,
regions = gr,
strandMode = "unstranded"

)

gr.stranded <- GetCoverageRegions(cov_file,
regions = gr,
strandMode = "reverse"

)

Retrieve binned coverage of a large region

gr.fetch = GetCoverageBins(
cov_file,
region = GenomicRanges::GRanges(seqnames = "chrZ",

ranges = IRanges::IRanges(start = 100, end = 100000),
strand = "*"

),
bins = 2000

)

Plot coverage using ggplot:

require(ggplot2)

ggplot(cov.df, aes(x = coordinate, y = value)) +
geom_line() + theme_white

ggplot(as.data.frame(gr.unstranded),
aes(x = (start + end) / 2, y = cov_mean)) +
geom_line() + theme_white

ggplot(as.data.frame(gr.fetch),
aes(x = (start + end)/2, y = cov_mean)) +
geom_line() + theme_white

Export COV data as BigWig

cov_whole <- GetCoverage(cov_file)
bw_file <- file.path(tempdir(), "sample.bw")
rtracklayer::export(cov_whole, bw_file, "bw")

example-NxtIRF-data NxtIRF Example BAMs and NxtSE Experiment Object

22 example-NxtIRF-data

Description

NxtIRF_example_bams() is a wrapper function to obtain and make a local copy of 6 example files
provided by the NxtIRFdata companion package to demonstrate the use of NxtIRFcore. See Nx-
tIRFdata::example_bams for a description of the provided BAM files.

NxtIRF_example_NxtSE() retrieves a ready-made functioning NxtSE object. The steps to repro-
duce this object is shown in the example code in MakeSE

Usage

NxtIRF_example_bams()

NxtIRF_example_NxtSE()

Value

In NxtIRF_example_bams(): returns a 2-column data frame containing sample names and BAM
paths of the example dataset.

In NxtIRF_example_NxtSE(): returns a NxtSE object.

Functions

• NxtIRF_example_bams: Returns a 2-column data frame, containing sample names and sample
paths (in tempdir()) of example BAM files

• NxtIRF_example_NxtSE: Returns a (in-memory / realized) NxtSE object that was pre-generated
using the NxtIRF example reference and example BAM files

References

Generation of the mappability files was performed using NxtIRF using a method analogous to that
described in:

Middleton R, Gao D, Thomas A, Singh B, Au A, Wong JJ, Bomane A, Cosson B, Eyras E, Rasko
JE, Ritchie W. IRFinder: assessing the impact of intron retention on mammalian gene expression.
Genome Biol. 2017 Mar 15;18(1):51. doi:10.1186/s1305901711844

See Also

MakeSE

Examples

returns a data frame with the first column as sample names, and the
second column as BAM paths

NxtIRF_example_bams()

Returns a NxtSE object created by the example bams aligned to the
mock NxtSE reference

https://doi.org/10.1186/s13059-017-1184-4

Find_Samples 23

se <- NxtIRF_example_NxtSE()

Find_Samples Convenience Function to (recursively) find all files in a folder.

Description

Often, files e.g. raw sequencing FASTQ files, alignment BAM files, or IRFinder output files, are
stored in a single folder under some directory structure. They can be grouped by being in common
directory or having common names. Often, their sample names can be gleaned by these common
names or the names of the folders in which they are contained. This function (recursively) finds all
files and extracts sample names assuming either the files are named by sample names (level = 0),
or that their names can be derived from the parent folder (level = 1). Higher level also work (e.g.
level = 2) mean the parent folder of the parent folder of the file is named by sample names. See
details section below.

Usage

Find_Samples(sample_path, suffix = ".txt.gz", level = 0)

Find_FASTQ(
sample_path,
paired = TRUE,
fastq_suffix = c(".fastq", ".fq", ".fastq.gz", ".fq.gz"),
level = 0

)

Find_Bams(sample_path, level = 0)

Find_IRFinder_Output(sample_path, level = 0)

Arguments

sample_path The path in which to recursively search for files that match the given suffix

suffix A vector of or or more strings that specifies the file suffix (e.g. ’.bam’ denotes
BAM files, whereas ".txt.gz" denotes gzipped txt files).

level Whether sample names can be found in the file names themselves (level = 0), or
their parent directory (level = 1). Potentially parent of parent directory (level =
2). Support max level <= 3 (for sanity).

paired Whether to expect single FASTQ files (of the format "sample.fastq"), or paired
files (of the format "sample_1.fastq", "sample_2.fastq")

fastq_suffix The name of the FASTQ suffix. Options are: ".fastq", ".fastq.gz", ".fq", or
".fq.gz"

24 Find_Samples

Details

Paired FASTQ files are assumed to be named using the suffix _1 and _2 after their common names;
e.g. sample_1.fastq, sample_2.fastq. Alternate FASTQ suffixes for Find_FASTQ() include
".fq", ".fastq.gz", and ".fq.gz".

In BAM files, often the parent directory denotes their sample names. In this case, use level = 1 to
automatically annotate the sample names using Find_Bams().

IRFinder outputs two files per BAM processed. These are named by the given sample names. The
text output is named "sample1.txt.gz", and the COV file is named "sample1.cov", where sample1 is
the name of the sample. These files can be organised / tabulated using the function Find_IRFinder_Output.
The generic function Find_Samples will organise the IRFinder text output files but exclude the
COV files. Use the latter as the Experiment in CollateData if one decides to collate an experiment
without linked COV files, for portability reasons.

Value

A multi-column data frame with the first column containing the sample name, and subsequent
columns being the file paths with suffix as determined by suffix.

Functions

• Find_Samples: Finds all files with the given suffix pattern. Annotates sample names based
on file or parent folder names.

• Find_FASTQ: Use Find_Samples() to return all FASTQ files in a given folder

• Find_Bams: Use Find_Samples() to return all BAM files in a given folder

• Find_IRFinder_Output: Use Find_Samples() to return all IRFinder output files in a given
folder, including COV files

Examples

Retrieve all BAM files in a given folder, named by sample names
bam_path <- tempdir()
example_bams(path = bam_path)
df.bams <- Find_Samples(sample_path = bam_path,

suffix = ".bam", level = 0)
equivalent to:
df.bams <- Find_Bams(bam_path, level = 0)

Retrieve all IRFinder output files in a given folder,
named by sample names

expr <- Find_IRFinder_Output(file.path(tempdir(), "IRFinder_output"))
Not run:

Find FASTQ files in a directory, named by sample names
where files are in the form:
- "./sample_folder/sample1.fastq"
- "./sample_folder/sample2.fastq"

Find_FASTQ("./sample_folder", paired = FALSE, fastq_suffix = ".fastq")

IRFinder 25

Find paired gzipped FASTQ files in a directory, named by parent directory
where files are in the form:
- "./sample_folder/sample1/raw_1.fq.gz"
- "./sample_folder/sample1/raw_2.fq.gz"
- "./sample_folder/sample2/raw_1.fq.gz"
- "./sample_folder/sample2/raw_2.fq.gz"

Find_FASTQ("./sample_folder", paired = TRUE, fastq_suffix = ".fq.gz")

End(Not run)

IRFinder Runs the OpenMP/C++-based NxtIRF/IRFinder algorithm

Description

These function calls the IRFinder C++ routine on one or more BAM files.

The routine is an improved version over the original IRFinder, with OpenMP-based multi-threading
and the production of compact "COV" files to record alignment coverage. A NxtIRF reference built
using BuildReference is required.

After IRFinder is run, users should call CollateData to collate individual outputs into an experi-
ment / dataset.

BAM2COV creates COV files from BAM files without running the full IRFinder algorithm.

See details for performance info.

Usage

BAM2COV(
bamfiles = "./Unsorted.bam",
sample_names = "sample1",
output_path = "./cov_folder",
n_threads = 1,
Use_OpenMP = TRUE,
overwrite = FALSE,
verbose = FALSE

)

IRFinder(
bamfiles = "./Unsorted.bam",
sample_names = "sample1",
reference_path = "./Reference",
output_path = "./IRFinder_Output",

26 IRFinder

n_threads = 1,
Use_OpenMP = TRUE,
overwrite = FALSE,
run_featureCounts = FALSE,
verbose = FALSE

)

Arguments

bamfiles A vector containing file paths of 1 or more BAM files

sample_names The sample names of the given BAM files. Must be a vector of the same length
as bamfiles

output_path The output directory of this function

n_threads (default 1) The number of threads to use. See details.

Use_OpenMP (default TRUE) Whether to use OpenMP to run IRFinder. If set to FALSE, Bioc-
Parallel will be used if n_threads is set

overwrite (default FALSE) If IRFinder output files already exist, will not attempt to re-run.
If run_featureCounts is TRUE, will not overwrite gene counts of previous run
unless overwrite is TRUE.

verbose (default FALSE) Set to TRUE to allow IRFinder to output progress bars and mes-
sages

reference_path The directory containing the NxtIRF reference
run_featureCounts

(default FALSE) Whether this function will run Rsubread::featureCounts on the
BAM files after running IRFinder. If so, the output will be saved to "main.FC.Rds
in the output_path directory as a list object.

Details

Typical run-times for a 100-million paired-end alignment BAM file takes 10 minutes using a single
core. Using 8 threads, the runtime is approximately 2 minutes. Approximately 10 Gb of RAM is
used when OpenMP is used. If OpenMP is not used (see below), this memory usage is multiplied
across the number of processor threads (i.e. 40 Gb if n_threads = 4).

OpenMP is natively available to Linux / Windows compilers, and OpenMP will be used if Use_OpenMP
is set to TRUE, using multiple threads to process each BAM file. On Macs, if OpenMP is not avail-
able at compilation, BiocParallel will be used, processing BAM files simultaneously, with one BAM
file per thread.

Value

IRFinder output will be saved to output_path. Output files will be named using the given sample
names.

• sample.txt.gz: The main IRFinder output file containing the quantitation of IR and splice junc-
tions, as well as QC information

IRFinder 27

• sample.cov: Contains coverage information in compressed binary. See GetCoverage

• main.FC.Rds: A single file containing gene counts for the whole dataset (only if run_featureCounts
== TRUE)

Functions

• BAM2COV: Converts BAM files to COV files without running IRFinder algorithm

• IRFinder: Runs IRFinder algorithm on BAM files. Requires a NxtIRF/IRFinder reference
generated by BuildReference()

See Also

BuildReference CollateData IsCOV

Examples

Run BAM2COV, which only produces COV files but does not run IRFinder:

bams <- NxtIRF_example_bams()

BAM2COV(bams$path, bams$sample,
output_path = file.path(tempdir(), "IRFinder_output"),
n_threads = 2, overwrite = TRUE

)

Run IRFinder algorithm, which produces:
- text output of intron coverage and spliced read counts
- COV files which record read coverages

example_ref <- file.path(tempdir(), "Reference")

BuildReference(
reference_path = example_ref,
fasta = chrZ_genome(),
gtf = chrZ_gtf()

)

bams <- NxtIRF_example_bams()

IRFinder(bams$path, bams$sample,
reference_path = file.path(tempdir(), "Reference"),
output_path = file.path(tempdir(), "IRFinder_output"),
n_threads = 2

)

28 IsCOV

IsCOV Validates the given file as a valid COV file

Description

This function takes the path of a possible COV file and checks whether its format complies with
that of the COV format defined by this package.

Usage

IsCOV(coverage_files)

Arguments

coverage_files A vector containing the file names of files to be checked

Details

COV files are BGZF-compressed files. The first 4 bytes of the file must always be ’COV\1’, distin-
guishing it from BAM or other files in BGZF format. This function checks whether the given file
complies with this.

Value

TRUE if all files are valid COV files. FALSE otherwise

See Also

IRFinder CollateData

Examples

se <- NxtIRF_example_NxtSE()

cov_files <- covfile(se)

IsCOV(cov_files) # returns true if these are true COV files

MakeSE 29

MakeSE Constructs a NxtSE object from the collated data

Description

Creates a NxtSE object from the data from IRFinder output collated using CollateData. This ob-
ject is used for downstream differential analysis of IR and alternative splicing events using ASE-
methods as well as visualisation using Plot_Coverage

Usage

MakeSE(collate_path, colData, RemoveOverlapping = TRUE, realize = FALSE)

Arguments

collate_path (Required) The output path of CollateData pointing to the collated data
colData (Optional) A data frame containing the sample annotation information. The first

column must contain the sample names. Omit colData to generate a NxtSE
object of the whole dataset without any assigned annotations. Alternatively, if
the names of only a subset of samples are given, then MakeSE() will construct
the NxtSE object based only on the samples given. The colData can be set later
using colData()

RemoveOverlapping

(default = TRUE) Whether to filter out overlapping novel IR events belonging to
minor isoforms. See details.

realize (default = FALSE) Whether to load all assay data into memory. See details

Details

MakeSE retrieves the generic SummarizedExperiment structure saved by CollateData, and initialises
a NxtSE object. It references the required on-disk assay data using DelayedArrays, thereby utilising
’on-disk’ memory to conserve memory usage.

For extremely large datasets, loading the entire data into memory may consume too much memory.
In such cases, make a subset of the NxtSE object (e.g. subset by samples) before loading the data
into memory (RAM) using realize_NxtSE

It should be noted that downstream applications of NxtIRF, including ASE-methods, Plot_Coverage,
are much faster if the NxtSE is realized. It is recommended to realize the NxtSE object before ex-
tensive usage.

If COV files assigned via CollateData have been moved relative to the collate_path, the created
NxtSE object will not have any linked COV files and Plot_Coverage cannot be used. To reassign
these files, a vector of file paths corresponding to all the COV files of the data set can be assigned
using covfile(se) <- vector_of_cov_files. See example below for details.

If RemoveOverlapping = TRUE, MakeSE will try to identify which introns belong to major isoforms,
then remove introns of minor introns that overlaps those of major isoforms. Non-overlapping in-
trons are then reassessed iteratively, until all introns are included or excluded in this way. This is
important to ensure that overlapping novel IR events are not ’double-counted’.

30 make_plot_data

Value

A NxtSE object containing the compiled data in DelayedArrays pointing to the assay data contained
in the given collate_path

Examples

The following code can be used to reproduce the NxtSE object
that can be fetched with NxtIRF_example_NxtSE()

BuildReference(
reference_path = file.path(tempdir(), "Reference"),
fasta = chrZ_genome(),
gtf = chrZ_gtf()

)

bams <- NxtIRF_example_bams()
IRFinder(bams$path, bams$sample,

reference_path = file.path(tempdir(), "Reference"),
output_path = file.path(tempdir(), "IRFinder_output")

)

expr <- Find_IRFinder_Output(file.path(tempdir(), "IRFinder_output"))
CollateData(expr,

reference_path = file.path(tempdir(), "Reference"),
output_path = file.path(tempdir(), "NxtIRF_output")

)

se <- MakeSE(collate_path = file.path(tempdir(), "NxtIRF_output"))

"Realize" NxtSE object to load all H5 assays into memory:

se <- realize_NxtSE(se)

If COV files have been removed since the last call to CollateData()
reassign them to the NxtSE object, for example:

covfile_path <- system.file("extdata", package = "NxtIRFcore")
covfile_df <- Find_Samples(covfile_path, ".cov")

covfile(se) <- covfile_df$path

Check that the produced object is identical to the example NxtSE

example_se <- NxtIRF_example_NxtSE()
identical(se, example_se) # should return TRUE

make_plot_data Construct data of percent-spliced-in (PSI) matrices and "diagonal" for
heatmaps and scatter plots

make_plot_data 31

Description

make_matrix() constructs a matrix of PSI values of the given alternative splicing events (ASEs).

make_diagonal() constructs a table of "average" PSI values, with samples grouped by two given
conditions (e.g. "group A" and "group B") of a given condition category (e.g. condition "treat-
ment"). See details below.

Usage

make_matrix(
se,
event_list,
sample_list = colnames(se),
method = c("PSI", "logit", "Z-score"),
depth_threshold = 10,
logit_max = 5,
na.percent.max = 0.1

)

make_diagonal(
se,
event_list = rownames(se),
condition,
nom_DE,
denom_DE,
depth_threshold = 10,
logit_max = 5

)

Arguments

se (Required) A NxtSE object generated by MakeSE

event_list A character vector containing the row names of ASE events (as given by the
EventName column of differential ASE results table using limma_ASE() or DESeq_ASE())

sample_list (default = colnames(se)) In make_matrix(), a list of sample names in the
given experiment to be included in the returned matrix

method In make_matrix(), rhe values to be returned (default = "PSI"). It can alter-
nately be "logit" which returns logit-transformed PSI values, or "Z-score" which
returns Z-score-transformed PSI values

depth_threshold

(default = 10) Samples with the number of reads supporting either included or
excluded isoforms below this values are excluded

logit_max (default = 5) PSI values close to 0 or 1 are rounded up/down to plogis(-logit_max)
and plogis(logit_max), respectively. See details.

32 make_plot_data

na.percent.max (default = 0.1) The maximum proportion of values in the given dataset that were
transformed to NA because of low splicing depth. ASE events where there are a
higher proportion (default 10%) NA values will be excluded from the final matrix.
Most heatmap functions will spring an error if there are too many NA values in
any given row. This option caps the number of NA values to avoid returning this
error.

condition The name of the column containing the condition values in colData(se)

nom_DE The condition to be contrasted, e.g. nom_DE = "treatment"

denom_DE The condition to be contrasted against, e.g. denom_DE = "control"

Details

Note that this function takes the geometric mean of PSI, by first converting all values to logit(PSI),
taking the average logit(PSI) values of each condition, and then converting back to PSI using inverse
logit.

Samples with low splicing coverage (either due to insufficient sequencing depth or low gene expres-
sion) are excluded from calculation of mean PSIs. The threshold can be set using depth_threshold.
Excluding these samples is appropriate because the uncertainty of PSI is high when the total in-
cluded / excluded count is low. Note that events where all samples in a condition is excluded will
return a value of NaN.

Using logit-transformed PSI values is appropriate because PSI values are bound to the (0,1) interval,
and are often thought to be beta-distributed. The link function often used with beta-distributed
models is the logit function, which is defined as logit(x) = function(x) log(x / (1 - x)), and
is equivalent to stats::qlogis. Its inverse is equivalent to stats::plogis.

Users wishing to calculate arithmetic means of PSI are advised to use make_matrix, followed by
rowMeans on subsetted sample columns.

Value

For make_matrix: A matrix of PSI (or alternate) values, with columns as samples and rows as ASE
events.

For make_diagonal: A 3 column data frame, with the first column containing event_list list
of ASE events, and the last 2 columns containing the average PSI values of the nominator and
denominator conditions.

Functions

• make_matrix: constructs a matrix of PSI values of the given alternative splicing events (ASEs)

• make_diagonal: constructs a table of "average" PSI values

Examples

se <- NxtIRF_example_NxtSE()

colData(se)$treatment <- rep(c("A", "B"), each = 3)

event_list <- rowData(se)$EventName

Mappability-methods 33

mat <- make_matrix(se, event_list[1:10])

diag_values <- make_diagonal(se, event_list,
condition = "treatment", nom_DE = "A", denom_DE = "B"

)

Mappability-methods Calculate low mappability genomic regions

Description

These functions empirically calculate low-mappability (Mappability Exclusion) regions using the
given genome FASTA file. A splice-aware alignment software capable of aligning reads to the
genome is required. See details and examples below.

Usage

Mappability_GenReads(
reference_path,
read_len = 70,
read_stride = 10,
error_pos = 35,
verbose = TRUE,
alt_fasta_file

)

Mappability_CalculateExclusions(
reference_path,
aligned_bam = file.path(reference_path, "Mappability", "Aligned.out.bam"),
threshold = 4,
n_threads = 1

)

Arguments

reference_path The directory of the reference prepared by GetReferenceResource()

read_len The nucleotide length of the synthetic reads

read_stride The nucleotide distance between adjacent synthetic reads

error_pos The position of the procedurally-generated nucleotide error from the start of
each synthetic reads

verbose Whether additional status messages are shown

alt_fasta_file (Optional) The path to the user-supplied genome fasta file, if different to that
found inside the resource subdirectory of the reference_path. If GetReferenceResource()
has already been run, this parameter should be omitted.

34 Mappability-methods

aligned_bam The BAM file of alignment of the synthetic reads generated by Mappability_GenReads().
Users should use a genome splice-aware aligner, preferably the same aligner
used to align the samples in their experiment.

threshold Genomic regions with this alignment read depth (or below) in the aligned syn-
thetic read BAM are defined as low mappability regions.

n_threads The number of threads used to calculate mappability exclusion regions from
aligned bam file of synthetic reads.

Details

Creating a Mappability Exclusion BED file is a three-step process.

• First, using Mappability_GenReads(), synthetic reads are systematically generated using the
given genome contained within reference_path.

• Second, an aligner such as STAR (preferably the same aligner used for the subsequent RNA-
seq experiment) is required to align these reads to the source genome. Poorly mapped regions
of the genome will be reflected by regions of low coverage depth.

• Finally, the BAM file containing the aligned reads is analysed using Mappability_CalculateExclusions(),
to identify low-mappability regions to compile the Mappability Exclusion BED file.

It is recommended to leave all parameters to their default settings. Regular users should only specify
reference_path, aligned_bam and n_threads, as required.

NB: STAR_Mappability runs all 3 steps required, using the STAR aligner. This only works in sys-
tems where STAR is installed.

NB2: In systems where STAR is not available, consider using HISAT2 or Rsubread. A working
example using Rsubread is shown below.

Value

• For Mappability_GenReads: writes Reads.fa to the Mappability subdirectory inside the
given reference_path.

• For Mappability_CalculateExclusions: writes a gzipped BED file named MappabilityExclusion.bed.gz
to the Mappability subdirectory inside reference_path. This BED file is automatically
used by BuildReference() if MappabilityRef is not specified.

Functions

• Mappability_GenReads: Generates synthetic reads from a genome FASTA file, for mappa-
bility calculations.

• Mappability_CalculateExclusions: Generate a BED file defining low mappability re-
gions, using reads generated by Mappability_GenReads(), aligned to the genome.

See Also

BuildReference

Mappability-methods 35

Examples

(1a) Creates genome resource files

ref_path <- file.path(tempdir(), "Reference")

GetReferenceResource(
reference_path = ref_path,
fasta = chrZ_genome(),
gtf = chrZ_gtf()

)

(1b) Systematically generate reads based on the NxtIRF example genome:

Mappability_GenReads(
reference_path = ref_path

)
Not run:

(2) Align the generated reads using Rsubread:

(2a) Build the Rsubread genome index:

setwd(ref_path)
Rsubread::buildindex(basename = "./reference_index",

reference = chrZ_genome())

(2b) Align the synthetic reads using Rsubread::subjunc()

Rsubread::subjunc(
index = "./reference_index",
readfile1 = file.path(ref_path, "Mappability", "Reads.fa"),
output_file = file.path(ref_path, "Mappability", "AlignedReads.bam"),
useAnnotation = TRUE,
annot.ext = chrZ_gtf(),
isGTF = TRUE

)

(3) Analyse the aligned reads in the BAM file for low-mappability regions:

Mappability_CalculateExclusions(
reference_path = ref_path,
aligned_bam = file.path(ref_path, "Mappability", "AlignedReads.bam")

)

(4) Build the NxtIRF reference using the calculated Mappability Exclusions

BuildReference(ref_path)

NB the default is to search for the BED file generated by
`Mappability_CalculateExclusions()` in the given reference_path

End(Not run)

36 NxtFilter-class

NxtFilter-class NxtIRF filters to remove low-abundance alternative splicing and in-
tron retention events

Description

NxtIRF filters to remove low-abundance alternative splicing and intron retention events

Usage

NxtFilter(
filterClass = c("Data", "Annotation"),
filterType = c("Depth", "Coverage", "Consistency", "Protein_Coding", "NMD", "TSL",

"Terminus", "ExclusiveMXE"),
pcTRUE = 100,
minimum = 20,
maximum = 1,
minDepth = 5,
condition = "",
minCond = -1,
EventTypes = c("IR", "MXE", "SE", "A3SS", "A5SS", "AFE", "ALE", "RI")

)

Arguments

filterClass Must be either "Data" or "Annotation". See details

filterType If filterClass = "Data", then must be one of c("Depth", "Coverage", "Consistency").
If filterClass = "Annotation", must be one of c("Protein_Coding", "NMD",
"TSL"). See details

pcTRUE If conditions are set, what percentage of all samples in each of the condition
must the filter be satisfied for the event to pass the filter check. Must be between
0 and 100 (default 100)

minimum Filter-dependent argument. See details

maximum Filter-dependent argument. See details

minDepth Filter-dependent argument. See details

condition (default "") If set, must match the name of an experimental condition in the
NxtSE object to be filtered, i.e. a column name in colData(se). Leave blank
to disable filtering by condition

minCond (default -1) If condition is set, how many minimum number of conditions must
pass the filter criteria. For example, if condition = "Batch", and batches are "A",
"B", or "C", setting minCond = 2 with pcTRUE = 100 means that all samples be-
longing to two of the three types of Batch must pass the filter criteria. Setting -1
means all elements of condition must pass criteria. Set to -1 when the number
of elements in the experimental condition is unknown. Ignored if condition is
left blank.

NxtFilter-class 37

EventTypes What types of events are considered for filtering. Must be one of c("IR",
"MXE", "SE", "A3SS", "A5SS", "AFE", "ALE", "RI"). Events not specified
in EventTypes are not filtered (i.e. they will pass the filter without checks)

Details

Annotation Filters

• Protein_Coding: Filters for alternative splicing or IR events involving protein-coding tran-
scripts. No additional parameters required.

• NMD: Filters for events in which one isoform is a predicted NMD substrate.

• TSL: filters for events in which both isoforms have a TSL level below or equal to minimum

• Terminus (New as of version 1.1.1): In alternate first exons, the splice junction must not be
shared with another transcript for which it is not its first intron. For alternative last exons, the
splice junction must not be shared with another transcript for which it is not its last intron

• ExclusiveMXE (New as of version 1.1.1): For MXE events, the two alternate casette exons
must not overlap in their genomic regions

Data Filters

• Depth: Filters IR or alternative splicing events of transcripts that are "expressed" with ade-
quate Depth as calculated by the sum of all splicing and IR reads spanning the event. Events
with Depth below minimum are filtered out

• Coverage: Coverage means different things to IR and alternative splicing.

For IR, Coverage refers to the percentage of the measured intron covered with reads. Introns
of samples with an IntronDepth above minDepth are assessed, with introns with coverage be-
low minimum are filtered out.

For Alternative Splicing, Coverage refers to the percentage of all splicing events observed
across the genomic region that is compatible with either the included or excluded event. This
prevents NxtIRF from doing differential analysis between two minor isoforms. Instead of In-
tronDepth, in AS events NxtIRF considers events where the spliced reads from both exonic
regions exceed minDepth. Then, events with a splicing coverage below minimum are excluded.

We recommend testing IR events for > 90% coverage and AS events for > 60% coverage
as given in the default filters which can be accessed using get_default_filters

• Consistency: Skipped exons (SE) and mutually exclusive exons (MXE) comprise reads aligned
to two contiguous splice junctions. Most algorithms take the average counts from both junc-
tions. This will inadvertently include transcripts that share one but not both splice events. To
check that this is not happening, we require both splice junctions to have comparable counts.
This filter checks whether reads from each splice junction comprises a reasonable proportion
of the sum of these reads.

Events are excluded if either of the upstream or downstream event is lower than total splicing
events by a log-2 magnitude above maximum. For example, if maximum = 2, we require both

38 NxtFilter-class

upstream and downstream events to represent at least 1/(2^2) = 1/4 of the sum of upstream
and downstream event. If maximum = 3, then each junction must be at least 1/8 of total, etc.
This is considered for each isoform of each event, as long as the total counts belonging to the
considered isoform is above minDepth.

IR-events are also checked. For IR events, the upstream and downstream exon-intron spanning
reads must comprise a reasonable proportion of total exon-intron spanning reads.

We highly recommend using the default filters, which can be acquired using get_default_filters

Value

A NxtFilter object with the specified parameters

Functions

• NxtFilter: Constructs a NxtFilter object

See Also

Run_NxtIRF_Filters

Examples

Create a NxtFilter that filters for protein-coding ASE
f1 <- NxtFilter(filterClass = "Annotation", filterType = "Protein_Coding")

Create a NxtFilter that filters for Depth >= 20 in IR events
f2 <- NxtFilter(

filterClass = "Data", filterType = "Depth",
minimum = 20, EventTypes = c("IR", "RI")

)

Create a NxtFilter that filters for Coverage > 60% in splice events
that must be satisfied in at least 2 categories of condition "Genotype"
f3 <- NxtFilter(

filterClass = "Data", filterType = "Coverage",
minimum = 60, EventTypes = c("MXE", "SE", "AFE", "ALE", "A3SS", "A5SS"),
condition = "Genotype", minCond = 2

)

Create a NxtFilter that filters for Depth > 10 in all events
that must be satisfied in at least 50% of each gender
f4 <- NxtFilter(

filterClass = "Data", filterType = "Depth",
minimum = 10, condition = "gender", pcTRUE = 50

)

Get a description of what these filters do:
f1
f2
f3

NxtSE-class 39

f4

NxtSE-class The NxtSE class

Description

The NxtSE class inherits from the SummarizedExperiment class and is constructed from MakeSE.
NxtSE extends SummarizedExperiment by housing additional assays pertaining to IR and splice
junction counts.

Usage

NxtSE(...)

S4 method for signature 'NxtSE'
up_inc(x, withDimnames = TRUE, ...)

S4 method for signature 'NxtSE'
down_inc(x, withDimnames = TRUE, ...)

S4 method for signature 'NxtSE'
up_exc(x, withDimnames = TRUE, ...)

S4 method for signature 'NxtSE'
down_exc(x, withDimnames = TRUE, ...)

S4 method for signature 'NxtSE'
covfile(x, withDimnames = TRUE, ...)

S4 method for signature 'NxtSE'
sampleQC(x, withDimnames = TRUE, ...)

S4 method for signature 'NxtSE'
ref(x, withDimnames = TRUE, ...)

S4 method for signature 'NxtSE'
realize_NxtSE(x, withDimnames = TRUE, ...)

S4 replacement method for signature 'NxtSE'
up_inc(x, withDimnames = TRUE) <- value

S4 replacement method for signature 'NxtSE'
down_inc(x, withDimnames = TRUE) <- value

S4 replacement method for signature 'NxtSE'

40 NxtSE-class

up_exc(x, withDimnames = TRUE) <- value

S4 replacement method for signature 'NxtSE'
down_exc(x, withDimnames = TRUE) <- value

S4 replacement method for signature 'NxtSE'
covfile(x, withDimnames = TRUE) <- value

S4 replacement method for signature 'NxtSE'
sampleQC(x, withDimnames = TRUE) <- value

S4 method for signature 'NxtSE,ANY,ANY,ANY'
x[i, j, ..., drop = TRUE]

S4 replacement method for signature 'NxtSE,ANY,ANY,NxtSE'
x[i, j, ...] <- value

S4 method for signature 'NxtSE'
cbind(..., deparse.level = 1)

S4 method for signature 'NxtSE'
rbind(..., deparse.level = 1)

Arguments

... In NxtSE(), additional arguments to be passed onto SummarizedExperiment()

x A NxtSE object

withDimnames (default TRUE) Whether exported assays should be supplied with row and col-
umn names of the NxtSE object. See SummarizedExperiment

value The value to replace. Must be a matrix for the up_inc<-, down_inc<-, up_exc<-
and down_exc<- replacers, and a character vector for covfile<-

i, j Row and column subscripts to subset a NxtSE object.

drop A logical(1), ignored by these methods.

deparse.level See base::cbind for a description of this argument.

Value

See Functions section (below) for details

Functions

• NxtSE: Constructor function for NxtSE; akin to SummarizedExperiment(...)

• up_inc,NxtSE-method: Gets upstream included events (SE/MXE), or upstream exon-intron
spanning reads (IR)

• down_inc,NxtSE-method: Gets downstream included events (SE/MXE), or downstream exon-
intron spanning reads (IR)

• up_exc,NxtSE-method: Gets upstream excluded events (MXE only)

NxtSE-class 41

• down_exc,NxtSE-method: Gets downstream excluded events (MXE only)

• covfile,NxtSE-method: Gets a named vector with the paths to the corresponding COV files

• sampleQC,NxtSE-method: Gets a data frame with the QC parameters of the samples

• ref,NxtSE-method: Retrieves a list of annotation data associated with this NxtSE object;
primarily used in Plot_Coverage()

• realize_NxtSE,NxtSE-method: Converts all DelayedMatrix assays as matrices (i.e. per-
forms all delayed calculation and loads resulting object to RAM)

• up_inc<-,NxtSE-method: Sets upstream included events (SE/MXE), or upstream exon-intron
spanning reads (IR)

• down_inc<-,NxtSE-method: Sets downstream included events (SE/MXE), or downstream
exon-intron spanning reads (IR)

• up_exc<-,NxtSE-method: Sets upstream excluded events (MXE only)

• down_exc<-,NxtSE-method: Sets downstream excluded events (MXE only)

• covfile<-,NxtSE-method: Sets the paths to the corresponding COV files

• sampleQC<-,NxtSE-method: Sets the values in the data frame containing sample QC

• [,NxtSE,ANY,ANY,ANY-method: Subsets a NxtSE object

• [<-,NxtSE,ANY,ANY,NxtSE-method: Sets a subsetted NxtSE object

• cbind,NxtSE-method: Combines two NxtSE objects (by samples - columns)

• rbind,NxtSE-method: Combines two NxtSE objects (by AS/IR events - rows)

Examples

Run the full pipeline to generate a NxtSE object:

BuildReference(
reference_path = file.path(tempdir(), "Reference"),
fasta = chrZ_genome(),
gtf = chrZ_gtf()

)

bams <- NxtIRF_example_bams()
IRFinder(bams$path, bams$sample,

reference_path = file.path(tempdir(), "Reference"),
output_path = file.path(tempdir(), "IRFinder_output")

)

expr <- Find_IRFinder_Output(file.path(tempdir(), "IRFinder_output"))
CollateData(expr,

reference_path = file.path(tempdir(), "Reference"),
output_path = file.path(tempdir(), "NxtIRF_output")

)

se <- MakeSE(collate_path = file.path(tempdir(), "NxtIRF_output"))

Coerce NxtSE -> SummarizedExperiment
se_raw <- as(se, "SummarizedExperiment")

42 NxtSE-class

Coerce SummarizedExperiment -> NxtSE
se_NxtSE <- as(se_raw, "NxtSE")
identical(se, se_NxtSE) # Returns TRUE

Get Junction reads of SE / MXE and spans-reads of IR events
up_inc(se)
down_inc(se)
up_exc(se)
down_exc(se)

Get list of available coverage files
covfile(se)

Get sample QC information
sampleQC(se)

Get resource NxtIRF data (used internally for Plot_Coverage())
cov_data <- ref(se)
names(cov_data)

Subset functions
se_by_samples <- se[,1:3]
se_by_events <- se[1:10,]
se_by_rowData <- subset(se, EventType == "IR")

Cbind (bind event_identical NxtSE by samples)
se_by_samples_1 <- se[,1:3]
se_by_samples_2 <- se[,4:6]
se_cbind <- cbind(se_by_samples_1, se_by_samples_2)
identical(se, se_cbind) # should return TRUE

Rbind (bind sample_identical NxtSE by events)
se_IR <- subset(se, EventType == "IR")
se_SE <- subset(se, EventType == "SE")
se_IRSE <- rbind(se_IR, se_SE)
identical(se_IRSE, subset(se, EventType %in% c("IR", "SE"))) # TRUE

Convert HDF5-based NxtSE to in-memory se
MakeSE() creates a HDF5-based NxtSE object where all assay data is stored
as an h5 file instead of in-memory. All operations are performed as
delayed operations as per DelayedArray package.
To realize the NxtSE object as an in-memory object, use:

se_real <- realize_NxtSE(se)
identical(se, se_real) # should return FALSE

To check the difference, run:
class(up_inc(se))
class(up_inc(se_real))

Plot_Coverage 43

Plot_Coverage RNA-seq Coverage Plots and Genome Tracks

Description

Generate plotly / ggplot RNA-seq genome and coverage plots from command line. For some quick
working examples, see the Examples section below.

Usage

Plot_Coverage(
se,
Event,
Gene,
seqname,
start,
end,
coordinates,
strand = c("*", "+", "-"),
zoom_factor,
bases_flanking = 100,
tracks,
track_names = tracks,
condition,
selected_transcripts,
condense_tracks = FALSE,
stack_tracks = FALSE,
t_test = FALSE,
norm_event

)

Plot_Genome(
se,
reference_path,
Gene,
seqname,
start,
end,
coordinates,
zoom_factor,
bases_flanking = 100,
selected_transcripts,
condense_tracks = FALSE

)

as_egg_ggplot(p_obj)

44 Plot_Coverage

Arguments

se A NxtSE object, created by MakeSE. COV files must be linked to the NxtSE
object. To do this, see the example in MakeSE. Required by Plot_Coverage.

Event The EventName of the IR / alternative splicing event to be displayed. Use
rownames(se) to display a list of valid events.

Gene Whether to use the range for the given Gene. If given, overrides Event (but
Event or norm_event will be used to normalise by condition). Valid Gene en-
tries include gene_id (Ensembl ID) or gene_name (Gene Symbol).

seqname, start, end

The chromosome (string) and genomic start/end coordinates (numeric) of the
region to display. If present, overrides both Event and Gene. E.g. for a given re-
gion of chr1:10000-11000, use the parameters: seqname = "chr1", start = 10000, end = 11000

coordinates A string specifying genomic coordinates can be given instead of seqname,start,end.
Must be of the format "chr:start-end", e.g. "chr1:10000-11000"

strand Whether to show coverage of both strands "*" (default), or from the "+" or "-"
strand only.

zoom_factor Zoom out from event. Each level of zoom zooms out by a factor of 3. E.g.
for a query region of chr1:10000-11000, if a zoom_factor of 1.0 is given,
chr1:99000-12000 will be displayed.

bases_flanking (Default = 100) How many bases flanking the zoomed window. Useful when
used in conjunction with zoom_factor == 0. E.g. for a given region of chr1:10000-
11000, if zoom_factor = 0 and bases_flanking = 100, the region chr1:9900-
11100 will be displayed.

tracks The names of individual samples, or the names of the different conditions to be
plotted. For the latter, set condition to the specified condition category.

track_names The names of the tracks to be displayed. If omitted, the track_names will default
to the input in tracks

condition To display normalised coverage per condition, set this to the condition category.
If omitted, tracks are assumed to refer to the names of individual samples.

selected_transcripts

(Optional) A vector containing transcript ID or transcript names of transcripts
to be displayed on the gene annotation track. Useful to remove minor isoforms
that are not relevant to the samples being displayed.

condense_tracks

(default FALSE) Whether to collapse the transcript track annotations by gene.

stack_tracks (default FALSE) Whether to graph all the conditions on a single coverage track.
If set to TRUE, each condition will be displayed in a different colour on the same
track. Ignored if condition is not set.

t_test (default FALSE) Whether to perform a pair-wise T-test. Only used if there are
TWO condition tracks.

norm_event Whether to normalise by an event different to that given in "Event". The dif-
ference between this and Event is that the genomic coordinates can be centered
around a different Event, Gene or region as given in seqname/start/end. If
norm_event is different to Event, norm_event will be used for normalisation

Plot_Coverage 45

and Event will be used to define the genomic coordinates of the viewing win-
dow. norm_event is required if Event is not set and condition is set.

reference_path The path of the reference generated by BuildReference. Required by Plot_Genome
if a NxtSE object is not specified.

p_obj In as_egg_ggplot, takes the output of Plot_Coverage and plots all tracks in
a static plot using ggarrange function of the egg package. Requires egg to be
installed.

Details

In RNA sequencing, alignments to spliced transcripts will "skip" over genomic regions of introns.
This can be illustrated in a plot using a horizontal genomic axis, with the vertical axis representing
the number of alignments covering each nucleotide. As a result, the coverage "hills" represent the
expression of exons, and "valleys" to introns.

Different alternatively-spliced isoforms thus produce different coverage patterns. The change in the
coverage across an alternate exon relative to its constitutively-included flanking exons, for exam-
ple, represents its alternative inclusion or skipping. Similarly, elevation of intron valleys represent
increased intron retention.

With multiple replicates per sample, coverage is dependent on library size and gene expression.
To compare alternative splicing ratios, normalisation of the coverage of the alternate exon (or al-
ternatively retained intron) relative to their constitutive flanking exons, is required. There is no
established method for this normalisation, and can be confounded in situations where flanking ele-
ments are themselves alternatively spliced.

NxtIRF performs this coverage normalisation using the same method as its estimate of spliced / in-
tronic transcript abundance using the SpliceOverMax method (see details section in CollateData).
This normalisation can be applied to correct for library size and gene expression differences be-
tween samples of the same experimental condition. After normalisation, mean and variance of
coverage can be computed as ratios relative to total transcript abundance. This method can visu-
alise alternatively included genomic regions including casette exons, alternate splice site usage, and
intron retention.

Plot_Coverage generates plots showing depth of alignments to the genomic axis. Plots can be
generated for individual samples or samples grouped by experimental conditions. In the latter,
mean and 95% confidence intervals are shown.

Plot_Genome generates genome transcript tracks only. Protein-coding regions are denoted by thick
rectangles, whereas non-protein coding transcripts or untranslated regions are denoted with thin
rectangles. Introns are denoted as lines.

Value

A list containing two objects. final_plot is the plotly object. ggplot is a list of ggplot tracks, with:

• ggplot[[n]] is the nth track (where n = 1, 2, 3 or 4).

• ggplot[[5]] contains the T-test track if one is generated.

• ggplot[[6]] always contains the genome track.

46 Plot_Coverage

Functions

• Plot_Coverage: generates plots showing depth of alignments to the genomic axis. Plots can
be generated for individual samples or samples grouped by experimental conditions. In the
latter, mean and 95 intervals are shown.

• Plot_Genome: Generates a plot of transcripts within a given genomic region, or belonging to
a specified gene

• as_egg_ggplot: Coerce the ‘Plot_Coverage()‘ output as a vertically stacked ggplot, using
egg::ggarrange

Examples

se <- NxtIRF_example_NxtSE()

Plot the genome track only, with specified gene:
p <- Plot_Genome(se, Gene = "SRSF3")
p$ggplot

View the genome track, specifying a genomic region via coordinates:
p <- Plot_Genome(se, coordinates = "chrZ:10000-20000")
p$ggplot

Assign annotation re experimental conditions

colData(se)$treatment <- rep(c("A", "B"), each = 3)

Verify that the COV files are linked to the NxtSE object:
covfile(se)

Return a list of ggplot and plotly objects
p <- Plot_Coverage(

se = se,
Event = rowData(se)$EventName[1],
tracks = colnames(se)[1:4]

)

Display a static ggplot / egg::ggarrange stacked plot:

as_egg_ggplot(p)

Display the plotly-based interactive Coverage plot:
p$final_plot

Plot the same event but by condition "treatment"
p <- Plot_Coverage(

se, rowData(se)$EventName[1],
tracks = c("A", "B"), condition = "treatment"

)
as_egg_ggplot(p)

Run_NxtIRF_Filters 47

Run_NxtIRF_Filters Filtering for IR and Alternative Splicing Events

Description

This function implements filtering of IR or AS events based on customisable criteria. See NxtFilter
for details.

Usage

get_default_filters(legacy = FALSE)

apply_filters(se, filters = get_default_filters())

runFilter(se, filterObj)

Arguments

legacy (default FALSE) Set to TRUE to get the first four default filters introduced in the
initial NxtIRFcore release.

se the NxtSE object to filter

filters A vector or list of one or more NxtFilter objects. If left blank, the NxtIRF default
filters will be used.

filterObj A single NxtFilter object.

Details

We highly recommend using the default filters, which are as follows:

• (1) Depth filter of 20,

• (2) Coverage filter requiring 90% coverage in IR events.

• (3) Coverage filter requiring 60% coverage in AS events (i.e. Included + Excluded isoforms
must cover at least 60% of all junction events across the given region)

• (4) Consistency filter requring log difference of 2 (for skipped exon and mutually exclusive
exon events, each junction must comprise at least 1/(2^2) = 1/4 of all reads associated with
each isoform). For retained introns, the exon-intron overhangs must not differ by 1/4

Also, in NxtIRFcore version 1.1.1 and above, we introduced two annotation-based filters:

• (5) Terminus filter: In alternate first exons, the splice junction must not be shared with another
transcript for which it is not its first intron. For alternative last exons, the splice junction must
not be shared with another transcript for which it is not its last intron

• (6) ExclusiveMXE filter: For MXE events, the two alternate casette exons must not overlap in
their genomic regions

48 Run_NxtIRF_Filters

In all data-based filters, we require at least 80% samples (pcTRUE = 80) to pass this filters from the
entire dataset (minCond = -1).

Events with event read depth (reads supporting either included or excluded isoforms) lower than 5
(minDepth = 5) are not assessed in filter #2, and in #3 and #4 this threshold is (minDepth = 20).

For an explanation of the various parameters mentioned here, see NxtFilter

Value

For runFilter and apply_filters: a vector of type logical, representing the rows of NxtSE that
should be kept.

For get_default_filters: returns a list of default recommended filters that should be parsed into
apply_filters.

Functions

• get_default_filters: Returns a vector of recommended default NxtIRF filters

• apply_filters: Run a vector or list of NxtFilter objects on a NxtSE object

• runFilter: Run a single filter on a NxtSE object

See Also

NxtFilter for details describing how to create and assign settings to NxtFilter objects.

Examples

see ?MakeSE on example code of how this object was generated

se <- NxtIRF_example_NxtSE()

Get the list of NxtIRF recommended filters

filters <- get_default_filters()

View a description of what these filters do:

filters

Filter the NxtSE using the first default filter ("Depth")

se.depthfilter <- se[runFilter(se, filters[[1]]),]

Filter the NxtSE using all four default filters

se.defaultFiltered <- se[apply_filters(se, get_default_filters()),]

STAR-methods 49

STAR-methods STAR wrapper for building reference for STAR, and aligning RNA-
sequencing

Description

These functions run the STAR aligner to build a STAR genome reference, calculate mappability
exclusion regions using STAR, and align one or more FASTQ files (single or paired) to the generated
genome. These functions only work on Linux-based systems with STAR installed. STAR must be
accessible via $PATH. See details and examples

Usage

STAR_version()

STAR_buildRef(
reference_path,
STAR_ref_path = file.path(reference_path, "STAR"),
also_generate_mappability = TRUE,
map_depth_threshold = 4,
sjdbOverhang = 149,
n_threads = 4,
additional_args = NULL,
...

)

STAR_Mappability(
reference_path,
STAR_ref_path = file.path(reference_path, "STAR"),
map_depth_threshold = 4,
n_threads = 4,
...

)

STAR_align_experiment(
Experiment,
STAR_ref_path,
BAM_output_path,
trim_adaptor = "AGATCGGAAG",
two_pass = FALSE,
n_threads = 4

)

STAR_align_fastq(
fastq_1 = c("./sample_1.fastq"),
fastq_2 = NULL,
STAR_ref_path,

50 STAR-methods

BAM_output_path,
two_pass = FALSE,
trim_adaptor = "AGATCGGAAG",
memory_mode = "NoSharedMemory",
additional_args = NULL,
n_threads = 4

)

Arguments

reference_path The path to the reference. GetReferenceResource must first be run using this
path as its reference_path

STAR_ref_path (Default - the "STAR" subdirectory under reference_path) The directory con-
taining the STAR reference to be used or to contain the newly-generated STAR
reference

also_generate_mappability

Whether STAR_buildRef() also calculates Mappability Exclusion regions.
map_depth_threshold

(Default 4) The depth of mapped reads threshold at or below which Mappability
exclusion regions are defined. See Mappability-methods. Ignored if also_generate_mappability
= FALSE

sjdbOverhang (Default = 149) A STAR setting indicating the length of the donor / acceptor
sequence on each side of the junctions. Ideally equal to (mate_length - 1). As
the most common read length is 150, the default of this function is 149. See the
STAR aligner manual for details.

n_threads The number of threads to run the STAR aligner.
additional_args

A character vector of additional arguments to be parsed into STAR. See exam-
ples below.

... Additional arguments to be parsed into Mappability_GenReads(). See Mappability-
methods.

Experiment A two or three-column data frame with the columns denoting sample names,
forward-FASTQ and reverse-FASTQ files. This can be conveniently generated
using Find_FASTQ

BAM_output_path

The path under which STAR outputs the aligned BAM files. In STAR_align_experiment(),
STAR will output aligned BAMS inside subdirectories of this folder, named by
sample names. In STAR_align_fastq(), STAR will output directly into this
path.

trim_adaptor The sequence of the Illumina adaptor to trim via STAR’s --clip3pAdapterSeq
option

two_pass Whether to use two-pass mapping. In STAR_align_experiment(), STAR will
first align every sample and generate a list of splice junctions but not BAM files.
The junctions are then given to STAR to generate a temporary genome (con-
tained within _STARgenome) subdirectory within that of the first sample), using
these junctions to improve novel junction detection. In STAR_align_fastq(),
STAR will run --twopassMode Basic

STAR-methods 51

fastq_1, fastq_2

In STAR_align_fastq: character vectors giving the path(s) of one or more FASTQ
(or FASTA) files to be aligned. If single reads are to be aligned, omit fastq_2

memory_mode The parameter to be parsed to --genomeLoad; either NoSharedMemory or LoadAndKeep
are used.

Details

Pre-requisites

STAR_buildRef requires GetReferenceResource to be run to fetch the required genome and gene
annotation files.

STAR_Mappability, STAR_align_experiment and STAR_align_fastq requires a STAR genome,
which can be built using STAR_buildRef

Function Description

For STAR_buildRef: this function will create a STAR genome reference in the STAR subdirectory in
the path given by reference_path. Optionally, it will run STAR_Mappability if also_generate_mappability
is set to TRUE

For STAR_Mappability: this function will first will run Mappability_GenReads, then use the given
STAR genome to align the synthetic reads using STAR. The aligned BAM file will then be processed
using Mappability_CalculateExclusions to calculate the lowly-mappable genomic regions, produc-
ing the MappabilityExclusion.bed.gz output file.

For STAR_align_fastq: aligns a single or pair of FASTQ files to the given STAR genome using the
STAR aligner.

For STAR_align_experiment: aligns a set of FASTQ or paired FASTQ files using the given STAR
genome using the STAR aligner. A data.frame specifying sample names and corresponding FASTQ
files are required

Value

None. STAR will output files into the given output directories.

Functions

• STAR_version: Checks whether STAR is installed, and its version

• STAR_buildRef: Creates a STAR genome reference.

• STAR_Mappability: Calculates lowly-mappable genomic regions using STAR

• STAR_align_experiment: Aligns multiple sets of FASTQ files, belonging to multiple sam-
ples

• STAR_align_fastq: Aligns a single sample (with single or paired FASTQ or FASTA files)

See Also

BuildReference Find_Samples Mappability-methods

The latest STAR documentation

https://github.com/alexdobin/STAR/blob/master/doc/STARmanual.pdf

52 STAR-methods

Examples

0) Check that STAR is installed and compatible with NxtIRF

STAR_version()
Not run:

The below workflow illustrates
1) Getting the reference resource
2) Building the STAR Reference, including Mappability Exclusion calculation
3) Building the NxtIRF Reference, using the Mappability Exclusion file
4) Aligning (a) one or (b) multiple raw sequencing samples.

1) Reference generation from Ensembl's FTP links

FTP <- "ftp://ftp.ensembl.org/pub/release-94/"

GetReferenceResource(
reference_path = "Reference_FTP",
fasta = paste0(FTP, "fasta/homo_sapiens/dna/",

"Homo_sapiens.GRCh38.dna.primary_assembly.fa.gz"),
gtf = paste0(FTP, "gtf/homo_sapiens/",

"Homo_sapiens.GRCh38.94.chr.gtf.gz")
)

2) Generates STAR genome within the NxtIRF reference. Also generates
mappability exclusion gzipped BED file inside the "Mappability/" sub-folder

STAR_buildRef(
reference_path = "Reference_FTP",
n_threads = 8,
also_generate_mappability = TRUE

)

2 alt) Generates STAR genome of the example NxtIRF genome.
This demonstrates using custom STAR parameters, as the example NxtIRF
genome is ~100k in length, so --genomeSAindexNbases needs to be
adjusted to be min(14, log2(GenomeLength)/2 - 1)

GetReferenceResource(
reference_path = "Reference_chrZ",
fasta = chrZ_genome(),
gtf = chrZ_gtf()

)

STAR_buildRef(
reference_path = "Reference_chrZ",
n_threads = 8,
additional_args = c("--genomeSAindexNbases", "7"),
also_generate_mappability = TRUE

)

theme_white 53

3) Build NxtIRF reference using the newly-generated Mappability exclusions

#' NB: also specifies to use the hg38 nonPolyA resource

BuildReference(reference_path = "Reference_FTP", genome_type = "hg38")

4a) Align a single sample using the STAR reference

STAR_align_fastq(
STAR_ref_path = file.path("Reference_FTP", "STAR"),
BAM_output_path = "./bams/sample1",
fastq_1 = "sample1_1.fastq", fastq_2 = "sample1_2.fastq",
n_threads = 8

)

4b) Align multiple samples, using two-pass alignment

Experiment <- data.frame(
sample = c("sample_A", "sample_B"),
forward = file.path("raw_data", c("sample_A", "sample_B"),

c("sample_A_1.fastq", "sample_B_1.fastq")),
reverse = file.path("raw_data", c("sample_A", "sample_B"),

c("sample_A_2.fastq", "sample_B_2.fastq"))
)

STAR_align_experiment(
Experiment = Experiment,
STAR_ref_path = file.path("Reference_FTP", "STAR"),
BAM_output_path = "./bams",
two_pass = TRUE,
n_threads = 8

)

End(Not run)

theme_white ggplot2 themes

Description

A ggplot theme object for white background figures +/- a legend

Usage

theme_white

theme_white_legend

theme_white_legend_plot_track

54 theme_white

Format

An object of class theme (inherits from gg) of length 10.

An object of class theme (inherits from gg) of length 9.

An object of class theme (inherits from gg) of length 10.

Functions

• theme_white: White theme without figure legend

• theme_white_legend: White theme but with a figure legend (if applicable)

• theme_white_legend_plot_track: White theme with figure legend but without horizontal
grid lines. Used internally in PlotGenome

See Also

[Plot_Coverage]

Examples

library(ggplot2)
df <- data.frame(

gp = factor(rep(letters[1:3], each = 10)),
y = rnorm(30))

ggplot(df, aes(gp, y)) +
geom_point() +
theme_white

Index

∗ datasets
theme_white, 53

∗ package
example-NxtIRF-data, 21
NxtIRFcore-package, 3

[,NxtSE,ANY,ANY,ANY-method
(NxtSE-class), 39

[<-,NxtSE,ANY,ANY,NxtSE-method
(NxtSE-class), 39

AnnotationHub, 13
apply_filters, 4, 6
apply_filters (Run_NxtIRF_Filters), 47
as_egg_ggplot (Plot_Coverage), 43
ASE-methods, 4, 5, 29

BAM2COV, 18
BAM2COV (IRFinder), 25
base::cbind, 40
BuildReference, 4, 9, 16, 25, 27, 34, 45, 51
BuildReference_Full (BuildReference), 9

cbind,NxtSE-method (NxtSE-class), 39
coerce,SummarizedExperiment,NxtSE-method

(NxtSE-class), 39
CollateData, 4, 6, 15, 17, 24, 25, 27–29, 45
CoordToGR, 17
Coverage, 18
covfile (NxtSE-class), 39
covfile,NxtSE-method (NxtSE-class), 39
covfile<- (NxtSE-class), 39
covfile<-,NxtSE-method (NxtSE-class), 39

DESeq2::results, 8
DESeq_ASE (ASE-methods), 5
DoubleExpSeq::DBGLM1, 8
DoubleExpSeq_ASE (ASE-methods), 5
down_exc (NxtSE-class), 39
down_exc,NxtSE-method (NxtSE-class), 39
down_exc<- (NxtSE-class), 39

down_exc<-,NxtSE-method (NxtSE-class),
39

down_inc (NxtSE-class), 39
down_inc,NxtSE-method (NxtSE-class), 39
down_inc<- (NxtSE-class), 39
down_inc<-,NxtSE-method (NxtSE-class),

39

example-NxtIRF-data, 21

Find_Bams (Find_Samples), 23
Find_FASTQ, 50
Find_FASTQ (Find_Samples), 23
Find_IRFinder_Output, 16
Find_IRFinder_Output (Find_Samples), 23
Find_Samples, 16, 23, 51

GenomicRanges::findOverlaps, 16
get_default_filters, 37, 38
get_default_filters

(Run_NxtIRF_Filters), 47
GetCoverage, 27
GetCoverage (Coverage), 18
GetCoverage_DF (Coverage), 18
GetCoverageBins (Coverage), 18
GetCoverageRegions (Coverage), 18
GetNonPolyARef (BuildReference), 9
GetReferenceResource, 50, 51
GetReferenceResource (BuildReference), 9

IRFinder, 4, 12, 15, 17, 18, 25, 28
IsCOV, 27, 28

limma::topTable, 7
limma_ASE (ASE-methods), 5

make_diagonal, 7
make_diagonal (make_plot_data), 30
make_matrix, 7, 32
make_matrix (make_plot_data), 30
make_plot_data, 4, 30

55

56 INDEX

MakeSE, 4, 16, 17, 22, 29, 31, 39, 44
Mappability-methods, 12, 13, 33, 50, 51
Mappability_CalculateExclusions, 51
Mappability_CalculateExclusions

(Mappability-methods), 33
Mappability_CalculateExclusions(), 11
Mappability_GenReads, 51
Mappability_GenReads

(Mappability-methods), 33

NxtFilter, 47, 48
NxtFilter (NxtFilter-class), 36
NxtFilter-class, 36
NxtIRF_example_bams

(example-NxtIRF-data), 21
NxtIRF_example_NxtSE

(example-NxtIRF-data), 21
NxtIRFcore-package, 3
NxtIRFdata::example_bams, 22
NxtSE, 3, 4, 6, 22, 29–31, 44, 45, 47
NxtSE (NxtSE-class), 39
NxtSE-class, 39
NxtSE-methods (NxtSE-class), 39

Plot_Coverage, 4, 7, 29, 43
Plot_Genome (Plot_Coverage), 43

rbind,NxtSE-method (NxtSE-class), 39
realize_NxtSE, 29
realize_NxtSE (NxtSE-class), 39
realize_NxtSE,NxtSE-method

(NxtSE-class), 39
ref (NxtSE-class), 39
ref,NxtSE-method (NxtSE-class), 39
rowMeans, 32
Rsubread::featureCounts, 26
Run_NxtIRF_Filters, 38, 47
runFilter (Run_NxtIRF_Filters), 47

sampleQC (NxtSE-class), 39
sampleQC,NxtSE-method (NxtSE-class), 39
sampleQC<- (NxtSE-class), 39
sampleQC<-,NxtSE-method (NxtSE-class),

39
STAR-methods, 4, 11, 13, 49
STAR_align_experiment (STAR-methods), 49
STAR_align_fastq (STAR-methods), 49
STAR_buildRef (STAR-methods), 49
STAR_Mappability, 11, 34, 51

STAR_Mappability (STAR-methods), 49
STAR_version (STAR-methods), 49
stats::plogis, 32
stats::qlogis, 32
SummarizedExperiment, 39, 40

theme_white, 53
theme_white_legend (theme_white), 53
theme_white_legend_plot_track

(theme_white), 53

up_exc (NxtSE-class), 39
up_exc,NxtSE-method (NxtSE-class), 39
up_exc<- (NxtSE-class), 39
up_exc<-,NxtSE-method (NxtSE-class), 39
up_inc (NxtSE-class), 39
up_inc,NxtSE-method (NxtSE-class), 39
up_inc<- (NxtSE-class), 39
up_inc<-,NxtSE-method (NxtSE-class), 39

	NxtIRFcore-package
	ASE-methods
	BuildReference
	CollateData
	CoordToGR
	Coverage
	example-NxtIRF-data
	Find_Samples
	IRFinder
	IsCOV
	MakeSE
	make_plot_data
	Mappability-methods
	NxtFilter-class
	NxtSE-class
	Plot_Coverage
	Run_NxtIRF_Filters
	STAR-methods
	theme_white
	Index

