
Package ‘GOSim’
April 10, 2023

Version 1.36.0

Date 2015-04-02

Title Computation of functional similarities between GO terms and gene
products; GO enrichment analysis

Author Holger Froehlich <frohlich@bit.uni-bonn.de>

Maintainer Holger Froehlich <frohlich@bit.uni-bonn.de>

Depends GO.db, annotate

Enhances igraph

Imports org.Hs.eg.db, AnnotationDbi, topGO, cluster, flexmix, RBGL,
graph, Matrix, corpcor, Rcpp

LinkingTo Rcpp

NeedsCompilation yes

LazyLoad Yes

Description This package implements several functions useful for
computing similarities between GO terms and gene products based on their GO annota-
tion. Moreover it allows for computing a GO enrichment analysis

License GPL (>= 2)

biocViews GO, Clustering, Software, Pathways

git_url https://git.bioconductor.org/packages/GOSim

git_branch RELEASE_3_16

git_last_commit 7e72cf6

git_last_commit_date 2022-11-01

Date/Publication 2023-04-10

R topics documented:
calc.diffusion.kernel . 2
calcICs . 3
clusterEvaluation . 4
filterGO . 5

1

2 calc.diffusion.kernel

getAncestors . 6
getChildren . 7
getDisjCommAnc . 8
getGeneFeatures . 9
getGeneFeaturesPrototypes . 10
getGeneSim . 11
getGeneSimPrototypes . 13
getGOGraph . 14
getGOInfo . 15
getMinimumSubsumer . 16
getOffsprings . 17
getParents . 18
getTermSim . 19
GOenrichment . 21
IC . 22
internal . 22
selectPrototypes . 23
setEnrichmentFactors . 24
setEvidenceLevel . 25
setOntology . 28

Index 29

calc.diffusion.kernel Calculation and loading of diffusion kernel matrices

Description

Manifold embeddings of gene ontology terms via diffusion kernel techniques. Diffusion kernels are
positive semidefinite similarity measures calculated from the graph Laplacian. They are interpreted
as the result of a local heat diffusion process along the graph structure.

Usage

calc.diffusion.kernel(method="diffKernelLapl", m=7, normalization.method="sqrt", DIR=".")

load.diffusion.kernel(method="diffKernelLapl", DIR=NULL)

Arguments

method one of "diffKernelLapl", "diffKernelpower", "diffKernelLLE", "diffKernelexpm"

m (1) Half the power of the transition probability matrix (an integer > 0). (2) an
arbitrary positive time constant for the exponential diffusion kernel

normalization.method

method to normalize the kernel

DIR directory, where to write ready calculated kernel matrices to and read them from,
respectively. If DIR=NULL in function load.diffusion.kernel, the method as-
sumes the kernel matrix to be present in the data directory of GOSim.

calcICs 3

Details

The methods argument has to take on one of the following values:

"diffKernelLapl" pseudo inverse of the (unnormalized) graph Laplacian: Takes into account all
powers of diffusion and incorporates all paths from one node to another one.

"diffKernelpower" even power of the transition probability matrix: Takes into account local tran-
sitions of path length m

"diffKernelLLE" local linear embedding into an Euclidean space: The focus is to preserve local
distances to nearest neighbors. The LLE kernel emphasizes short-range interactions between
GO terms.

"diffKernelexpm" expm(-mL), where t is a positive constant, L is the (unnormalized) graph
Laplacian and expm denotes the matrix exponential. This kernel takes into account all posi-
tive integer powers of diffusion, but with an exponential decay of the influence of long-range
interactions.

Value

calc.diffusion.kernel puts a kernel matrix / similarity matrix named "<method><ontology><organism><evidence
levels>.rda" in the defined directoy. It can be used afterwards by calling load.diffusion.kernel.

References

Lerman G. & Shaknovich B., Defining Functional Distance using Manifold Embeddings of Gene
Ontology Annotations, PNAS, 104(27): 11334 - 11339, 2007

See Also

load.diffusion.kernel

calcICs Calculate information contents of GO terms.

Description

Recalculates the information content of all GO terms.

Usage

calcICs(DIR=".")

Arguments

DIR directory where to put the resulting files

4 clusterEvaluation

Details

This functions should only be invoked, if one wants to calculate the information content for GO
terms with respect to combinations of evidence codes other than the precomputed ones or, if a new
version of the organism annotation packages has been installed. By default the information contents
are precomputed using all evidence codes and evidence codes "IMP, IGI, IDA, IEP, IPI" together.

Value

Puts a file named "ICs<ontology><organism><evidence levels>.rda" in directoy DIR. It can be used
afterwards by calling setOntology.

See Also

setEvidenceLevel

Examples

setEvidenceLevel("IMP")
setOntology("CC", loadIC=FALSE) # important: setOntology assumes that the IC file already exists. To prevent an error message we need the second argument
calcICs()
--> this may take some time ...

clusterEvaluation Evaluate a given grouping of genes or GO terms.

Description

Evaluate a given grouping of genes or terms with respect to their GO similarity.

Usage

evaluateClustering(clust, Sim)

Arguments

clust vector of cluster labels (integer or character) for each gene
Sim similarity matrix

Details

If necessary, more details than the description above

Value

evaluateClustering returns a list with two items:

clusterstats matrix (ncluster x 2) of median within cluster similarities and median absolute
deviations

clustersil cluster silhouette values

filterGO 5

Author(s)

Holger Froehlich

References

Rousseeuw, P., Silhouettes: a graphical aid to the interpretation and validation of cluster analysis, J.
Comp. and Applied Mathematics, 1987, 20, 53-6

See Also

getGeneSimPrototypes, getGeneSim, getTermSim, GOenrichment

Examples

setOntology("BP")
gomap <- get("gomap",env=GOSimEnv)
allgenes = sample(names(gomap), 1000) # suppose these are all genes
genesOfInterest = sample(allgenes, 20) # suppose these are all genes of interest

sim = getGeneSim(genesOfInterest,verbose=FALSE) # and these are their similarities
hc = hclust(as.dist(1-sim), method="ward") # use them to perform a clustering
plot(hc) # plot the cluster tree
cl = cutree(hc, k=3) # take 3 clusters

if(require(cluster)){
ev = evaluateClustering(cl, sim) # evaluate the clustering
print(ev$clusterstats) # print out some statistics
plot(ev$clustersil,main="") # plot the cluster silhouettes
}

investigate cluster 1 further
if(require(topGO))
GOenrichment(genesOfInterest[cl == 1], allgenes, cutoff=0.05) # print out what cluster 1 is about

filterGO Filter GO.

Description

Filter out genes from a list not mapping to the actual ontology. Genes not mapping to the currently
set ontology ("BP","MF","CC") and not having one of the predefined evidence codes (default is to
use all evidence codes) are removed.

Usage

filterGO(genelist)

6 getAncestors

Arguments

genelist character vector of Entrez gene IDs

Value

List with items

"genename" gene ID

"annotation" character vector of GO terms mapping to the gene within the actual ontology

Note

The result depends on the currently set ontology. IMPORTANT: The result refers to the GO library
that was used to precompute the information contence of GO terms.

Author(s)

Holger Froehlich

See Also

setOntology, setEvidenceLevel, getGOInfo, calcICs

Examples

filterGO(c("12345","4559"))

getAncestors get list of ALL ancestors associated to each GO term

Description

Returns the list of all (also indirect) ancestors (= less specific terms) associated to each GO term.
The type of relationship between GO terms ("is a" or "part of") is ignored.

Usage

getAncestors()

Value

List with entry names for each GO term. Each entry contains a character vector with the ancestor
GO terms.

Note

The result is computed within the currently set ontology ("BP","MF","CC"). It directly uses the
"GO" library to compute the result.

getChildren 7

Author(s)

Holger Froehlich

See Also

getOffsprings, getChildren, getParents, setOntology

Examples

getAncestors()

getChildren Get a list of all direct children of each GO term.

Description

Returns the list of all direct children (= more specific terms one hierarchy level down) associated to
each GO term. The type of relationship between GO terms ("is a" or "part of") is ignored.

Usage

getChildren()

Value

List with entry names for each GO term. Each entry contains a character vector with the direct
children GO terms.

Note

The result is computed within the currently set ontology ("BP","MF","CC"). It directly uses the
"GO" library to compute the result.

Author(s)

Holger Froehlich

See Also

getOffsprings, getParents, getAncestors, setOntology

Examples

getChildren()

8 getDisjCommAnc

getDisjCommAnc Get disjoint common ancestors.

Description

Returns the GO terms representing the disjoint common ancestors of two GO terms.

Usage

getDisjCommAnc(term1, term2)

Arguments

term1 GO term 1

term2 GO term 2

Details

The result is computed within the currently set ontology ("BP","MF","CC").

Value

Character vector of GO terms

Author(s)

Holger Froehlich

References

Couto, F.; Silva, M. & Coutinho, P., Semantic Similarity over the Gene Ontology: Family Correla-
tion and Selecting Disjunctive Ancestors, Conference in Information and Knowledge Management,
2005

See Also

getTermSim,getGOGraph, setOntology

Examples

getDisjCommAnc("GO:0006955","GO:0007584")

getGeneFeatures 9

getGeneFeatures Get simple feature vector representation of genes

Description

Computes feature vectors for list of genes: Each gene is represented by a vector describing the
presence/absence of all GO terms. The absence of each GO term is additionally weighted by its
information content.

Usage

getGeneFeatures(genelist, pca=FALSE, normalization=FALSE, verbose=FALSE)

Arguments

genelist character vector of Entrez gene IDs
pca perform PCA on feature vectors to reduce dimensionality
normalization scale the feature vectors to norm 1
verbose print out additional information

Details

The PCA postprocessing determines the principal components that can explain at least 95% of the
total variance in the feature space.

Value

matrix with rows being genes and columns being GO terms.

Note

The result depends on the currently set ontology ("BP","MF","CC").

Author(s)

Holger Froehlich

References

M. Mistry, P Pavlidis, Gene Ontology term overlap as a measure of gene functional similarity, BMC
Bioinformatics, 9:327, 2008.

See Also

getGeneSimPrototypes, selectPrototypes, getGeneSim, getTermSim, setOntology

Examples

see selectPrototypes

10 getGeneFeaturesPrototypes

getGeneFeaturesPrototypes

Get feature vector representation of genes relative to prototype genes

Description

Computes feature vectors for list of genes: Each gene is represented by its similarities to predefined
prototype genes.

Usage

getGeneFeaturesPrototypes(genelist, prototypes = NULL,
similarity = "max", similarityTerm = "JiangConrath",
pca = TRUE, normalization = TRUE, verbose = FALSE)

Arguments

genelist character vector of Entrez gene IDs

prototypes character vector of Entrez gene IDs representing the prototypes

similarity method to calculate the similarity to prototypes

similarityTerm method to compute the GO term similarity

pca perform PCA on feature vectors to reduce dimensionality

normalization scale the feature vectors to norm 1

verbose print out additional information

Details

If no prototypes are passed, the method calls the selectPrototypes function with no arguments.
Hence, the prototypes in this case are the 250 genes with most known annotations.

The PCA postprocessing determines the principal components that can explain at least 95% of the
total variance in the feature space.

The method to calculate the functional similarity of a gene to a certain prototype can be any of those
described in getGeneSim.

Value

List with items

"features" feature vectors for each gene: n x d data matrix

"prototypes" prototypes (= prinicipal components, if PCA has been performed)

Note

The result depends on the currently set ontology ("BP","MF","CC").

getGeneSim 11

Author(s)

Holger Froehlich

References

[1] H. Froehlich, N. Speer, C. Spieth, and A. Zell, Kernel Based Functional Gene Grouping, Proc.
Int. Joint Conf. on Neural Networks (IJCNN), 6886 - 6891, 2006

[2] N. Speer, H. Froehlich, A. Zell, Functional Grouping of Genes Using Spectral Clustering and
Gene Ontology, Proc. Int. Joint Conf. on Neural Networks (IJCNN), pp. 298 - 303, 2005

See Also

getGeneSimPrototypes, selectPrototypes, getGeneSim, getTermSim, setOntology

Examples

see selectPrototypes

getGeneSim Compute functional similarity for genes

Description

Calculate the pairwise functional similarities for a list of genes using different strategies.

Usage

getGeneSim(genelist1, genelist2=NULL, similarity="funSimMax", similarityTerm="relevance", normalization=TRUE, method="sqrt", avg=(similarity=="OA"), verbose=FALSE)

Arguments

genelist1 character vector of primary gene IDs according to organism annotation package
(see setEvidenceLevel)

genelist2 optional other character vector of primary gene IDs to compare against

similarity method to calculate the functional similarity between gene products

similarityTerm method to compute the similarity of GO terms

normalization normalize similarities yes/no

method "sqrt": normalize sim(x,y) <- sim(x,y)/sqrt(sim(x,x)*sim(y,y)); "Lin": normal-
ize sim(x,y) <- 2*sim(x,y)/(sim(x,x) + sim(y,y)); "Tanimoto": normalize sim(x,y)
<- sim(x,y)/(sim(x,x) + sim(y,y) - sim(x,y)). NOTE: normalization does not have
any effect, if term similarity is NOT "relevance" and similarity = "funSimMax",
"funSimAvg" or similarity = "OA" and avg=TRUE

avg standardize the OA kernel by the maximum number of GO terms for both genes

verbose print out some information

12 getGeneSim

Details

The method to calculate the pairwise functional similarity between gene products can either be:

"max" the maximum similarity between any two GO terms

"mean" the average similarity between any two GO terms

funSimMax the average of best matching GO term similarities. Take the maximum of the scores
achieved by assignments of GO terms from gene 1 to gene 2 and vice versa. [2]

funSimAvg the average of best matching GO term similarities. Take the average of the scores
achieved by assignments of GO terms from gene 1 to gene 2 and vice versa. [2]

"OA" the optimal assignment (maximally weighted bipartite matching) of GO terms associated to
the gene having fewer annotation to the GO terms of the other gene. [1]

"hausdorff" Hausdorff distance between two sets: Let X and Y be the two sets of GO terms associ-
ated to two genes. Then dist(X,Y) = max{supt∈X inft′∈Y d(t, t′), supt′∈Y inft∈X d(t, t′)
[3]. Since GOSim 1.2.8 we translate the Haussdorff distance into a similarity measure by
taking sim(X,Y) = exp(−dist(X,Y).

"dot" the dot product between feature vectors describing the absence/presence of each GO term.
The absence of each GO term is weighted by its information content. Depending on the type of
later normalization one can arrive at the cosine similarity (method="sqrt") or at the Tanimoto
coefficient (method="Tanimoto").[4]

Value

n x n similarity matrix (n = number of genes)

Note

The result depends on the currently set ontology.

Author(s)

Holger Froehlich

References

[1] H. Froehlich, N. Speer, C. Spieth, A. Zell, Kernel Based Functional Gene Grouping, Proc. Int.
Joint Conf. on Neural Networks (IJCNN), 6886 - 6891, 2006.

[2] A. Schlicker, F. Domingues, J. Rahnenfuehrer, T. Lengauer, A new measure for functional
similarity of gene products based on Gene Ontology, BMC Bioinformatics, 7, 302, 2006.

[3] A. del Pozo, F. Pazos, A. Valencia, Defining functional distances over Gene Ontology, BMC
Bioinformatics, 9:50, 2008.

[4] M. Mistry, P Pavlidis, Gene Ontology term overlap as a measure of gene functional similarity,
BMC Bioinformatics, 9:327, 2008.

See Also

getGeneSimPrototypes, getTermSim, setOntology

getGeneSimPrototypes 13

Examples

see evaluateClustering

getGeneSimPrototypes Compute functional similarity of genes with respect to a feature vector
representation.

Description

Computes the pairwise functional similarities for a list of genes: Each gene is represented by a
feature vector containing the gene’s similarities to predefined prototype genes.

Usage

getGeneSimPrototypes(genelist, prototypes = NULL, similarity = "max",
similarityTerm = "JiangConrath", pca = TRUE,
normalization = TRUE, verbose = FALSE)

Arguments

genelist character vector of primary gene IDs according to organism annotation package
(see setEvidenceLevel)

prototypes character vector of Entrez gene IDs representing the prototypes

similarity method to calculate the similarity to prototypes

similarityTerm method to compute the GO term similarity

pca perform PCA on feature vectors to reduce dimensionality

normalization normalize similarities to [0,1]: sim(x,y) <- 0.5*(sim(x,y)/sqrt(sim(x,x)*sim(y,y))
+ 1)

verbose print additional information

Details

The method calls getGeneFeaturesPrototypes to calculate the feature vectors. The functional
similarity between two genes is essentially given by the dot product between their feature vectors.

Value

List with items

"similarity" n x n similarity matrix (n = number of genes)

"prototypes" prototypes (= prinicipal components, if PCA has been performed)

"features" feature vectors for each gene: n x d data matrix

Note

The result depends on the currently set ontology ("BP","MF","CC").

14 getGOGraph

Author(s)

Holger Froehlich

References

[1] H. Froehlich, N. Speer, C. Spieth, and A. Zell, Kernel Based Functional Gene Grouping, Proc.
Int. Joint Conf. on Neural Networks (IJCNN), 6886 - 6891, 2006

[2] N. Speer, H. Froehlich, A. Zell, Functional Grouping of Genes Using Spectral Clustering and
Gene Ontology, Proc. Int. Joint Conf. on Neural Networks (IJCNN), pp. 298 - 303, 2005

See Also

getGeneFeaturesPrototypes, selectPrototypes, getGeneSim, getTermSim, setOntology

Examples

#\donttest{ may take some time ...
proto=selectPrototypes(n=5) # --> returns a character vector of 5 genes with the highest number of annotations
getGeneSimPrototypes(c("207","208"),prototypes=proto, similarityTerm="Resnik")

#}

getGOGraph (1) Get GO graph with specified GO terms at its leave; (2) Get GO
Graph with GO terms at leaves associated to one or several genes of
interest.

Description

The function getGOGraph returns a graphNEL object representing the GO graph with leaves spec-
ified in the argument. The function getGOGraphsGenes returns a set of graphNEL objects. The
ith graph object is created by call to getGOGraph with the GO terms associated to gene i. It hence
shows for each gene, where its GO terms are located within the GO structure.

Usage

getGOGraph(term, prune=Inf)

getGOGraphsGenes(genelist, prune=Inf)

Arguments

term character vector of GO terms

genelist character vector of Entrez gene IDs

prune do not show the complete graph, but prune it after the specified number of an-
cestors

getGOInfo 15

Details

The result is computed within the currently set ontology ("BP","MF","CC").

Value

graphNEL object(s)

Note

directly calls the function GOGraph in the "GOstats" library

Author(s)

Holger Froehlich

Examples

G=getGOGraph(c("GO:0006955","GO:0007584"))
if(require(igraph)){
g=igraph.from.graphNEL(G)
plot(g, vertex.label=V(g)$name)
Gs = getGOGraphsGenes(c("207","7494"))
g = igraph.from.graphNEL(Gs[[1]])
plot(g, vertex.label=V(g)$name) # plot the first of both GO graphs
}

getGOInfo Obtain GO terms and their description for a list of genes.

Description

Oobtain the GO terms and their description for a list of genes.

Usage

getGOInfo(geneIDs)

Arguments

geneIDs character vector of primary gene IDs according to organism annotation package
(see setEvidenceLevel)

Value

List with entry names equal to the gene IDs. Each list contains a sublist with entry names equal to
the GO terms associated to the corresponding gene ID. Each entry also contains a description of the
GO term, its definition and the ontology ("BP","CC","MF") it belongs to.

16 getMinimumSubsumer

Note

The corresponding information is directly extracted from the "GO" library. The result depends on
the currently set ontology ("BP","MF","CC"), i.e. only GO terms within the actual ontology are
considered. The shown GO information refers to the actually installed GO library.

Author(s)

Holger Froehlich

See Also

setOntology

Examples

if(require(annotate)){
setOntology("BP")
getGOInfo(c("207","7494"))
}

getMinimumSubsumer Compute minimum subsumer of two GO terms.

Description

Returns the minimum subsumer (i.e. the common ancestor having the maximal information content)
of two GO terms

Usage

getMinimumSubsumer(term1, term2)

Arguments

term1 GO term 1

term2 GO term 2

Details

The result is computed within the currently set ontology ("BP","MF","CC").

Value

GO term representing the minimum subsumer. If there is no minimum subsumer within the cur-
rently set GO category (e.g. because one of the GO terms does not exist), the result is the string
"NA".

getOffsprings 17

Author(s)

Holger Froehlich

References

P. Resnik, Using Information Content to evaluate semantic similarity in a taxonomy, Proc. 14th Int.
Conf. Artificial Intel., 1995

See Also

getTermSim, getGOGraph, setOntology

Examples

setOntology("BP")
getMinimumSubsumer("GO:0006955","GO:0007584")
returns GO:0050896

getOffsprings Get all offspring associated with one or more GO term

Description

Returns the list of all (also indirect) offspring (= more specific terms) associated to each GO term.
The type of relationship between GO terms ("is a" or "part of") is ignored.

Usage

getOffsprings()

Value

List with entry names for each GO term. Each entry contains a character vector with the offspring
GO terms.

Note

The result is computed within the currently set ontology ("BP","MF","CC"). It directly uses the
"GO" library to compute the result.

Author(s)

Holger Froehlich

See Also

getChildren, getParents, getAncestors, setOntology

18 getParents

Examples

getOffsprings()

getParents Get direct parents for each GO term.

Description

Returns the list of all direct parents (= less specific terms one hiearchy level up) associated to each
GO term. The type of relationship between GO terms ("is a" or "part of") is ignored.

Usage

getParents()

Value

List with entry names for each GO term. Each entry contains a character vector with the direct
parent GO terms.

Note

The result is computed within the currently set ontology ("BP","MF","CC"). It directly uses the
"GO" library to compute the result.

Author(s)

Holger Froehlich

See Also

getOffsprings, getChildren, getAncestors, setOntology

Examples

getParents()

getTermSim 19

getTermSim Get pairwise GO term similarities.

Description

Returns the pairwise similarities between GO terms. Different calculation method are implemented.

Usage

getTermSim(termlist, method = "relevance", verbose = FALSE)

Arguments

termlist character vector of GO terms

method one of the supported methods for GO term similarity (see below)

verbose print out various information or not

Details

Currently the following methods for computing GO term similarities are implemented:

"Resnik" information content of minimum subsumer (ICms) [1], here additionally divided by the
maximum information content of all GO terms

"JiangConrath" 1−min(1, IC(term1)− 2ICms+ IC(term2)) [2]

"Lin" 2ICms
(IC(term1)+IC(term2)) [3]

"CoutoEnriched" FuSSiMeg enriched term similarity by Couto et al. [4]. Requires enrichement
factors to be set by setEnrichmentFactors.

"CoutoResnik" average information content of common disjunctive ancestors of term1 and term2
(ICshare) [5]

"CoutoJiangConrath" 1−min(1, IC(term1)− 2ICshare+ IC(term2)) [5]

"CoutoLin" 2ICshare
(IC(term1)+IC(term2)) [5]

"diffKernel" diffusion kernel similarity from a pre-loaded kernel matrix (see load.diffusion.kernel).
The diffusion kernel is calculated using one of the methods described in [6].

"relevance" sim_Lin * (1 - exp(-ICms)) [7]

"GIC" summed information content of common ancestors divided by summed information con-
tent of all ancestors of term1 and term2 [8]

Value

n x n matrix (n = number of GO terms) with similarities between GO terms scaled to [0,1]. If a GO
term does not exist for the currently set ontology, the similarity is set to "NA".

20 getTermSim

Note

All calculations use normalized information contents for each GO term. Normalization is achieved
by dividing each information content by the maximum information content within the currently set
ontology ("BP","MF","CC")

Author(s)

Holger Froehlich

References

[1] P. Resnik, Using Information Content to evaluate semantic similarity in a taxonomy, Proc. 14th
Int. Conf. Artificial Intel., 1995

[2] J. Jiang, D. Conrath, Semantic Similarity based on Corpus Statistics and Lexical Taxonomy,
Proc. Int. Conf. Research in Comp. Ling., 1998

[3] D. Lin, An Information-Theoretic Definition of Similarity, Proc. 15th Int. Conf. Machine
Learning, 1998

[4] F. Couto, M. Silva, P. Coutinho, Implementation of a Functional Semantic Similarity Measure
between Gene-Products, DI/FCUL TR 03-29, Department of Informatics, University of Lisbon,
2003

[5] Couto, F.; Silva, M. & Coutinho, P., Semantic Similarity over the Gene Ontology: Family
Correlation and Selecting Disjunctive Ancestors, Conference in Information and Knowledge Man-
agement, 2005

[6] Lerman G. & Shaknovich B., Defining Functional Distance using Manifold Embeddings of
Gene Ontology Annotations, PNAS, 104(27): 11334 - 11339, 2007

[7] A. Schlicker, F. Domingues, J. Rahnenfuehrer, T. Lengauer, A new measure for functional
similarity of gene products based on Gene Ontology, BMC Bioinformatics, 7, 302, 2006.

[8] C. Pesquita, D. Faria, H. Bastos, A. Falcao, F. Couto, Evaluating GO-based Semantic Similarity
Measures, In: Proc. 10th Annual Bio-Ontologies Meeting 2007, 37 - 40, 2007

See Also

getMinimumSubsumer, getDisjCommAnc, setEnrichmentFactors, setOntology, load.diffusion.kernel

Examples

#\donttest{
setOntology("BP")
Lin's method
getTermSim(c("GO:0006955","GO:0007584"),method="Lin")

Couto's method combined with Jiang-Conrath distance
getTermSim(c("GO:0006955","GO:0007584"),method="CoutoJiangConrath")

set enrichment factors
setEnrichmentFactors(alpha=0.1,beta=0.5)
getTermSim(c("GO:0006955","GO:0007584"),method="CoutoEnriched")
#}

GOenrichment 21

GOenrichment GO enrichment analysis

Description

This function performs a GO enrichment analysis using topGO. It combines the two former func-
tions "GOenrichment" and "analyzeCluster".

Usage

GOenrichment(genesOfInterest, allgenes, cutoff=0.01, method="elim")

Arguments

genesOfInterest

character vector of Entrez gene IDs or vector of statistics (p-values, t-statistics,
...) named with entrez gene IDs

allgenes character vector of Entrez gene IDs or vector of statistics named with entrez
gene IDs

cutoff significance cutoff for GO enrichment analysis

method topGO method to use

Details

If the parameters ’genesOfInterest’ and ’allgenes’ are both character vectors of Entrez gene IDs,
Fisher’s exact test is used. The Kolmogorov-Smirnov test can be used, if a score (e.g. p-value) for
each gene is provided. For more details please refer to the topGO vignette.

Value

GOTerms list of significant GO terms and their description

p.values vector of p-values for significant GO terms

genes list of genes associated to each GO term

Author(s)

Holger Froehlich

References

Adrian Alexa, J\"org Rahnenf\"uhrer, Thomas Lengauer: Improved scoring of functional groups
from gene expression data by decorrelating GO graph structure, Bioinformatics, 2006, 22(13):1600-
1607

See Also

evaluateClustering

22 internal

Examples

if(require(org.Hs.eg.db) & require(topGO)){
allgenes = sample(keys(org.Hs.egGO), 1000) # suppose these are all genes
allpvalues = runif(1000) # an these are their pvalues
names(allpvalues) = allgenes
GOenrichment(allpvalues[allpvalues<0.05], allpvalues) # GO enrichment analysis using Kolmogorov-Smirnov test
}

IC Information content of GO terms

Description

"ICshumanBPall" Information content of GO terms in "biological process" using all evidence
codes for human

"ICshumanCCall" Information content of GO terms in "cellular component" using all evidence
codes for human

"ICshumanMFall" Information content of GO terms in "molecular function" using all evidence
codes for human

Format

A vector of double values

Note

The currently used IC values can be accessed within the GOSimEnv environment.

internal internal functions

Description

internal functions or data: do not call these functions directly.

Usage

various

Arguments

various

selectPrototypes 23

Value

various

Author(s)

Holger Froehlich

selectPrototypes Heuristic selection of prototypes and dimensionality reduction of fea-
ture vectors.

Description

• Heuristic selection of prototypes

• Dimensionality reduction of feature vectors

Usage

selectPrototypes(n = 250, method = "frequency", data = NULL, verbose = FALSE)

Arguments

n number of prototypes or maximum number of clusters

method method to select prototypes or to perform subset selection

data data matrix (l x d) of feature vectors (l = number of genes)

verbose print out information

Details

The following heuristics to perform automatic selection of prototypes are implemented:

"frequency" select n genes with highest number of GO annotations in the currently selected on-
tology

"random" select n genes uniform randomly over all genes with annotations in the currently se-
lected ontology

To perfom dimensionality reduction implemented methods are:

"PCA" dimensionality reduction via principal component analysis; the number of principal com-
ponents is determined such that at least 95% of total variance in feature space can be explained

"clustering" EM-clustering in feature space

24 setEnrichmentFactors

Value

If the function is called to automatically select prototypes, a character vector of gene IDs is returned.

If the function is called to perform dimensionality via PCA, the result is a list with items

If the function is called to perform clustering in feature space, the cluster centers are returned in a l
x k matrix (each column is one cluster center). The "flexmix" function in the package "flexmix" is
called to perform the clustering. The BIC is used to calculate the optimal number of clusters in the
range 2,...,n.

Note

The result depends on the currently set ontology ("BP","MF","CC").

Author(s)

Holger Froehlich

References

[1] H. Froehlich, N. Speer, C. Spieth, and A. Zell, Kernel Based Functional Gene Grouping, Proc.
Int. Joint Conf. on Neural Networks (IJCNN), pp. 6886 - 6891, 2006

[2] N. Speer, H. Froehlich, A. Zell, Functional Grouping of Genes Using Spectral Clustering and
Gene Ontology, Proc. Int. Joint Conf. on Neural Networks (IJCNN), pp. 298 - 303, 2005

See Also

getGeneFeaturesPrototypes, getGeneSimPrototypes, setOntology

Examples

takes too much time in the R CMD check
proto=selectPrototypes(n=5) # --> returns a character vector of 5 genes with the highest number of annotations
feat=getGeneFeaturesPrototypes(c("207","7494"),prototypes=proto,pca=FALSE) # --> compute feature vectors
selectPrototypes(data=feat$features,method="pca") # ... and PCA projection

setEnrichmentFactors Set the depth and densitiy enrichment factors for GO term similarity.

Description

Sets the depth and density enrichment factors for the enriched FuSSiMeg GO term similarity mea-
sure by Couto et al.

Usage

setEnrichmentFactors(alpha = 0.5, beta = 0.5)

setEvidenceLevel 25

Arguments

alpha depth factor

beta density factor

Value

none

Note

The enrichment factors are stored internally and are used by the function getTermSim, if one uses
the method "CoutoEnriched" to calculate GO term similarities

Author(s)

Holger Froehlich

References

F.Couto,M. Silva, P. Coutinho, Implementation of a Functional Semantic Similarity Measure be-
tween Gene-Products, DI/FCUL TR 03-29, Department of Informatics, University of Lisbon, 2003

See Also

getTermSim

Examples

#\donttest{
setEnrichmentFactors(alpha=0.1,beta=0.5)
getTermSim(c("GO:0006955","GO:0007584"),method="CoutoEnriched")

#}

setEvidenceLevel Specifies to use only GO terms with given evidence codes.

Description

Specifies to use only GO terms with given evidence codes. This, in combination with the specified
GO ontology ("BP", "MF", "CC"), influences, how the information content for individual GO terms
is calculated.

Usage

setEvidenceLevel(evidences = "all", organism=org.Hs.egORGANISM, gomap=org.Hs.egGO)

26 setEvidenceLevel

Arguments

evidences character vector of evidence codes

organism organism, for which to load a mapping of primary gene IDs to GO terms (see
details)

gomap mapping of primary gene IDs to GO terms to be used (see details)

Details

Each evidence code can be one of:

"IMP" inferred from mutant phenotype

"IGI" inferred from genetic interaction

"IPI" inferred from physical interaction

"ISS" inferred from sequence similarity

"IDA" inferred from direct assay

"IEP" inferred from expression pattern

"IEA" inferred from electronic annotation

"TAS" traceable author statement

"NAS" non-traceable author statement

"ND" no biological data available

"IC" inferred by curator

Gene ids for which no GO associations exist are left out of the environment.

The method retrieves a mapping of primary gene IDs (usually Entrez) to GO terms, restricted by
the given evidence codes. This mapping is based on the respective organism annotation packages
(e.g. org.Dm.eg.db for fly, org.Hs.eg.db for human, etc.). The user passes the GO mapping and the
organism name to the function. Please refer to the annotation packages for further information.

In case there does not exist an annotation package so far, the user can optionally provide its own
mapping of primary gene IDs to GO terms instead of using one of the packages mentioned before.
The mapping should come in form of a nested list having a format as in the following example (no
NAs are allowed):

\$‘11305‘

\$‘11305‘\$‘GO:0006810‘

\$‘11305‘\$‘GO:0006810‘\$GOID \[1\] "GO:0006810"

\$‘11305‘\$‘GO:0006810‘\$Evidence \[1\] "IEA"

\$‘11305‘\$‘GO:0006810‘\$Ontology \[1\] "BP"

\$‘11305‘\$‘GO:0008203‘

\$‘11305‘\$‘GO:0008203‘\$GOID

\[1\] "GO:0008203"

\$‘11305‘\$‘GO:0008203‘\$Evidence \[1\] "ISS"

\$‘11305‘\$‘GO:0008203‘\$Ontology \[1\] "BP"

setEvidenceLevel 27

\$‘11306‘

\$‘11306‘\$‘GO:0006810‘

\$‘11306‘\$‘GO:0006810‘\$GOID \[1\] "GO:0006810"

\$‘11306‘\$‘GO:0006810‘\$Evidence \[1\] "IEA"

\$‘11306‘\$‘GO:0006810‘\$Ontology \[1\] "BP"

\$‘11306‘\$‘GO:0006879‘

\$‘11306‘\$‘GO:0006879‘\$GOID

\[1\] "GO:0006879"

\$‘11306‘\$‘GO:0006879‘\$Evidence \[1\] "IMP"

\$‘11306‘\$‘GO:0006879‘\$Ontology \[1\] "BP"

Value

The mapping is stored in the GOSimEnv environment.

Note

By default all evidence codes are used. If another behavior is wanted, one has to recalculate the
information content of all GO terms via calcICs. The evidence level influences the behavior of all
other functions, especially filterGO and getGOInfo.

Author(s)

Holger Froehlich

References

<www.geneontology.org>

See Also

setOntology, calcICs, filterGO, getGOInfo

Examples

setEvidenceLevel("all")
the default behavior

28 setOntology

setOntology Set an ontology as base for subsequent computations.

Description

Sets the ontology that all subsequent computations are based on and loads the information content
of all GO terms within this ontology. At load time of the library the default ontology is "BP". Fur-
therm, on running this function the environment GOSimEnv is reinitialized, i.e. all global settings
or parameters used in the library are reset to their default values.

Usage

setOntology(ont = "BP", loadIC=TRUE, DIR=NULL)

Arguments

ont the ontology to use ("BP","MF","CC")

loadIC Should the corresponding file with precomputed IC-values be loaded? Default:
TRUE. WARNING: If the file is not loaded, no calculations can be performed!
This might only be useful, if you want to recalculate IC values.

DIR If not null, load file from this directory. Otherwise the version installed in
GOSim’s data directory is used.

Details

The following ontologies can be used:

"BP" biological process

"MF" molecular function

"CC" cellular component

Value

none.

Author(s)

Holger Froehlich

Examples

set ontology to "molecular function"

setOntology("MF")
calculate Resnik similarity of two GO terms within this ontology
getTermSim(c("GO:0004060","GO:0003867"),method="Resnik")

Index

∗ datasets
IC, 22

∗ file
calc.diffusion.kernel, 2
calcICs, 3
clusterEvaluation, 4
filterGO, 5
getAncestors, 6
getChildren, 7
getDisjCommAnc, 8
getGeneFeatures, 9
getGeneFeaturesPrototypes, 10
getGeneSim, 11
getGeneSimPrototypes, 13
getGOGraph, 14
getGOInfo, 15
getMinimumSubsumer, 16
getOffsprings, 17
getParents, 18
getTermSim, 19
GOenrichment, 21
internal, 22
selectPrototypes, 23
setEnrichmentFactors, 24
setEvidenceLevel, 25
setOntology, 28

analyzeCluster (GOenrichment), 21

calc.diffusion.kernel, 2
calcICs, 3, 6, 27
calcTermSim (internal), 22
classificationModel_dme (internal), 22
classificationModelSignalTrans_dme

(internal), 22
classificationModelSignalTrans_hsa

(internal), 22
clusterEvaluation, 4

evaluateClustering, 21

evaluateClustering (clusterEvaluation),
4

filterGO, 5, 27

getAncestors, 6, 7, 17, 18
getChildren, 7, 7, 17, 18
getDensityFactor (internal), 22
getDepthFactor (internal), 22
getDisjAnc (internal), 22
getDisjCommAnc, 8, 20
getDisjCommAncSim (internal), 22
getEnrichedSim (internal), 22
getGeneFeatures, 9
getGeneFeaturesPrototypes, 10, 13, 14, 24
getGeneSim, 5, 9–11, 11, 14
getGeneSimPrototypes, 5, 9, 11, 12, 13, 24
getGOGraph, 8, 14, 17
getGOGraphsGenes (getGOGraph), 14
getGOInfo, 6, 15, 27
getGSim (internal), 22
getMinimumSubsumer, 16, 20
getOffsprings, 7, 17, 18
getParents, 7, 17, 18
getTermSim, 5, 8, 9, 11, 12, 14, 17, 19, 25
GOenrichment, 5, 21
GOGraph (internal), 22

IC, 22
ICshumanBPall (IC), 22
ICshumanCCall (IC), 22
ICshumanMFall (IC), 22
initialize (internal), 22
internal, 22

load.diffusion.kernel, 3, 19, 20
load.diffusion.kernel

(calc.diffusion.kernel), 2

norm (internal), 22

29

30 INDEX

pca (internal), 22
precomputeTermSims (internal), 22

selectPrototypes, 9–11, 14, 23
setEnrichmentFactors, 19, 20, 24
setEvidenceLevel, 4, 6, 11, 13, 15, 25
setOntology, 4, 6–9, 11, 12, 14, 16–18, 20,

24, 27, 28

	calc.diffusion.kernel
	calcICs
	clusterEvaluation
	filterGO
	getAncestors
	getChildren
	getDisjCommAnc
	getGeneFeatures
	getGeneFeaturesPrototypes
	getGeneSim
	getGeneSimPrototypes
	getGOGraph
	getGOInfo
	getMinimumSubsumer
	getOffsprings
	getParents
	getTermSim
	GOenrichment
	IC
	internal
	selectPrototypes
	setEnrichmentFactors
	setEvidenceLevel
	setOntology
	Index

