Package 'EWCE'

April 10, 2023

Type Package

Title Expression Weighted Celltype Enrichment

Version 1.6.0

Description Used to determine which cell types are enriched within gene lists. The package provides tools for testing enrichments within simple gene lists (such as human disease associated genes) and those resulting from differential expression studies. The package does not depend upon any particular Single Cell Transcriptome dataset and user defined datasets can be loaded in and used in the analyses.

URL https://github.com/NathanSkene/EWCE

BugReports https://github.com/NathanSkene/EWCE/issues

License GPL-3

Depends R (>= 4.2), RNOmni (>= 1.0)

VignetteBuilder knitr

Imports stats, utils, methods, ewceData, dplyr, ggplot2, reshape2, limma, stringr, HGNChelper, Matrix, parallel, SingleCellExperiment, SummarizedExperiment, DelayedArray, BiocParallel, orthogene (>= 0.99.8), data.table

Suggests remotes, knitr, BiocStyle, rmarkdown, testthat (>= 3.0.0), readxl, memoise, markdown, sctransform, DESeq2, MAST, DelayedMatrixStats, cowplot, ggdendro, grDevices, grid, gridExtra, scales, magick, badger

biocViews GeneExpression, Transcription, DifferentialExpression, GeneSetEnrichment, Genetics, Microarray, mRNAMicroarray, OneChannel, RNASeq, BiomedicalInformatics, Proteomics, Visualization, FunctionalGenomics, SingleCell

RoxygenNote 7.2.1 Encoding UTF-8

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/EWCE

git_branch RELEASE_3_16

R topics documented:

EWCE-package	3
add_res_to_merging_list	4
bin_columns_into_quantiles	5
<u> </u>	5
bootstrap_enrichment_test	6
check_ewce_genelist_inputs	8
- 1 -	0
controlled_geneset_enrichment	1
	3
1 – –	4
	7
ewce_plot	9
example_bootstrap_results	
example_transcriptome_results	
filter_ctd_genes	
filter_genes_without_1to1_homolog	3
filter_nonorthologs	
fix_bad_hgnc_symbols	
fix_bad_mgi_symbols	8
fix_celltype_names	9
generate_bootstrap_plots	0
generate_bootstrap_plots_for_transcriptome	2
generate_celltype_data	5
get_celltype_table	8
is_delayed_array	9
is_matrix	9
is_sparse_matrix	0
list_species	0
load_rdata	1
merged_ewce	1
merge_ctd	3
merge_sce	4
merge_two_expfiles	5
plot_ctd	7
prep.dendro	8
sct_normalize	8
standardise ctd	9

EWCE-package 3

Index 53

EWCE-package

EWCE: Expression Weighted Celltype Enrichment

Description

Used to determine which cell types are enriched within gene lists. The package provides tools for testing enrichments within simple gene lists (such as human disease associated genes) and those resulting from differential expression studies. The package does not depend upon any particular Single Cell Transcriptome dataset and user defined datasets can be loaded in and used in the analyses.

Details

EWCE: Expression Weighted Celltype Enrichment

Used to determine which cell types are enriched within gene lists. The package provides tools for testing enrichments within simple gene lists (such as human disease associated genes) and those resulting from differential expression studies.

The package does not depend upon any particular Single Cell Transcriptome dataset and user defined datasets can be loaded in and used in the analyses.

Author(s)

Maintainer: Alan Murphy <alanmurph94@hotmail.com> (ORCID)

Authors:

- Brian Schilder <bri> Schilder @alumni.brown.edu > (ORCID)
- Nathan Skene <nathan.skene@gmail.com> (ORCID)

See Also

Useful links:

- https://github.com/NathanSkene/EWCE
- Report bugs at https://github.com/NathanSkene/EWCE/issues

```
add_res_to_merging_list
```

Add to results to merging list

Description

add_res_to_merging_list adds EWCE results to a list for merging analysis.

Usage

```
add_res_to_merging_list(full_res, existing_results = NULL)
```

Arguments

full_res

Results list generated using bootstrap_enrichment_test or ewce_expression_data functions. Multiple results tables can be merged into one results table, as long as the 'list' column is set to distinguish them.

existing_results

Output of previous rounds from adding results to list. Leave empty if this is the first item in the list.

Value

Merged results list.

```
# Load the single cell data
ctd <- ewceData::ctd()</pre>
# Load the data
tt_alzh <- ewceData::tt_alzh()
# tt_alzh_BA36 <- ewceData::tt_alzh_BA36()</pre>
# Use 3 bootstrap lists for speed, for publishable analysis use >10000
reps <- 3
# Use 5 up/down regulated genes (thresh) for speed, default is 250
thresh <- 5
# Run EWCE analysis
# tt_results <- ewce_expression_data(</pre>
     sct_data = ctd, tt = tt_alzh, annotLevel = 1, thresh = thresh,
     reps = reps, ttSpecies = "human", sctSpecies = "mouse"
#
# )
# tt_results_36 <- ewce_expression_data(</pre>
     sct_data = ctd, tt = tt_alzh_BA36, annotLevel = 1, thresh = thresh,
     reps = reps, ttSpecies = "human", sctSpecies = "mouse"
#)
# Fill a list with the results
results <- add_res_to_merging_list(tt_alzh)</pre>
# results <- add_res_to_merging_list(tt_alzh_BA36, results)</pre>
```

Description

bin_columns_into_quantiles is an internal function used to convert a matrix of specificity (with columns of cell types) intom a matrix of specificity quantiles

Usage

```
bin_columns_into_quantiles(
  matrixIn,
  numberOfBins = 40,
  defaultBin = as.integer(numberOfBins/2)
)
```

Arguments

matrixIn The matrix of specificity values

numberOfBins Number of quantile 'bins' to use (40 is recommended)

defaultBin Which bin to assign when there's only one non-zero quantile. In situations where

there's only one non-zero quantile, cut() throws an error. Avoid these situations

by using a default quantile.

Value

A matrix with same shape as matrixIn but with columns storing quantiles instead of specificity

Examples

```
ctd <- ewceData::ctd()
ctd[[1]]$specificity_quantiles <- apply(ctd[[1]]$specificity, 2,
    FUN = bin_columns_into_quantiles,
    numberOfBins = 40
)</pre>
```

```
{\tt bin\_specificity\_into\_quantiles}
```

bin_specificity_into_quantiles

Description

bin_specificity_into_quantiles is an internal function used to convert add '\$specificity_quantiles' to a ctd

Usage

```
bin_specificity_into_quantiles(
  ctdIN,
  numberOfBins,
  matrix_name = "specificity_quantiles",
  as_sparse = TRUE,
  verbose = TRUE
)
```

Arguments

ctdIN A single annotLevel of a ctd, i.e. ctd[[1]] (the function is intended to be used

via apply).

numberOfBins Number of quantile 'bins' to use (40 is recommended).

matrix_name Name of the specificity matrix to create (default: "specificity_quantiles").

as_sparse Convert to sparseMatrix.

verbose Print messages.

Value

A ctd with "specificity_quantiles" matrix in each level (or whatever matrix_name was set to.).

Examples

```
ctd <- ewceData::ctd()
ctd <- lapply(ctd, EWCE::bin_specificity_into_quantiles, numberOfBins = 40)
print(ctd[[1]]$specificity_quantiles[1:3, ])</pre>
```

bootstrap_enrichment_test

Bootstrap cell type enrichment test

Description

bootstrap_enrichment_test takes a genelist and a single cell type transcriptome dataset and determines the probability of enrichment and fold changes for each cell type.

Usage

```
bootstrap_enrichment_test(
  sct_data = NULL,
  hits = NULL,
  bg = NULL,
  genelistSpecies = NULL,
  sctSpecies = NULL,
  output_species = "human",
```

```
method = "homologene",
reps = 100,
no_cores = 1,
annotLevel = 1,
geneSizeControl = FALSE,
controlledCT = NULL,
mtc_method = "BH",
sort_results = TRUE,
verbose = TRUE
```

Arguments

sct_data List generated using generate_celltype_data.

hits List of gene symbols containing the target gene list. Will automatically be con-

verted to human gene symbols if geneSizeControl=TRUE.

bg List of gene symbols containing the background gene list (including hit genes).

If bg=NULL, an appropriate gene background will be created automatically.

genelistSpecies

Species that hits genes came from (no longer limited to just "mouse" and "hu-

man"). See list_species for all available species.

sctSpecies Species that sct_data came from (no longer limited to just "mouse" and "hu-

man"). See list_species for all available species.

output_species Species to convert sct_data and hits to (Default: "human"). See list_species

for all available species.

method R package to use for gene mapping:

• "gprofiler": Slower but more species and genes.

• "homologene": Faster but fewer species and genes.

• "babelgene": Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.

reps Number of random gene lists to generate (*Default: 100*, but should be >=10,000

for publication-quality results).

annotLevel An integer indicating which level of sct_data to analyse (*Default: 1*).

geneSizeControl

Whether you want to control for GC content and transcript length. Recommended if the gene list originates from genetic studies (*Default: FALSE*). If set

to TRUE, then hits must be from humans.

controlledCT [Optional] If not NULL, and instead is the name of a cell type, then the boot-

strapping controls for expression within that cell type.

mtc_method Multiple-testing correction method (passed to p.adjust).

verbose Print messages.

Value

A list containing three data frames:

- results: dataframe in which each row gives the statistics (p-value, fold change and number of standard deviations from the mean) associated with the enrichment of the stated cell type in the gene list
- hit.cells: vector containing the summed proportion of expression in each cell type for the target list
- bootstrap_data: matrix in which each row represents the summed proportion of expression in each cell type for one of the random lists

Examples

```
# Load the single cell data
ctd <- ewceData::ctd()
# Set the parameters for the analysis
# Use 3 bootstrap lists for speed, for publishable analysis use >=10,000
reps <- 3
# Load gene list from Alzheimer's disease GWAS
example_genelist <- ewceData::example_genelist()

# Bootstrap significance test, no control for transcript length or GC content
full_results <- EWCE::bootstrap_enrichment_test(
    sct_data = ctd,
    hits = example_genelist,
    reps = reps,
    annotLevel = 1,
    sctSpecies = "mouse",
    genelistSpecies = "human"
)</pre>
```

```
check\_ewce\_genelist\_inputs \\ check\_ewce\_genelist\_inputs
```

Description

check_ewce_genelist_inputs Is used to check that hits and bg gene lists passed to EWCE are setup correctly. Checks they are the appropriate length. Checks all hits genes are in bg. Checks the species match and if not reduces to 1:1 orthologs.

Usage

```
check_ewce_genelist_inputs(
  sct_data,
  hits,
  bg = NULL,
  genelistSpecies = NULL,
```

```
sctSpecies = NULL,
output_species = "human",
method = "homologene",
geneSizeControl = FALSE,
standardise = FALSE,
verbose = TRUE
)
```

Arguments

hits List of gene symbols containing the target gene list. Will automatically be con-

verted to human gene symbols if geneSizeControl=TRUE.

bg List of gene symbols containing the background gene list (including hit genes).

If bg=NULL, an appropriate gene background will be created automatically.

genelistSpecies

Species that hits genes came from (no longer limited to just "mouse" and "hu-

man"). See list_species for all available species.

sctSpecies Species that sct_data came from (no longer limited to just "mouse" and "hu-

man"). See list_species for all available species.

for all available species.

method R package to use for gene mapping:

• "gprofiler": Slower but more species and genes.

• "homologene": Faster but fewer species and genes.

• "babelgene": Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.

geneSizeControl

Whether you want to control for GC content and transcript length. Recommended if the gene list originates from genetic studies (*Default: FALSE*). If set

to TRUE, then hits must be from humans.

standardise If input_species==output_species, should the genes be standardised using

map_genes?

verbose Print messages.

Value

A list containing

- hits: Array of MGI/HGNC gene symbols containing the target gene list.
- bg: Array of MGI/HGNC gene symbols containing the background gene list.

10 check_percent_hits

Examples

```
ctd <- ewceData::ctd()
example_genelist <- ewceData::example_genelist()

# Called from "bootstrap_enrichment_test()" and "generate_bootstrap_plots()"
checkedLists <- EWCE::check_ewce_genelist_inputs(
    sct_data = ctd,
    hits = example_genelist,
    sctSpecies = "mouse",
    genelistSpecies = "human"
)</pre>
```

check_percent_hits

Get percentage of target cell type hits

Description

After you run bootstrap_enrichment_test, check what percentage of significantly enriched cell types match an expected cell type.

Usage

```
check_percent_hits(
  full_results,
  target_celltype,
  mtc_method = "bonferroni",
  q_threshold = 0.05,
  verbose = TRUE
)
```

Arguments

```
full_results bootstrap_enrichment_test results.

target_celltype
Substring to search to matching cell types (case-insensitive).

mtc_method Multiple-testing correction method.

q_threshold Corrected significance threshold.
```

Print messages.

Value

Report list.

verbose

Examples

```
## Bootstrap significance test,
## no control for transcript length or GC content
## Use pre-computed results to speed up example
full_results <- EWCE::example_bootstrap_results()

report <- EWCE::check_percent_hits(
    full_results = full_results,
    target_celltype = "microglia"
)</pre>
```

controlled_geneset_enrichment

Celltype controlled geneset enrichment

Description

controlled_geneset_enrichment tests whether a functional gene set is still enriched in a disease gene set after controlling for the disease gene set's enrichment in a particular cell type (the 'controlledCT')

Usage

```
controlled_geneset_enrichment(
  disease_genes,
  functional_genes,
  bg = NULL,
  sct_data,
  sctSpecies = NULL,
  output_species = "human",
  disease_genes_species = NULL,
  functional_genes_species = NULL,
  method = "homologene",
  annotLevel,
  reps = 100,
  controlledCT,
  use_intersect = FALSE,
  verbose = TRUE
)
```

Arguments

disease_genes Array of g

Array of gene symbols containing the disease gene list. Does not have to be disease genes. Must be from same species as the single cell transcriptome dataset.

functional_genes

Array of gene symbols containing the functional gene list. The enrichment of this gene set within the disease_genes is tested. Must be from same species as the single cell transcriptome dataset.

bg List of gene symbols containing the background gene list (including hit genes).

If bg=NULL, an appropriate gene background will be created automatically.

sct_data List generated using generate_celltype_data.

sctSpecies Species that sct_data came from (no longer limited to just "mouse" and "hu-

man"). See list_species for all available species.

output_species Species to convert sct_data and hits to (Default: "human"). See list_species

for all available species.

disease_genes_species

Species of the disease_genes gene set.

functional_genes_species

Species of the functional_genes gene set.

method R package to use for gene mapping:

• "gprofiler": Slower but more species and genes.

• "homologene": Faster but fewer species and genes.

• "babelgene": Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.

annotLevel An integer indicating which level of sct_data to analyse (*Default: 1*).

reps Number of random gene lists to generate (*Default: 100*, but should be >=10,000

for publication-quality results).

controlledCT [Optional] If not NULL, and instead is the name of a cell type, then the boot-

strapping controls for expression within that cell type.

use_intersect When species1 and species2 are both different from output_species, this

argument will determine whether to use the intersect (TRUE) or union (FALSE) of

all genes from species1 and species2.

verbose Print messages.

Value

A list containing three data frames:

- p_controlled The probability that functional_genes are enriched in disease_genes while controlling for the level of specificity in controlledCT
- z_controlled The z-score that functional_genes are enriched in disease_genes while controlling for the level of specificity in controlledCT
- p_uncontrolled The probability that functional_genes are enriched in disease_genes WITH-OUT controlling for the level of specificity in controlledCT
- z_uncontrolled The z-score that functional_genes are enriched in disease_genes WITHOUT controlling for the level of specificity in controlledCT
- reps=reps
- controlledCT
- actualOverlap=actual The number of genes that overlap between functional and disease gene sets

ctd_to_sce

Examples

```
# See the vignette for more detailed explanations
# Gene set enrichment analysis controlling for cell type expression
# set seed for bootstrap reproducibility
set.seed(12345678)
## load merged dataset from vignette
ctd <- ewceData::ctd()</pre>
schiz_genes <- ewceData::schiz_genes()</pre>
hpsd_genes <- ewceData::hpsd_genes()</pre>
# Use 3 bootstrap lists for speed, for publishable analysis use >10000
res_hpsd_schiz <- EWCE::controlled_geneset_enrichment(</pre>
    disease_genes = schiz_genes,
    functional_genes = hpsd_genes,
    sct_data = ctd,
    annotLevel = 1,
    reps = reps,
    controlledCT = "pyramidal CA1"
)
```

ctd_to_sce

CellTypeDataset to SingleCellExperiment

Description

Copied from scKirby, which is not yet on CRAN or Bioconductor.

Usage

```
ctd_to_sce(object, as_sparse = TRUE, as_DelayedArray = FALSE, verbose = TRUE)
```

Arguments

object CellTypeDataset object.

as_sparse Store SingleCellExperiment matrices as sparse.

as_DelayedArray

Store SingleCellExperiment matrices as DelayedArray.

verbose Print messages.

Value

SingleCellExperiment

```
ctd <- ewceData::ctd()
sce <- EWCE::ctd_to_sce(ctd)</pre>
```

drop_uninformative_genes

Drop uninformative genes

Description

drop_uninformative_genes drops uninformative genes in order to reduce compute time and noise in subsequent steps. It achieves this through several steps, each of which are optional:

- Drop non-1:1 orthologs:

 Removes genes that don't have 1:1 orthologs with the output_species ("human" by default).
- Drop non-varying genes:
 Removes genes that don't vary across cells based on variance deciles.
- Drop non-differentially expressed genes (DEGs):
 Removes genes that are not significantly differentially expressed across cell-types (multiple DEG methods available).

Usage

```
drop_uninformative_genes(
  exp,
  level2annot,
  dge_method = "limma",
  dge_test = "LRT",
 mtc_method = "BH",
 min_variance_decile = NULL,
  adj_pval_thresh = 1e-05,
  convert_orths = FALSE,
  input_species = NULL,
  output_species = "human",
  non121_strategy = "drop_both_species",
 method = "homologene",
  as_sparse = TRUE,
  as_DelayedArray = FALSE,
  return_sce = FALSE,
  no\_cores = 1,
  verbose = TRUE,
)
```

Arguments

exp Expression matrix with gene names as rownames.

level2annot Array of cell types, with each sequentially corresponding a column in the expression matrix.

dge_method

Which method to use for the Differential Gene Expression (DGE) step. Options:

- "limma": Uses limma.
- "deseq2": Uses DESeq2.
- "mast": Uses MAST.

dge_test

test argument passed to DGE function. Only used when dge_method="deqseq2".

mtc_method

Multiple-testing correction method used by DGE step. See p.adjust for more

min variance decile

If min_variance_decile!=NULL, calculates the variance of the mean gene expression across 'level2annot' (i.e. cell types), and then removes any genes that are below min_variance_decile (on a 0-1 scale). #' @inheritParams orthogene::convert orthologs

adj_pval_thresh

Minimum differential expression significance that a gene must demonstrate across level2annot (i.e. cell types).

convert_orths

If input_species!=output_species and convert_orths=TRUE, will drop genes without 1:1 output_species orthologs and then convert exp gene names to those of output_species.

input_species

Which species the gene names in exp come from. See list_species for all available species.

output_species Which species' genes names to convert exp to. See list_species for all available

non121_strategy

How to handle genes that don't have 1:1 mappings between input_species:output_species. Options include:

- "drop_both_species" or "dbs" or 1: Drop genes that have duplicate mappings in either the input_species or output_species (DEFAULT).
- "drop_input_species" or "dis" or 2: Only drop genes that have duplicate mappings in the input_species.
- "drop_output_species" or "dos" or 3: Only drop genes that have duplicate mappings in the output_species.
- "keep_both_species" or "kbs" or 4: Keep all genes regardless of whether they have duplicate mappings in either species.
- "keep_popular" or "kp" or 5: Return only the most "popular" interspecies ortholog mappings. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs.
- "sum", "mean", "median", "min" or "max": When gene_df is a matrix and gene_output="rownames", these options will aggregate many-to-one gene mappings (input_species-to-output_species) after dropping any duplicate genes in the output_species.

method

R package to use for gene mapping:

- "gprofiler": Slower but more species and genes.
- "homologene": Faster but fewer species and genes.
- "babelgene": Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.

as_sparse

Convert exp to sparse matrix.

as_DelayedArray

Convert exp to DelayedArray for scalable processing.

return_sce

Whether to return the filtered results as an expression matrix or a **SingleCellExperiment**.

no_cores

Number of cores to parallelise across. Set to NULL to automatically optimise.

verbose

Print messages.

. . .

Arguments passed on to orthogene::convert_orthologs

gene_df Data object containing the genes (see gene_input for options on how the genes can be stored within the object).

Can be one of the following formats:

• matrix:

A sparse or dense matrix.

• data.frame:

A data.frame, data.table. or tibble.

• codelist:

A list or character vector.

Genes, transcripts, proteins, SNPs, or genomic ranges can be provided in any format (HGNC, Ensembl, RefSeq, UniProt, etc.) and will be automatically converted to gene symbols unless specified otherwise with the . . . arguments.

Note: If you set method="homologene", you must either supply genes in gene symbol format (e.g. "Sox2") OR set standardise_genes=TRUE.

gene_input Which aspect of gene_df to get gene names from:

• "rownames":

From row names of data.frame/matrix.

• "colnames":

From column names of data.frame/matrix.

• <column name>:

From a column in gene_df, e.g. "gene_names".

gene_output How to return genes. Options include:

• "rownames":

As row names of gene_df.

• "colnames":

As column names of gene_df.

ewce_expression_data 17

- "columns":
- As new columns "input_gene", "ortholog_gene" (and "input_gene_standard" if standardise_genes=TRUE) in gene_df.
- "dict":
 - As a dictionary (named list) where the names are input_gene and the values are ortholog_gene.
- "dict_rev":
 - As a reversed dictionary (named list) where the names are ortholog_gene and the values are input_gene.
- standardise_genes If TRUE AND gene_output="columns", a new column "input_gene_standard" will be added to gene_df containing standardised HGNC symbols identified by gorth.
- drop_nonorths Drop genes that don't have an ortholog in the output_species.
- agg_fun Aggregation function passed to aggregate_mapped_genes. Set to NULL to skip aggregation step (default).
- mthreshold Maximum number of ortholog names per gene to show. Passed to gorth. Only used when method="gprofiler" (DEFAULT: Inf).
- sort_rows Sort gene_df rows alphanumerically.

Value

exp Expression matrix with gene names as row names.

Examples

```
cortex_mrna <- ewceData::cortex_mrna()
# Use only a subset of genes to keep the example quick
cortex_mrna$exp <- cortex_mrna$exp[1:300, ]
## Convert orthologs at the same time
exp2_orth <- drop_uninformative_genes(
    exp = cortex_mrna$exp,
    level2annot = cortex_mrna$annot$level2class,
    input_species = "mouse"
)</pre>
```

ewce_expression_data Bootstrap cell type enrichment test for transcriptome data

Description

ewce_expression_data takes a differential gene expression (DGE) results table and determines the probability of cell type enrichment in the up- and down- regulated genes.

Usage

```
ewce_expression_data(
    sct_data,
    annotLevel = 1,
    tt,
    sortBy = "t",
    thresh = 250,
    reps = 100,
    ttSpecies = NULL,
    sctSpecies = NULL,
    output_species = NULL,
    bg = NULL,
    method = "homologene",
    verbose = TRUE
)
```

Arguments

verbose

Print messages.

•	
sct_data	List generated using generate_celltype_data.
annotLevel	An integer indicating which level of sct_data to analyse (Default: 1).
tt	Differential expression table. Can be output of topTable function. Minimum requirement is that one column stores a metric of increased/decreased expression (i.e. log fold change, t-statistic for differential expression etc) and another contains gene symbols.
sortBy	Column name of metric in tt which should be used to sort up- from down-regulated genes (Default: "t").
thresh	The number of up- and down- regulated genes to be included in each analysis (Default: 250).
reps	Number of random gene lists to generate ($Default: 100$, but should be >=10,000 for publication-quality results).
ttSpecies	The species the differential expression table was generated from.
sctSpecies	Species that sct_data came from (no longer limited to just "mouse" and "human"). See list_species for all available species.
output_species	Species to convert sct_data and hits to (Default: "human"). See list_species for all available species.
bg	List of gene symbols containing the background gene list (including hit genes). If bg=NULL, an appropriate gene background will be created automatically.
method	R package to use for gene mapping:
	• "gprofiler": Slower but more species and genes.

• "homologene": Faster but fewer species and genes.

• "babelgene": Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.

ewce_plot 19

Value

A list containing five data frames:

• results: dataframe in which each row gives the statistics (p-value, fold change and number of standard deviations from the mean) associated with the enrichment of the stated cell type in the gene list. An additional column *Direction* stores whether it the result is from the up or downregulated set.

- hit.cells.up: vector containing the summed proportion of expression in each cell type for the target list.
- hit.cells.down: vector containing the summed proportion of expression in each cell type for the target list.
- bootstrap_data.up: matrix in which each row represents the summed proportion of expression in each cell type for one of the random lists.
- bootstrap_data.down: matrix in which each row represents the summed proportion of expression in each cell type for one of the random lists.

Examples

```
# Load the single cell data
ctd <- ewceData::ctd()</pre>
# Set the parameters for the analysis
# Use 3 bootstrap lists for speed, for publishable analysis use >10000
reps <- 3
# Use 5 up/down regulated genes (thresh) for speed, default is 250
thresh <- 5
annotLevel <- 1 # <- Use cell level annotations (i.e. Interneurons)</pre>
# Load the top table
tt_alzh <- ewceData::tt_alzh()
tt_results <- EWCE::ewce_expression_data(
    sct_data = ctd,
    tt = tt_alzh,
    annotLevel = 1,
    thresh = thresh,
    reps = reps,
    ttSpecies = "human",
    sctSpecies = "mouse"
)
```

ewce_plot

Plot EWCE results

Description

ewce_plot generates plots of EWCE enrichment results

20 ewce_plot

Usage

```
ewce_plot(
  total_res,
  mtc_method = "bonferroni",
  ctd = NULL,
  align = "v",
  rel_heights = c(0.3, 1),
  axis = "lr"
)
```

Arguments

total_res	Results data.frame generated using bootstrap_enrichment_test or ewce_expression_data functions. Multiple results tables can be merged into one results table, as long as the 'list' column is set to distinguish them. Multiple testing correction is then applied across all merged results.
mtc_method	Method to be used for multiple testing correction. Argument is passed to p.adjust (DEFAULT: "bonferroni).
ctd	CellTypeDataset object. Should be provided so that the dendrogram can be taken from it and added to plots
align	(optional) Specifies whether graphs in the grid should be horizontally ("h") or vertically ("v") aligned. Options are "none" (default), "hv" (align in both directions), "h", and "v".
rel_heights	(optional) Numerical vector of relative rows heights. Works just as rel_widths does, but for rows rather than columns.
axis	(optional) Specifies whether graphs should be aligned by the left ("l"), right ("r"), top ("t"), or bottom ("b") margins. Options are "none" (default), or a string of any combination of l, r, t, and b in any order (e.g. "tblr" or "rlbt" for aligning all margins). Must be specified if any of the graphs are complex (e.g. faceted) and alignment is specified and desired. See align_plots() for details.

Value

A ggplot containing the plot

```
## Bootstrap significance test,
## no control for transcript length or GC content
## Use pre-computed results to speed up example
full_results <- EWCE::example_bootstrap_results()

## Generate the plot
print(EWCE::ewce_plot(
    total_res = full_results$results,
    mtc_method = "BH"
))</pre>
```

```
{\tt example\_bootstrap\_results}
```

Example bootstrap enrichment results

Description

Example cell type enrichment results produced by bootstrap_enrichment_test.

Usage

```
example_bootstrap_results(verbose = TRUE)
```

Arguments

verbose

Print messages.

Value

List with 3 items.

Source

```
# Load the single cell data
ctd <- ewceData::ctd()

# Set the parameters for the analysis

# Use 3 bootstrap lists for speed, for publishable analysis use >=10,000

reps <- 3

# Load gene list from Alzheimer's disease GWAS

example_genelist <- ewceData::example_genelist()

# Bootstrap significance test, no control for transcript length or GC content

full_results <- EWCE::bootstrap_enrichment_test( sct_data = ctd, hits = example_genelist, reps = reps, annotLevel = 1, sctSpecies = "mouse", genelistSpecies = "human" )

bootstrap_results <- full_results

save(bootstrap_results,file = "inst/extdata/bootstrap_results.rda")
```

```
full_results <- EWCE::example_bootstrap_results()</pre>
```

```
example_transcriptome_results
```

Example bootstrap celltype enrichment test for transcriptome data

Description

Example celltype enrichment results produced by ewce_expression_data.

Usage

```
example_transcriptome_results(verbose = TRUE)
```

Arguments

verbose

Print messages.

Value

List with 5 items.

Source

```
## Load the single cell data
ctd <- ewceData::ctd()
## Set the parameters for the analysis
## Use 3 bootstrap lists for speed, for publishable analysis use >10,000
reps <- 3
annotLevel <- 1 # <- Use cell level annotations (i.e. Interneurons)
## Use 5 up/down regulated genes (thresh) for speed, default is 250
thresh <- 5
## Load the top table
tt_alzh <- ewceData::tt_alzh()
tt_results <- EWCE::ewce_expression_data( sct_data = ctd, tt = tt_alzh, annotLevel = 1, thresh = thresh, reps = reps, ttSpecies = "human", sctSpecies = "mouse" )
save(tt_results, file = "inst/extdata/tt_results.rda")</pre>
```

```
tt_results <- EWCE::example_transcriptome_results()</pre>
```

filter_ctd_genes 23

filter_ctd_genes

Filter genes in a CellTypeDataset

Description

Removes rows from each matrix within a CellTypeDataset (CTD) that are not within gene_subset.

Usage

```
filter_ctd_genes(ctd, gene_subset)
```

Arguments

```
ctd CellTypeDataset.
gene_subset Genes to subset to.
```

Value

Filtered CellTypeDataset.

Examples

```
ctd <- ewceData::ctd()
ctd <- standardise_ctd(ctd, input_species="mouse")
gene_subset <- rownames(ctd[[1]]$mean_exp)[1:100]
ctd_subset <- EWCE::filter_ctd_genes(ctd = ctd, gene_subset = gene_subset)</pre>
```

Description

Deprecated function. Please use filter_nonorthologs instead.

Usage

```
filter_genes_without_1to1_homolog(
    filenames,
    input_species = "mouse",
    convert_nonhuman_genes = TRUE,
    annot_levels = NULL,
    suffix = "_orthologs",
    verbose = TRUE
)
```

24 filter_nonorthologs

Arguments

```
filenames List of file names for sct_data saved as .rda files.

input_species Which species the gene names in exp come from.

convert_nonhuman_genes

Whether to convert the exp row names to human gene names.

annot_levels [Optional] Names of each annotation level.

suffix Suffix to add to the file name (right before .rda).
```

verbose Print messages.

Details

Note: This function replaces the original filter_genes_without_1to1_homolog function. filter_genes_without_1to1_is now a wrapper for filter_nonorthologs.

Value

List of the filtered CellTypeData file names.

Examples

```
# Load the single cell data
ctd <- ewceData::ctd()
tmp <- tempfile()
save(ctd, file = tmp)
fNames_ALLCELLS_orths <- EWCE::filter_nonorthologs(filenames = tmp)</pre>
```

Filter non-orthologs

Description

filter_nonorthologs

filter_nonorthologs Takes the filenames of CellTypeData files, loads them, drops any genes which don't have a 1:1 orthologs with humans, and then convert the gene to human orthologs. The new files are then saved to disk, appending '_orthologs' to the file name.

Usage

```
filter_nonorthologs(
  filenames,
  input_species = NULL,
  convert_nonhuman_genes = TRUE,
  annot_levels = NULL,
  suffix = "_orthologs",
  method = "homologene",
  non121_strategy = "drop_both_species",
  verbose = TRUE,
  ...
)
```

filter_nonorthologs 25

Arguments

filenames List of file names for sct_data saved as .rda files. input_species Which species the gene names in exp come from.

convert_nonhuman_genes

Whether to convert the exp row names to human gene names.

annot_levels [Optional] Names of each annotation level.

suffix Suffix to add to the file name (right before .rda).

method R package to use for gene mapping:

- "gprofiler": Slower but more species and genes.
- "homologene": Faster but fewer species and genes.
- "babelgene": Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.

non121_strategy

How to handle genes that don't have 1:1 mappings between input_species:output_species. Options include:

- "drop_both_species" or "dbs" or 1:
 Drop genes that have duplicate mappings in either the input_species or output_species
 (DEFAULT).
- "drop_input_species" or "dis" or 2:
 Only drop genes that have duplicate mappings in the input_species.
- "drop_output_species" or "dos" or 3:
 Only drop genes that have duplicate mappings in the output_species.
- "keep_both_species" or "kbs" or 4:
 Keep all genes regardless of whether they have duplicate mappings in either species.
- "keep_popular" or "kp" or 5:
 Return only the most "popular" interspecies ortholog mappings. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs.
- "sum", "mean", "median", "min" or "max":

 When gene_df is a matrix and gene_output="rownames", these options
 will aggregate many-to-one gene mappings (input_species-to-output_species)
 after dropping any duplicate genes in the output_species.

verbose Print messages.

.. Arguments passed on to orthogene::convert_orthologs

gene_df Data object containing the genes (see gene_input for options on how the genes can be stored within the object).

Can be one of the following formats:

• matrix:

A sparse or dense matrix.

26 filter_nonorthologs

• data.frame:

A data.frame, data.table. or tibble.

• codelist:

A list or character vector.

Genes, transcripts, proteins, SNPs, or genomic ranges can be provided in any format (HGNC, Ensembl, RefSeq, UniProt, etc.) and will be automatically converted to gene symbols unless specified otherwise with the . . . arguments.

Note: If you set method="homologene", you must either supply genes in gene symbol format (e.g. "Sox2") OR set standardise_genes=TRUE.

gene_input Which aspect of gene_df to get gene names from:

• "rownames":

From row names of data.frame/matrix.

• "colnames":

From column names of data.frame/matrix.

• <column name>:

From a column in gene_df, e.g. "gene_names".

gene_output How to return genes. Options include:

• "rownames":

As row names of gene_df.

• "colnames":

As column names of gene_df.

• "columns":

As new columns "input_gene", "ortholog_gene" (and "input_gene_standard" if standardise_genes=TRUE) in gene_df.

• "dict":

As a dictionary (named list) where the names are input_gene and the values are ortholog_gene.

• "dict rev":

As a reversed dictionary (named list) where the names are ortholog_gene and the values are input_gene.

standardise_genes If TRUE AND gene_output="columns", a new column "input_gene_standard" will be added to gene_df containing standardised HGNC symbols identified by gorth.

output_species Name of the output species (e.g. "human", "chicken"). Use map_species to return a full list of available species.

drop_nonorths Drop genes that don't have an ortholog in the output_species. agg_fun Aggregation function passed to aggregate_mapped_genes. Set to NULL to skip aggregation step (default).

mthreshold Maximum number of ortholog names per gene to show. Passed to gorth. Only used when method="gprofiler" (DEFAULT: Inf).

as_sparse Convert gene_df to a sparse matrix. Only works if gene_df is one of the following classes:

- matrix
- Matrix
- data.frame
- data.table
- tibble

If gene_df is a sparse matrix to begin with, it will be returned as a sparse matrix (so long as gene_output= "rownames" or "colnames").

as_DelayedArray Convert aggregated matrix to DelayedArray. sort_rows Sort gene_df rows alphanumerically.

Details

Note: This function replaces the original filter_genes_without_1to1_homolog function. filter_genes_without_1to1_is now a wrapper for filter_nonorthologs.

Value

List of the filtered CellTypeData file names.

Examples

```
# Load the single cell data
ctd <- ewceData::ctd()
tmp <- tempfile()
save(ctd, file = tmp)
fNames_ALLCELLS_orths <- EWCE::filter_nonorthologs(filenames = tmp)</pre>
```

```
fix_bad_hgnc_symbols fix_bad_hgnc_symbols
```

Description

Given an expression matrix, wherein the rows are supposed to be HGNC symbols, find those symbols which are not official HGNC symbols, then correct them if possible. Return the expression matrix with corrected symbols.

Usage

```
fix_bad_hgnc_symbols(
  exp,
  dropNonHGNC = FALSE,
  as_sparse = TRUE,
  verbose = TRUE
)
```

Arguments

exp An expression matrix where the rows are HGNC symbols or a SingleCellExper-

iment (SCE) or other Ranged Summarized Experiment (SE) type object.

dropNonHGNC Boolean. Should symbols not recognised as HGNC symbols be dropped?

as_sparse Convert exp to sparse matrix.

verbose Print messages.

Value

Returns the expression matrix with the rownames corrected and rows representing the same gene merged. If a SingleCellExperiment (SCE) or other Ranged Summarized Experiment (SE) type object was inputted this will be returned with the corrected expression matrix under counts.

Examples

fix_bad_mgi_symbols

fix_bad_mgi_symbols - Given an expression matrix, wherein the rows are supposed to be MGI symbols, find those symbols which are not official MGI symbols, then check in the MGI synonm database for whether they match to a proper MGI symbol. Where a symbol is found to be an aliases for a gene that is already in the dataset, the combined reads are summed together.

Description

Also checks whether any gene names contain "Sep", "Mar" or "Feb". These should be checked for any suggestion that excel has corrupted the gene names.

Usage

```
fix_bad_mgi_symbols(
  exp,
  mrk_file_path = NULL,
  printAllBadSymbols = FALSE,
  as_sparse = TRUE,
  verbose = TRUE
)
```

fix_celltype_names 29

Arguments

exp An expression matrix where the rows are MGI symbols, or a SingleCellExperi-

ment (SCE) or other Ranged Summarized Experiment (SE) type object.

mrk_file_path Path to the MRK_List2 file which can be downloaded from www.informatics.jax.org/downloads/reports/irprintAllBadSymbols

Output to console all the bad gene symbols

as_sparse Convert exp to sparse matrix.

verbose Print messages.

Value

Returns the expression matrix with the rownames corrected and rows representing the same gene merged. If no corrections are necessary, input expression matrix is returned. If a SingleCellExperiment (SCE) or other Ranged Summarized Experiment (SE) type object was inputted this will be returned with the corrected expression matrix under counts.

Examples

```
# Load the single cell data
cortex_mrna <- ewceData::cortex_mrna()
# take a subset for speed
cortex_mrna$exp <- cortex_mrna$exp[1:50, 1:5]
cortex_mrna$exp <- fix_bad_mgi_symbols(cortex_mrna$exp)</pre>
```

fix_celltype_names

Fix celltype names

Description

Make sure celltypes don't contain characters that could interfere with downstream analyses. For example, the R package MAGMA.Celltyping cannot have spaces in celltype names because spaces are used as a delimiter in later steps.

Usage

```
fix\_celltype\_names(celltypes, replace\_chars = "[-]|[.]|[ ]|[//]|[\\/]")
```

Arguments

celltypes Character vector of celltype names.

replace_chars Regex string of characters to replace with "_" when renaming columns.

Value

Fixed celltype names.

Examples

```
ct <- c("microglia", "astryocytes", "Pyramidal SS")
ct_fixed <- fix_celltype_names(celltypes = ct)</pre>
```

generate_bootstrap_plots

Generate bootstrap plots

Description

generate_bootstrap_plots takes a gene list and a single cell type transcriptome dataset and generates plots which show how the expression of the genes in the list compares to those in randomly generated gene lists

Usage

```
generate_bootstrap_plots(
    sct_data = NULL,
    hits = NULL,
    bg = NULL,
    genelistSpecies = NULL,
    sctSpecies = NULL,
    output_species = "human",
    method = "homologene",
    reps = 100,
    annotLevel = 1,
    full_results = NA,
    listFileName = "",
    savePath = tempdir(),
    verbose = TRUE
)
```

Arguments

sct_data List generated using generate_celltype_data.

hits List of gene symbols containing the target gene list. Will automatically be con-

verted to human gene symbols if geneSizeControl=TRUE.

bg List of gene symbols containing the background gene list (including hit genes).

If bg=NULL, an appropriate gene background will be created automatically.

genelistSpecies

Species that hits genes came from (no longer limited to just "mouse" and "hu-

man"). See list_species for all available species.

sctSpecies Species that sct_data came from (no longer limited to just "mouse" and "hu-

man"). See list_species for all available species.

output_species Species to convert sct_data and hits to (Default: "human"). See list_species

for all available species.

method	R package to use for gene mapping:
	 "gprofiler": Slower but more species and genes.
	 "homologene": Faster but fewer species and genes.
	• "babelgene": Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.
reps	Number of random gene lists to generate ($Default: 100$, but should be >=10,000 for publication-quality results).
annotLevel	An integer indicating which level of sct_data to analyse (Default: 1).
full_results	The full output of bootstrap_enrichment_test for the same gene list.
listFileName	String used as the root for files saved using this function.
savePath	Directory where the BootstrapPlots folder should be saved, default is a temp directory.
verbose	Print messages.

Value

Saves a set of pdf files containing graphs and returns the file where they are saved. These will be saved with the filename adjusted using the value of listFileName. The files are saved into the 'BootstrapPlot' folder. Files start with one of the following:

- qqplot_noText: sorts the gene list according to how enriched it is in the relevant cell type. Plots the value in the target list against the mean value in the bootstrapped lists.
- qqplot_wtGSym: as above but labels the gene symbols for the highest expressed genes.
- bootDists: rather than just showing the mean of the bootstrapped lists, a boxplot shows the distribution of values
- bootDists_LOG: shows the bootstrapped distributions with the y-axis shown on a log scale

```
## Load the single cell data
ctd <- ewceData::ctd()

## Set the parameters for the analysis
## Use 5 bootstrap lists for speed, for publishable analysis use >10000
reps <- 5

## Load the gene list and get human orthologs
hits <- ewceData::example_genelist()[1:100]

## Bootstrap significance test,
## no control for transcript length or GC content
## Use pre-computed results to speed up example
full_results <- EWCE::example_bootstrap_results()

### Skip this for example purposes
# full_results <- EWCE::bootstrap_enrichment_test(
# sct_data = ctd,</pre>
```

```
hits = hits,
    reps = reps,
    annotLevel = 1,
    sctSpecies = "mouse",
#
    genelistSpecies = "human"
# )
plot_file_path <- EWCE::generate_bootstrap_plots(</pre>
   sct_data = ctd,
   hits = hits,
   reps = reps,
   full_results = full_results,
   listFileName = "Example",
   sctSpecies = "mouse",
   genelistSpecies = "human",
   annotLevel = 1,
   savePath = tempdir()
)
```

Description

Takes a gene list and a single cell type transcriptome dataset and generates plots which show how the expression of the genes in the list compares to those in randomly generated gene lists.

Usage

```
generate_bootstrap_plots_for_transcriptome(
  sct_data,
  tt,
  bg = NULL,
  thresh = 250,
  annotLevel = 1,
  reps = 100,
  full_results = NA,
  listFileName = "",
  showGNameThresh = 25,
  ttSpecies = NULL,
  sctSpecies = NULL,
  output_species = NULL,
  sortBy = "t",
  sig_only = TRUE,
  sig\_col = "q",
  sig_{thresh} = 0.05,
  celltype_col = "CellType",
```

```
plot_types = c("bootstrap", "bootstrap_distributions", "log_bootstrap_distributions"),
  savePath = tempdir(),
  method = "homologene",
  verbose = TRUE
)
```

Arguments

sct_data List generated using generate_celltype_data.

tt Differential expression table. Can be output of topTable function. Minimum

requirement is that one column stores a metric of increased/decreased expression (i.e. log fold change, t-statistic for differential expression etc) and another

contains gene symbols.

bg List of gene symbols containing the background gene list (including hit genes).

If bg=NULL, an appropriate gene background will be created automatically.

thresh The number of up- and down- regulated genes to be included in each analysis

(Default: 250).

annotLevel An integer indicating which level of sct_data to analyse (*Default: 1*).

reps Number of random gene lists to generate (*Default: 100*, but should be >=10,000

for publication-quality results).

full_results The full output of ewce_expression_data for the same gene list.

listFileName String used as the root for files saved using this function.

showGNameThresh

Integer. If a gene has over X percent of it's expression proportion in a cell type,

then list the gene name.

ttSpecies The species the differential expression table was generated from.

sctSpecies Species that sct_data came from (no longer limited to just "mouse" and "hu-

man"). See list_species for all available species.

output_species Species to convert sct_data and hits to (Default: "human"). See list_species

for all available species.

sortBy Column name of metric in tt which should be used to sort up- from down-

regulated genes (Default: "t").

sig_only Should plots only be generated for cells which have significant changes?

sig_col Column name in tt that contains the significance values.

sig_thresh Threshold by which to filter tt by sig_col.

celltype_col Column within tt that contains celltype names.

plot_types Plot types to generate.

savePath Directory where the *BootstrapPlots* folder should be saved, default is a temp

directory.

method R package to use for gene mapping:

• "gprofiler": Slower but more species and genes.

• "homologene": Faster but fewer species and genes.

• "babelgene": Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.

verbose Print messages.

Value

Saves a set of PDF files containing graphs and returns the file where they are saved. These will be saved with the filename adjusted using the value of listFileName. The files are saved into the *BootstrapPlot* folder. Files start with one of the following:

- qqplot_noText: sorts the gene list according to how enriched it is in the relevant cell type. Plots the value in the target list against the mean value in the bootstrapped lists.
- qqplot_wtGSym: as above but labels the gene symbols for the highest expressed genes.
- bootDists: rather than just showing the mean of the bootstrapped lists, a boxplot shows the distribution of values
- bootDists_LOG: shows the bootstrapped distributions with the y-axis shown on a log scale

```
## Load the single cell data
ctd <- ewceData::ctd()</pre>
## Set the parameters for the analysis
## Use 3 bootstrap lists for speed, for publishable analysis use >10,000
reps <- 3
annotLevel <- 1 # <- Use cell level annotations (i.e. Interneurons)</pre>
## Use 5 up/down regulated genes (thresh) for speed, default is 250
thresh <- 5
## Load the top table
tt_alzh <- ewceData::tt_alzh()</pre>
## See ?example_transcriptome_results for full code to produce tt_results
tt_results <- EWCE::example_transcriptome_results()</pre>
## Bootstrap significance test,
## no control for transcript length or GC content
savePath <- EWCE::generate_bootstrap_plots_for_transcriptome(</pre>
    sct_data = ctd,
    tt = tt_alzh,
    thresh = thresh,
    annotLevel = 1,
    full_results = tt_results,
    listFileName = "examples",
    reps = reps,
    ttSpecies = "human"
    sctSpecies = "mouse",
    # Only do one plot type for demo purposes
    plot_types = "bootstrap"
)
```

Description

generate_celltype_data takes gene expression data and cell type annotations and creates Cell-TypeData (CTD) files which contain matrices of mean expression and specificity per cell type.

Usage

```
generate_celltype_data(
  annotLevels,
  groupName,
  no\_cores = 1,
  savePath = tempdir(),
  file_prefix = "ctd",
  as\_sparse = TRUE,
  as_DelayedArray = FALSE,
  normSpec = FALSE,
  convert_orths = FALSE,
  input_species = "mouse"
  output_species = "human",
  non121_strategy = "drop_both_species",
 method = "homologene",
  force_new_file = TRUE,
  specificity_quantiles = TRUE,
  numberOfBins = 40,
  dendrograms = TRUE,
  return_ctd = FALSE,
  verbose = TRUE,
)
```

Arguments

exp	Numerical matrix with row for each gene and column for each cell. Row names are gene symbols. Column names are cell IDs which can be cross referenced against the annot data frame.
annotLevels	List with arrays of strings containing the cell type names associated with each column in exp.
groupName	A human readable name for referring to the dataset being used.
no_cores	Number of cores that should be used to speedup the computation. <i>NOTE</i> : Use no_cores=1 when using this package in windows system.
savePath	Directory where the CTD file should be saved.

file_prefix Prefix to add to saved CTD file name.

as_sparse Convert exp to a sparse Matrix.

as_DelayedArray

Convert exp to DelayedArray.

normSpec Boolean indicating whether specificity data should be transformed to a normal

distribution by cell type, giving equivalent scores across all cell types.

If input_species!=output_species and convert_orths=TRUE, will drop genes convert_orths

without 1:1 output_species orthologs and then convert exp gene names to

those of output_species.

input_species The species that the exp dataset comes from. See list_species for all available

species.

output_species Species to convert exp to (Default: "human"). See list_species for all available

species.

non121_strategy

How to handle genes that don't have 1:1 mappings between input_species:output_species. Options include:

• "drop_both_species" or "dbs" or 1: Drop genes that have duplicate mappings in either the input_species or output_species (DEFAULT).

• "drop_input_species" or "dis" or 2: Only drop genes that have duplicate mappings in the input_species.

• "drop_output_species" or "dos" or 3: Only drop genes that have duplicate mappings in the output_species.

• "keep_both_species" or "kbs" or 4: Keep all genes regardless of whether they have duplicate mappings in either species.

• "keep_popular" or "kp" or 5: Return only the most "popular" interspecies ortholog mappings. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs.

• "sum", "mean", "median", "min" or "max": When gene_df is a matrix and gene_output="rownames", these options will aggregate many-to-one gene mappings (input_species-to-output_species) after dropping any duplicate genes in the output_species.

method R package to use for gene mapping:

- "gprofiler": Slower but more species and genes.
- "homologene": Faster but fewer species and genes.
- "babelgene": Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.

force_new_file If a file of the same name as the one being created already exists, overwrite it. specificity_quantiles

Compute specificity quantiles. Recommended to set to TRUE.

numberOfBins Number of quantile 'bins' to use (40 is recommended).

dendrograms Add dendrogram plots

return_ctd Return the CTD object in a list along with the file name, instead of just the file

name.

verbose Print messages.

.. Arguments passed on to orthogene::convert_orthologs

gene_df Data object containing the genes (see gene_input for options on how the genes can be stored within the object).

Can be one of the following formats:

• matrix:

A sparse or dense matrix.

• data.frame:

A data.frame, data.table. or tibble.

• codelist:

A list or character vector.

Genes, transcripts, proteins, SNPs, or genomic ranges can be provided in any format (HGNC, Ensembl, RefSeq, UniProt, etc.) and will be automatically converted to gene symbols unless specified otherwise with the . . . arguments.

Note: If you set method="homologene", you must either supply genes in gene symbol format (e.g. "Sox2") OR set standardise_genes=TRUE.

gene_input Which aspect of gene_df to get gene names from:

• "rownames":

From row names of data.frame/matrix.

• "colnames":

From column names of data.frame/matrix.

• <column name>:

From a column in gene_df, e.g. "gene_names".

gene_output How to return genes. Options include:

• "rownames":

As row names of gene_df.

• "colnames":

As column names of gene_df.

• "columns":

As new columns "input_gene", "ortholog_gene" (and "input_gene_standard" if standardise_genes=TRUE) in gene_df.

• "dict":

As a dictionary (named list) where the names are input_gene and the values are ortholog_gene.

• "dict_rev":

As a reversed dictionary (named list) where the names are ortholog_gene and the values are input_gene.

38 get_celltype_table

standardise_genes If TRUE AND gene_output="columns", a new column "input_gene_standard" will be added to gene_df containing standardised HGNC symbols identified by gorth.

drop_nonorths Drop genes that don't have an ortholog in the output_species. agg_fun Aggregation function passed to aggregate_mapped_genes. Set to NULL to skip aggregation step (default).

mthreshold Maximum number of ortholog names per gene to show. Passed to gorth. Only used when method="gprofiler" (DEFAULT: Inf).

sort_rows Sort gene_df rows alphanumerically.

Value

File names for the saved CellTypeData (CTD) files.

Examples

```
# Load the single cell data
cortex_mrna <- ewceData::cortex_mrna()
# Use only a subset to keep the example quick
expData <- cortex_mrna$exp[1:100, ]
11 <- cortex_mrna$annot$level1class
12 <- cortex_mrna$annot$level2class
annotLevels <- list(11 = 11, 12 = 12)
fNames_ALLCELLS <- EWCE::generate_celltype_data(
        exp = expData,
        annotLevels = annotLevels,
        groupName = "allKImouse"
)</pre>
```

```
get_celltype_table
get_celltype_table
```

Description

get_celltype_table Generates a table that can be used for supplemenary tables of publications. The table lists how many cells are associated with each cell type, the level of annotation, and the dataset from which it was generated.

Usage

```
get_celltype_table(annot)
```

Arguments

annot

An annotation dataframe, which columns named 'level1class', 'level2class' and 'dataset_name'

is_delayed_array 39

Value

A dataframe with columns 'name', 'level', 'freq' and 'dataset_name'

Examples

```
# See PrepLDSC.Rmd for origin of merged_ALLCELLS$annot
cortex_mrna <- ewceData::cortex_mrna()
cortex_mrna$annot$dataset_name <- "cortex_mrna"
celltype_table <- EWCE::get_celltype_table(cortex_mrna$annot)</pre>
```

is_delayed_array

Assess whether an object is a DelayedArray.

Description

Assess whether an object is a DelayedArray or one of its derived object types.

Usage

```
is_delayed_array(X)
```

Arguments

Χ

Object.

Value

boolean

is_matrix

Assess whether an object is a Matrix

Description

Assess whether an object is a Matrix or one of its derived object types.

Usage

```
is\_matrix(X)
```

Arguments

Χ

Object.

Value

boolean

40 list_species

is_sparse_matrix

Assess whether an object is a sparse matrix

Description

Assess whether an object is a sparse matrix or one of its derived object types.

Usage

```
is_sparse_matrix(X)
```

Arguments

Χ

Object.

Value

boolean

 $list_species$

List all species

Description

List all species that EWCE can convert genes from/to. Wrapper function for map_species.

Usage

```
list_species(verbose = TRUE)
```

Arguments

verbose

Print messages.

Value

List of species EWCE can input/output genes as.

```
list_species()
```

load_rdata 41

Description

Load processed data (.*rda* format) using a function that assigns it to a specific variable (so you don't have to guess what the loaded variable name is).

Usage

```
load_rdata(fileName)
```

Arguments

fileName

Name of the file to load.

Value

Data object.

Examples

```
tmp <- tempfile()
save(mtcars, file = tmp)
mtcars2 <- load_rdata(tmp)</pre>
```

merged_ewce

Multiple EWCE results from multiple studies

Description

merged_ewce combines enrichment results from multiple studies targetting the same scientific problem

Usage

```
merged_ewce(results, reps = 100)
```

Arguments

results a list of EWCE results generated using add_res_to_merging_list.

reps Number of random gene lists to generate (Default=100 but should be >=10,000

for publication-quality results).

42 merged_ewce

Value

dataframe in which each row gives the statistics (p-value, fold change and number of standard deviations from the mean) associated with the enrichment of the stated cell type in the gene list.

```
# Load the single cell data
ctd <- ewceData::ctd()</pre>
# Use 3 bootstrap lists for speed, for publishable analysis use >10000
# Use 5 up/down regulated genes (thresh) for speed, default is 250
thresh <- 5
# Load the data
tt_alzh_BA36 <- ewceData::tt_alzh_BA36()
tt_alzh_BA44 <- ewceData::tt_alzh_BA44()</pre>
# Run EWCE analysis
tt_results_36 <- EWCE::ewce_expression_data(</pre>
    sct_data = ctd,
    tt = tt_alzh_BA36,
    thresh = thresh,
    annotLevel = 1,
    reps = reps,
    ttSpecies = "human",
    sctSpecies = "mouse"
)
tt_results_44 <- EWCE::ewce_expression_data(</pre>
    sct_data = ctd,
    tt = tt_alzh_BA44,
    thresh = thresh,
    annotLevel = 1,
    reps = reps,
    ttSpecies = "human",
    sctSpecies = "mouse"
)
# Fill a list with the results
results <- EWCE::add_res_to_merging_list(tt_results_36)</pre>
results <- EWCE::add_res_to_merging_list(tt_results_44, results)</pre>
# Perform the merged analysis
# For publication reps should be higher
merged_res <- EWCE::merged_ewce(</pre>
    results = results,
    reps = 2
print(merged_res)
```

merge_ctd 43

 $merge_ctd$

Merge multiple CellTypeDataset references

Description

Import CellTypeDataset (CTD) references from a remote repository, standardize each, and then merge into one CTD. Optionally, can return these as a merged SingleCellExperiment.

Usage

```
merge_ctd(
 CTD_list,
  save_dir = tempdir(),
  standardise_CTD = FALSE,
  as\_SCE = FALSE,
  gene_union = TRUE,
 merge\_levels = seq(1, 5),
  save_split_SCE = FALSE,
  save\_split\_CTD = FALSE,
  save_merged_SCE = TRUE,
  force_new_quantiles = FALSE,
  numberOfBins = 40,
  as_sparse = TRUE,
  as_DelayedArray = FALSE,
  verbose = TRUE,
)
```

Arguments

CTD_list	(Named) list of CellTypeDatasets.		
save_dir	The directory to save merged files in.		
standardise_CTD			
	Whether to run standardise_ctd.		
as_SCE	If TRUE (default), returns the merged results as a named list of SingleCellExperiments. If FALSE, returns as a CTD object.		
gene_union	Whether to take the gene union or intersection when merging matrices (mean_exp,specificity, etc.).		
merge_levels	Which CTD levels you want to merge. Can be a single value (e.g. merge_levels=5) or a list c(e.g. merge_levels=c(1:5)). If some CTD don't have the same number of levels, the maximum level depth available in that CTD will be used instead.		
<pre>save_split_SCE</pre>	Whether to save individual SCE files in the subdirectory <i>standardized_CTD_SCE</i> .		
save_split_CTD	Whether to save individual CTD files in the subdirectory <i>standardized_CTD</i> .		

44 merge_sce

```
save_merged_SCE
Save the final merged SCE object, or simply to return it.

force_new_quantiles
If specificity quantiles matrix already exists, create a new one.

numberOfBins
Number of bins to compute specificity quantiles with.

as_sparse
Convert matrices to sparse matrix.

as_DelayedArray
Convert matrices to DelayedArray.

verbose
Print messages.

Additional arguments to be passed to standardise_ctd.
```

Value

List of CellTypeDatasets or SingleCellExperiments.

Examples

```
## Let's pretend these are different CTD datasets
ctd1 <- ewceData::ctd()
ctd2 <- ctd1
CTD_list <- list(ctd1, ctd2)
CTD_merged <- EWCE::merge_ctd(CTD_list = CTD_list)</pre>
```

merge_sce

Merge multiple SingleCellExperiment objects

Description

Merge several SingleCellExperiment (SCE) objects from different batches/experiments. Extracted from the scMerge package.

Usage

```
merge_sce(
    sce_list,
    method = "intersect",
    cut_off_batch = 0.01,
    cut_off_overall = 0.01,
    use_assays = NULL,
    colData_names = NULL,
    batch_names = NULL,
    verbose = TRUE
)
```

merge_two_expfiles 45

Arguments

sce_list A list contains the SingleCellExperiment Object from each batch.

method A string indicates the method of combining the gene expression matrix, either

union or intersect. Default to intersect. union only supports matrix class.

cut_off_batch A numeric vector indicating the cut-off for the proportion of a gene is expressed

within each batch.

cut_off_overall

A numeric vector indicating the cut-off for the proportion of a gene is expressed

overall data.

use_assays A string vector indicating the expression matrices to be combined. The first

assay named will be used to determine the proportion of zeros.

colData_names A string vector indicating the colData that are combined.

batch_names A string vector indicating the batch names for the output SCE object.

verbose Print messages.

Value

A SingleCellExperiment object with the list of SCE objects combined.

Author(s)

Yingxin Lin (modified by Brian Schilder)

Source

scMerge.

Examples

```
ctd <- ewceData::ctd()
sce_list <- EWCE::ctd_to_sce(object = ctd)
sce_combine <- merge_sce(sce_list = sce_list)</pre>
```

merge_two_expfiles

Merge two exp files

Description

merge_two_expfiles Used to combine two single cell type datasets.

46 merge_two_expfiles

Usage

```
merge_two_expfiles(
  exp1,
  exp2,
  annot1,
  annot2,
  name1 = "",
  name2 = "",
  as_sparse = TRUE,
  as_DelayedArray = FALSE,
  verbose = TRUE
)
```

Arguments

exp1	Numerical expression matrix for dataset1 with row for each gene and column for each cell. Row names are gene symbols. Column names are cell IDs which can be cross referenced against the annot data frame.	
exp2	Numerical expression matrix for dataset2 with row for each gene and column for each cell. Row names are gene symbols. Column names are cell IDs which can be cross referenced against the annot data frame.	
annot1	Annotation data frame for dataset1 which contains three columns at least: cell_id, level1class and level2class	
annot2	Annotation data frame for dataset2 which contains three columns at least: cell_id, level1class and level2class	
name1	Name used to refer to dataset 1. Leave blank if it's already a merged dataset.	
name2	Name used to refer to dataset 2. Leave blank if it's already a merged dataset.	
as_sparse	Convert the merged exp to a sparse matrix.	
as_DelayedArray		
	Convert the merged exp to a DelayedArray.	
verbose	Print messages.	

Value

List containing merged exp and annot.

```
cortex_mrna <- ewceData::cortex_mrna()
exp1 <- cortex_mrna$exp[, 1:50]
exp2 <- cortex_mrna$exp[, 51:100]
annot1 <- cortex_mrna$annot[1:50, ]
annot2 <- cortex_mrna$annot[51:100, ]
merged_res <- EWCE::merge_two_expfiles(
    exp1 = exp1,
    exp2 = exp2,
    annot1 = annot1,</pre>
```

plot_ctd 47

```
annot2 = annot2,
name1 = "dataset1",
name2 = "dataset2"
)
```

plot_ctd

Plot CellTypeData metrics

Description

Plot *CellTypeData* metrics such as mean_exp, specificity and/or specificity_quantiles.

Usage

```
plot_ctd(ctd, genes, level = 1, metric = "specificity", show_plot = TRUE)
```

Arguments

ctd CellTypeDataset.
genes Which genes in ctd to plot.

level Annotation level in ctd to plot.

metric Which metric in the ctd to plot:

• "mean_exp"

• "specificity"

• "specificity_quantiles"

show_plot

Whether to print the plot or simply return it.

Value

ggplot object.

```
ctd <- ewceData::ctd()
plt <- EWCE::plot_ctd(ctd, genes = c("Apoe", "Gfap", "Gapdh"))</pre>
```

48 sct_normalize

prep.dendro

prep.dendro

Description

```
prep_dendro adds a dendrogram to a CellTypeDataset (CTD).
```

Usage

```
prep.dendro(ctdIN)
```

Arguments

ctdIN

A single annotLevel of a ctd, i.e. ctd[[1]] (the function is intended to be used via apply).

Value

A CellTypeDataset with dendrogram plotting info added.

sct_normalize

Normalize expression matrix

Description

Normalize expression matrix by accounting for library size. Uses sctransform.

Usage

```
sct_normalize(exp, as_sparse = TRUE, verbose = TRUE)
```

Arguments

exp Gene x cell expression matrix. as_sparse Convert exp to sparse matrix.

verbose Print messages.

Value

Normalised expression matrix.

```
cortex_mrna <- ewceData::cortex_mrna()
exp_sct_normed <- EWCE::sct_normalize(exp = cortex_mrna$exp[1:300, ])</pre>
```

standardise_ctd

Convert a CellTypeDataset into standardized format

Description

This function will take a CTD, drop all genes without 1:1 orthologs with the output_species ("human" by default), convert the remaining genes to gene symbols, assign names to each level, and convert all matrices to sparse matrices and/or DelayedArray.

Usage

```
standardise_ctd(
  ctd,
  dataset,
  input_species = NULL,
  output_species = "human",
  non121_strategy = "drop_both_species",
 method = "homologene",
  force_new_quantiles = TRUE,
  force_standardise = FALSE,
  remove_unlabeled_clusters = FALSE,
  numberOfBins = 40,
  keep_annot = TRUE,
  keep_plots = TRUE,
  as_sparse = TRUE,
  as_DelayedArray = FALSE,
  rename_columns = TRUE,
 make_columns_unique = FALSE,
  verbose = TRUE,
)
```

Arguments

ctd Input CellTypeData.

dataset CellTypeData. name.

input_species Which species the gene names in exp come from. See list_species for all available species.

output_species Which species' genes names to convert exp to. See list_species for all available species.

non121_strategy

How to handle genes that don't have 1:1 mappings between input_species:output_species. Options include:

"drop_both_species" or "dbs" or 1:
 Drop genes that have duplicate mappings in either the input_species or output_species
 (DEFAULT).

• "drop_input_species" or "dis" or 2:
Only drop genes that have duplicate mappings in the input_species.

- "drop_output_species" or "dos" or 3:
 Only drop genes that have duplicate mappings in the output_species.
- "keep_both_species" or "kbs" or 4:
 Keep all genes regardless of whether they have duplicate mappings in either species.
- "keep_popular" or "kp" or 5:
 Return only the most "popular" interspecies ortholog mappings. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs.
- "sum", "mean", "median", "min" or "max":

 When gene_df is a matrix and gene_output="rownames", these options
 will aggregate many-to-one gene mappings (input_species-to-output_species)
 after dropping any duplicate genes in the output_species.

method R package to use for gene mapping:

- "gprofiler": Slower but more species and genes.
- "homologene": Faster but fewer species and genes.
- "babelgene": Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.

force_new_quantiles

By default, quantile computation is skipped if they have already been computed. Set =TRUE to override this and generate new quantiles.

force_standardise

If ctd has already been standardised, whether to rerun standardisation anyway (Default: FALSE).

remove_unlabeled_clusters

Remove any samples that have numeric column names.

numberOfBins Number of non-zero quantile bins.

keep_annot Keep the column annotation data if provided.

keep_plots Keep the dendrograms if provided.

as_sparse Convert to sparse matrix.

as_DelayedArray

Convert to DelayedArray.

rename_columns Remove replace_chars from column names.

make_columns_unique

Rename each columns with the prefix dataset.species.celltype.

verbose Print messages. Set verbose=2 if you want to print all messages from internal

functions as well.

... Arguments passed on to orthogene::convert_orthologs

gene_df Data object containing the genes (see gene_input for options on how the genes can be stored within the object).

Can be one of the following formats:

• matrix:

A sparse or dense matrix.

• data.frame:

A data.frame, data.table. or tibble.

• codelist:

A list or character vector.

Genes, transcripts, proteins, SNPs, or genomic ranges can be provided in any format (HGNC, Ensembl, RefSeq, UniProt, etc.) and will be automatically converted to gene symbols unless specified otherwise with the ... arguments.

Note: If you set method="homologene", you must either supply genes in gene symbol format (e.g. "Sox2") OR set standardise_genes=TRUE.

gene_input Which aspect of gene_df to get gene names from:

• "rownames":

From row names of data.frame/matrix.

• "colnames":

From column names of data.frame/matrix.

• <column name>:

From a column in gene_df, e.g. "gene_names".

gene_output How to return genes. Options include:

• "rownames":

As row names of gene_df.

• "colnames":

As column names of gene_df.

• "columns":

As new columns "input_gene", "ortholog_gene" (and "input_gene_standard" if standardise_genes=TRUE) in gene_df.

• "dict":

As a dictionary (named list) where the names are input_gene and the values are ortholog_gene.

• "dict_rev":

As a reversed dictionary (named list) where the names are ortholog_gene and the values are input_gene.

standardise_genes If TRUE AND gene_output="columns", a new column "input_gene_standard" will be added to gene_df containing standardised HGNC symbols identified by gorth.

drop_nonorths Drop genes that don't have an ortholog in the output_species.

agg_fun Aggregation function passed to aggregate_mapped_genes. Set to NULL to skip aggregation step (default).

mthreshold Maximum number of ortholog names per gene to show. Passed to
 gorth. Only used when method="gprofiler" (DEFAULT: Inf).
sort_rows Sort gene_df rows alphanumerically.

Value

Standardised CellTypeDataset.

```
ctd <- ewceData::ctd()
ctd_std <- EWCE::standardise_ctd(
   ctd = ctd,
   input_species = "mouse",
   dataset = "Zeisel2016"
)</pre>
```

Index

```
add_res_to_merging_list, 4, 41
                                                 is_sparse_matrix, 40
aggregate_mapped_genes, 17, 26, 38, 51
                                                 list_species, 7, 9, 12, 15, 18, 30, 33, 36, 40,
align_plots(), 20
bin_columns_into_quantiles, 5
                                                 load_rdata, 41
bin_specificity_into_quantiles, 5
                                                 map_genes, 9
bootstrap_enrichment_test, 4, 6, 10, 20,
                                                 map_species, 26, 40
        21, 31
                                                 merge_ctd, 43
check_ewce_genelist_inputs, 8
                                                 merge_sce, 44
                                                 merge_two_expfiles, 45
check_percent_hits, 10
controlled_geneset_enrichment, 11
                                                 merged_ewce, 41
ctd_to_sce, 13
                                                 orthogene::convert_orthologs, 16, 25, 37,
DelayedArray, 27
                                                          50
drop_uninformative_genes, 14
                                                 p.adjust, 7, 15, 20
EWCE (EWCE-package), 3
                                                 plot_ctd, 47
EWCE-package, 3
                                                 prep. dendro, 48
ewce_expression_data, 4, 17, 20, 22, 33
                                                 sct_normalize, 48
ewce_plot, 19
                                                 SingleCellExperiment, 43
example_bootstrap_results, 21
                                                 standardise_ctd, 49
example_transcriptome_results, 22
                                                 topTable, 18, 33
filter_ctd_genes, 23
filter_genes_without_1to1_homolog, 23
filter_nonorthologs, 23, 24
fix_bad_hgnc_symbols, 27
fix_bad_mgi_symbols, 28
fix_celltype_names, 29
generate_bootstrap_plots, 30
generate_bootstrap_plots_for_transcriptome,
generate_celltype_data, 7, 9, 12, 18, 30,
        33, 35
get_celltype_table, 38
gorth, 17, 26, 38, 51, 52
is_delayed_array, 39
is_matrix, 39
```