
Identifying differential distributions in single-
cell RNA-seq experiments with scDD

Keegan Korthauer ∗

∗keegan@jimmy.harvard.edu

April 26, 2022

Abstract

The scDD package models single-cell gene expression data (from single-cell RNA-seq) using
flexible nonparamentric Bayesian mixture models in order to explicitly handle heterogeneity
within cell populations. In bulk RNA-seq data, where each measurement is an average over
thousands of cells, distributions of expression over samples are most often unimodal. In single-
cell RNA-seq data, however, even when cells represent genetically homogeneous populations,
multimodal distributions of gene expression values over samples are common [1]. This type
of heterogeneity is often treated as a nuisance factor in studies of differential expression
in single-cell RNA-seq experiments. Here, we explicitly accommodate it in order to improve
power to detect differences in expression distributions that are more complicated than a mean
shift.

Package

scDD 1.20.0
Report issues on https://github.com/kdkorthauer/scDD/issues

mailto:keegan@jimmy.harvard.edu
https://github.com/kdkorthauer/scDD/issues

scDD

Contents

1 Background . 3

2 Identify and Classify DD genes 4

3 Alternate test for Differential Distributions 6

4 Simulation . 7

5 Formatting and Preprocessing 10

5.1 Constructing a SingleCellExperiment object 10

5.2 Filtering and Normalization . 11

6 Plotting . 13

7 Session Info . 15

2

scDD

1 Background
Our aim is two-fold: (1) to detect which genes have different expression distributions across
two biological conditions and (2) to classify those differences into informative patterns. Note
that in (1) we explicitly say differences in ’distributions’ rather than differences in ’average’,
which would correspond to traditional DE (differential expression) analysis in bulk RNA-seq.
By examining the entire distribution, we are able to detect more subtle differences as well
as describe complex patterns, such as the existence of subgroups of cells within and across
condition that express a given gene at a different level.
We start by assuming that the log-transformed nonzero expression values arise out of a Dirich-
let Process Mixture of normals model. This allows us to characterize expression distributions
in terms of the number of modes (or clusters). To detect differences in these distributions
across conditions, an approximate Bayes Factor score is used which compares the conditional
likelihood under the hypothesis of Equivalent distributions (ED) where one clustering process
governs both conditions jointly, with the hypothesis of Differential distributions (DD) where
each condition is generated from its own clustering process. In the full framework, signif-
icance of the scores for each gene are evaluated via empirical p-values after permutation.
Optionally, a fast implementation obtains the p-values from the non-parametric Kolmogorov-
Smirnov test. Zero values are considered by also implementing a χ2 test of whether the
proportion of zero values differs by condition (adjusted for overall sample detection rate).
More details are provided in [1].
After the detection step is carried out, the significantly DD genes are classified into four
informative patterns based on the number of clusters detected and whether they overlap.
These patterns, depicted in Figure 1, include (a) DE (differential expression of unimodal
genes), (b) DP (differential proportion for multimodal genes), (c) DM (differential modality),
and (d) DB (both differential modality and different component means). Genes where a
differential proportion of zeroes were identified are classified as DZ (differential zero). Genes
that are identified as significantly differentially distributed but do not fall into one of the
above categories are abbreviated NC (for no call). This includes genes with the same number
of components with similar component means, but differential variance. For reasons detailed
in [1], we do not aim to interpret this type of pattern.

Traditional DE

µ1 µ2

(A) DP

µ1 µ2

(B)

DM

µ1 µ2

(C) DB

µ1 µ3 µ2

(D)

Figure 1: Illustration of informative DD patterns

The rest of this vignette outlines the main functionality of the scDD package. This includes:

3

scDD

• Identifying genes that are expressed differently between two biological conditions and
classifying them into informative patterns.

• Simulating single-cell RNA-seq data with differential expression that exhibits multi-
modal patterns.

• Preprocessing and formatting of single-cell RNA-seq data to facilitate analysis
• Visualizing the expression patterns using a violin plotting scheme

2 Identify and Classify DD genes
In this section, we demonstrate how to use the main function scDD to find genes with differ-
ential distributions and classify them into the patterns of interest described in the previous
section.
First, we need to load the scDD package. For each of the following sections in this vignette,
we assume this step has been carried out.
library(scDD)

Next, we load the toy simulated example SingleCellExperiment object that we will use for
identifying and classifying DD genes.
data(scDatExSim)

Verify that this object is a member of the SingleCellExperiment class and that it contains 200
samples and 30 genes. The colData slot (which contains a dataframe of metadata for the
cells) should have a column that contains the biological condition or grouping of interest. In
this example data, that variable is the ’condition’ variable. Note that the input gene set needs
to be in SingleCellExperiment format, and should contain normalized counts. In practice, it
is also advisable to filter the input gene set to remove genes that have an extremely high
proportion of zeroes (see Section 6). More specifically, the test for differential distributions
of the expressed measurements will not be carried out on genes where only one or fewer
cells had a nonzero measurement (these genes will still be tested for differential proportion
of zeroes (DZ) if the testZeroes parameter is set to TRUE, however).
class(scDatExSim)

[1] "SingleCellExperiment"

attr(,"package")

[1] "SingleCellExperiment"

dim(scDatExSim)

[1] 30 200

Next, specify the hyperparameter arguments that we’ll pass to the scDD function. These
values reflect heavy-tailed distributions over the paramaters and are robust to many different
settings in simulation (see [1] for more details).
prior_param=list(alpha=0.01, mu0=0, s0=0.01, a0=0.01, b0=0.01)

Finally, call the scDD function to test for differential distributions, classify DD genes, and
return the results. If the biological condition or grouping variable in the colData slot is
named something other than ’condition’, you’ll need to specify the name of the variable as

4

scDD

an argument to the scDD function (set the condition argument equal to the name of the
relevant column). We won’t perform the test for a difference in the proportion of zeroes
since none exists in this simulated toy example data, but this option can be invoked by
changing the testZeroes option to TRUE. Note that the default option is to use a fast test
of differential distributions that involves the Kolmogorov-Smirnov test instead of the full
permutation testing framework. This provides a fast implementation of the method at the
cost of potentially slightly decreased power compared to the full scDD framework described
in the manuscript (see Section 4 for more details).
Note that if you are only interested in obtaining the results of the test for significance, and
not in the classification of genes to the patterns mentioned above, you can achieve further
computational speedup by setting categorize to FALSE.
scDatExSim <- scDD(scDatExSim, prior_param=prior_param, testZeroes=FALSE)

Setting up parallel back-end using 4 cores

Clustering observed expression data for each gene

Notice: Number of permutations is set to zero; using

Kolmogorov-Smirnov to test for differences in distributions

instead of the Bayes Factor permutation test

Classifying significant genes into patterns

Four results objects are added to the scDatExSim SingleCellExperiment object in the metadata
slot. For convenience, the results objects can be extracted with the results function.
The main results object is the "Genes" object which is a data.frame containing the following
columns:

• gene: gene name (matches rownames of SCdat)
• DDcategory: name of the DD pattern (DE, DP, DM, DB, DZ), or NC (no call), or NS

(not significant).
• Clusters.combined: the number of clusters identified when pooling condition 1 and 2

together
• Clusters.c1: the number of clusters identified in condition 1 alone
• Clusters.c2: the number of clusters identified in condition 2 alone
• nonzero.pvalue: p-value for KS test of differential distributions of expressed cells
• nonzero.pvalue.adj: Benjamini-Hochberg adjusted p-value for KS test of differential

distributions
• zero.pvalue: p-value for test of difference in dropout rate (only if testZeroes==TRUE)
• zero.pvalue.adj: Benjamini-Hochberg adjusted p-value for test of difference in dropout

rate (only if testZeroes==TRUE)
• combined.pvalue: Fisher’s combined p-value for a difference in nonzero or zero values

(only if testZeroes==TRUE)
• combined.pvalue.adj: Benjamini-Hochberg adjusted Fisher’s combined p-value for a

difference in nonzero or zero values (only if testZeroes==TRUE)
This can be extracted using the following call to results:

5

scDD

RES <- results(scDatExSim)

head(RES)

gene DDcategory Clusters.combined Clusters.c1 Clusters.c2 nonzero.pvalue

DE1 DE1 DB 1 2 1 4.215186e-07

DE2 DE2 DE 1 1 1 1.663921e-08

DE3 DE3 DE 1 1 1 0.000000e+00

DE4 DE4 DE 1 1 1 0.000000e+00

DE5 DE5 DE 1 1 1 1.274147e-07

DP6 DP6 DP 2 2 2 8.445703e-06

nonzero.pvalue.adj

DE1 2.529112e-06

DE2 1.663921e-07

DE3 0.000000e+00

DE4 0.000000e+00

DE5 9.556106e-07

DP6 3.167138e-05

The remaining three results objects are matrices (first for condition 1 and 2 combined, then
condition 1 alone, then condition 2 alone) that contain the cluster memberships (partition
estimates) for each sample (for clusters 1,2,3,...) in columns and genes in rows. Zeroes, which
are not involved in the clustering, are labeled as zero. These can be extracted by specifying
an alternative type when calling the results function. For example, we can extract the
partition estimates for condition 1 with the following:
PARTITION.C1 <- results(scDatExSim, type="Zhat.c1")

PARTITION.C1[1:5,1:5]

Sample1 Sample2 Sample3 Sample4 Sample5

DE1 0 0 1 2 2

DE2 1 1 1 1 0

DE3 1 1 1 1 1

DE4 1 1 1 1 1

DE5 1 1 0 1 0

3 Alternate test for Differential Distributions
The first step in the scDD framework that identifies Differential Distributions was designed
to have optimal power to detect differences in expression distributions, but the utilization of
a permutation test on the Bayes Factor can be computationally demanding. While this is
not an issue when machines with multiple cores are available since the code takes advantage
of parallel processing, we also provide the option to use an alternate test to detect distribu-
tional differences that avoides the use of a permutation test. This option (default) uses the
Kolmogorov-Smirnov test, which examines the null hypothesis that two samples are gener-
ated from the same continuous distribution. While the use of this test yielded slighlty lower
power in simulations than the full permutation testing framework at lower sample sizes (50-
75 cells in each condition) and primarily affected the DB pattern genes, it does not require
permutations and thus is orders of magnitude faster. The overall power to detect DD genes
in simulation was still comparable or favorable to exisiting methods for differential expression
analysis of scRNA-seq experiments.

6

scDD

The remaining steps of the scDD framework remain unchanged if the alternate test is used.
That is, the Dirichlet process mixture model is still fit to the observed expression measure-
ments so that the significant DD genes can be categorized into patterns that represent the
major distributional changes, and results can still be visualized with violin plots using the
sideViolin function described in the Plotting section.
The option to use the full permutation testing procedure instead of the Kolmogorov-Smirnov
test is invoked by setting the number of permutations to something other than zero (the
permutations argument in scDD) when calling the main scDD function as follows:
scDatExSim <- scDD(scDatExSim, prior_param=prior_param,

testZeroes=FALSE, permutations=100)

Setting up parallel back-end using 4 cores

Clustering observed expression data for each gene

Performing permutations to evaluate independence of clustering

and condition for each gene

Parallelizing by Genes

Classifying significant genes into patterns

The line above will run 100 permutations of every gene. In practice, it is recommended that
at least 1000 permutations are carried out if using the full permutation testing option. Note
that this option will take significantly longer than the default option to use the alternate KS
test, and computation time will increase with more genes and/or more permutations, but
multiple cores will automatically be utilized (if available) via the BiocParallel package. By
default, an OS appropriate back-end using the number of cores on the machine minus 2 is
chosen automatically. Alternatively, you can specificy the number of cores to use by passing
in a param argument in the scDD function call (where the param argument is an object of
class MulticoreParm for Linux-like OS or SnowParam for Windows). For example, to use 12
cores on a Linux-like OS, specify param=MulticoreParam(workers=12).
The results returned by scDD remain exactly as described in the previous section, with the
exception that the nonzero.pvalue and nonzero.pvalue.adj columns of the Genes data
frame now contain the p-values and Benjamini-Hochberg adjusted p-values of the perumtation
test of the Bayes Factor for independence of condition membership with clustering.

4 Simulation
Here we show how to generate a simulated single-cell RNA-seq dataset which contains multi-
modal genes. The simulateSet function simulates data from a two-condition experiment with
a specified number of genes that fall into each of the patterns of interest. For DD genes,
these include DE (differential expression of unimodal genes), DP (differential proportion for
multimodal genes), DM (differential modality), and DB (both differential modality and mean
expression levels), and for ED genes these include EE (equivalent expression for unimodal
genes) and EP (equivalent proportion for multimodal genes). The simulation parameters are
based on observed data from two conditions, so the function requires an SingleCellExperiment
formatted dataset as input. The output of the function is also a SingleCellExperiment object
with information about the true category of each gene and its simulated fold change stored
in the rowData slot.
First, we load the toy example SingleCellExperiment to simulate from

7

scDD

data(scDatEx)

We’ll verify that this object is a member of the SingleCellExperiment class and that it contains
142 samples and 500 genes
class(scDatEx)

[1] "SingleCellExperiment"

attr(,"package")

[1] "SingleCellExperiment"

dim(scDatEx)

[1] 500 142

Next we need to set the arguments that will be passed to the simulateSet function. In this
example we will simulate 30 genes total, with 5 genes of each type and 100 samples in each
of two conditions. We also set a random seed for reproducibility.
nDE <- 5

nDP <- 5

nDM <- 5

nDB <- 5

nEE <- 5

nEP <- 5

numSamples <- 100

seed <- 816

Finally, we’ll create the simulated set with specified numbers of DE, DP, DM, DM, EE, and
EP genes and specified number of samples, where DE gene fold changes represent 2 standard
deviations of the observed fold change distribution, and multimodal genes have cluster mean
distance of 4 standard deviations.
SD <- simulateSet(scDatEx, numSamples=numSamples,

nDE=nDE, nDP=nDP, nDM=nDM, nDB=nDB,

nEE=nEE, nEP=nEP, sd.range=c(2,2), modeFC=4, plots=FALSE,

random.seed=seed)

Setting up parallel back-end using 4 cores

Identifying a set of genes to simulate from...

Simulating DE fold changes...

Simulating individual genes...

Done! Simulated 5 DE, 5 DP, 5 DM, 5 DB, 5 EE, and 5 EP genes

load the SingleCellExperiment package to use rowData method

library(SingleCellExperiment)

Loading required package: SummarizedExperiment

Loading required package: MatrixGenerics

Loading required package: matrixStats

##

Attaching package: ’MatrixGenerics’

8

scDD

The following objects are masked from ’package:matrixStats’:

##

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,

colCounts, colCummaxs, colCummins, colCumprods, colCumsums,

colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,

colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,

colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,

colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,

colWeightedMeans, colWeightedMedians, colWeightedSds,

colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,

rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,

rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,

rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,

rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,

rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs,

rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians,

rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges

Loading required package: stats4

Loading required package: BiocGenerics

##

Attaching package: ’BiocGenerics’

The following objects are masked from ’package:stats’:

##

IQR, mad, sd, var, xtabs

The following objects are masked from ’package:base’:

##

Filter, Find, Map, Position, Reduce, anyDuplicated, append,

as.data.frame, basename, cbind, colnames, dirname, do.call,

duplicated, eval, evalq, get, grep, grepl, intersect,

is.unsorted, lapply, mapply, match, mget, order, paste, pmax,

pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply,

setdiff, sort, table, tapply, union, unique, unsplit, which.max,

which.min

Loading required package: S4Vectors

##

Attaching package: ’S4Vectors’

The following objects are masked from ’package:base’:

##

I, expand.grid, unname

Loading required package: IRanges

Loading required package: GenomeInfoDb

Loading required package: Biobase

9

scDD

Welcome to Bioconductor

##

Vignettes contain introductory material; view with

’browseVignettes()’. To cite Bioconductor, see

’citation("Biobase")’, and for packages ’citation("pkgname")’.

##

Attaching package: ’Biobase’

The following object is masked from ’package:MatrixGenerics’:

##

rowMedians

The following objects are masked from ’package:matrixStats’:

##

anyMissing, rowMedians

head(rowData(SD))

DataFrame with 6 rows and 2 columns

Category FC

<character> <numeric>

DE1 DE 1

DE2 DE 2

DE3 DE 1

DE4 DE 1

DE5 DE 1

DP6 DP 4

The normcounts assay SD object (of class SingleCellExperiment) contains simulated expression
values. The rowData slot stores the fold change/modal distance values and gene expression
categories, which are useful in assessing performance of a differential expression method.

5 Formatting and Preprocessing
Before beginning an analysis using scDD, you will need to carry out a few preprocessing steps.
This includes normalization, filtering of genes that are mostly zero, and getting the data into
format that is expected by the scDD function. The following subsections will detail these
steps.

5.1 Constructing a SingleCellExperiment object
In this subsection, we provide a quick example of how to construct an object of the Sin-
gleCellExperiment class. For more detailed instructions, refer to the SingleCellExperiment
package documentation.
Here we will convert the toy example data object scDatExList into a SingleCellExperiment
object. This object is a list of two matrices (one for each condition) of normalized counts.
Each matrix has genes in rows and cells in columns, and is named "C1" or "C2" (for condition
1 or 2).
First, load the SingleCellExperiment package:

10

scDD

library(SingleCellExperiment)

Next, load the toy example data list:
data(scDatExList)

Next, create a vector of condition membership labels (these should be 1 or 2). In our example
data list, we have 78 cells in condition 1, and 64 cells in condition 2.
condition <- c(rep(1, ncol(scDatExList$C1)), rep(2, ncol(scDatExList$C2)))

The rows and columns of the expression matrix should have unique names. This is already
the case for our toy example dataset. The names of the columns should also correspond to
the names of the condition membership labels in condition.
Example of row and column names

head(rownames(scDatExList$C1))

[1] "MKL2" "CD109" "ABTB1" "MAST2" "KAT5" "WWC2"

head(colnames(scDatExList$C2))

[1] "C2.001" "C2.002" "C2.003" "C2.004" "C2.005" "C2.006"

names(condition) <- c(colnames(scDatExList$C1), colnames(scDatExList$C2))

Once our labeling is intact, we can call the SingleCellExperiment function and specify the
two relevant pieces of information. The normcounts assays slot should contain one matrix, so
we use rbind here to combine both conditions. Optionally, additional experiment information
can be stored in additional slots; see the SingleCellExperiment package for more details.
sce <- SingleCellExperiment(assays=list(normcounts=cbind(scDatExList$C1,

scDatExList$C2)),

colData=data.frame(condition))

show(sce)

class: SingleCellExperiment

dim: 100 142

metadata(0):

assays(1): normcounts

rownames(100): MKL2 CD109 ... ASB10 HBP1

rowData names(0):

colnames(142): C1.073 C1.074 ... C2.068 C2.070

colData names(1): condition

reducedDimNames(0):

mainExpName: NULL

altExpNames(0):

5.2 Filtering and Normalization
In this subsection, we demonstrate the utility of the preprocess function, which can be
helpful if working with raw counts, or data which contains genes that are predominantly zero
(common in single-cell RNA-seq experiments). This function takes as input a list of data
matrices, one for each condition.

11

scDD

First, load the toy example data and verify it is a SingleCellExperiment object:
data(scDatEx)

show(scDatEx)

class: SingleCellExperiment

dim: 500 142

metadata(0):

assays(2): normcounts counts

rownames(500): RHOF FAM161B ... BHLHB9 GLIPR2

rowData names(0):

colnames(142): C1.073 C1.074 ... C2.068 C2.070

colData names(1): condition

reducedDimNames(0):

mainExpName: NULL

altExpNames(0):

Now, apply the preprocess function with the zero.thresh argument set to 0.9 so that genes
are filtered out if they are 90 (or more) percent zero.
scDatEx <- preprocess(scDatEx, zero.thresh=0.9)

show(scDatEx)

class: SingleCellExperiment

dim: 500 142

metadata(0):

assays(2): normcounts counts

rownames(500): RHOF FAM161B ... BHLHB9 GLIPR2

rowData names(0):

colnames(142): C1.073 C1.074 ... C2.068 C2.070

colData names(1): condition

reducedDimNames(0):

mainExpName: NULL

altExpNames(0):

We can see that no genes were removed, since all have fewer than 90 percent of zeroes to
begin with.
Now, apply the preprocess function again, but this time use a more stringent threshold on
the proportion of zeroes and apply normalization using size factors calculated using the scran.
In this example, we set the zero.thresh argument to 0.50 so that genes with more than 50
percent zeroes are filtered out and we set the scran_norm argument to TRUE to return scran
normalized counts.
scDatEx.scran <- preprocess(scDatEx, zero.thresh=0.5, scran_norm=TRUE)

Warning in preprocess(scDatEx, zero.thresh = 0.5, scran_norm = TRUE): median

or scran norm is specified and the ’normcounts’ assay already exists; replacing

’normcounts’ in output with the specified normalization method. Original contents

of ’normcounts’ are now in ’normcounts-orig’.

Performing scran Normalization

show(scDatEx.scran)

class: SingleCellExperiment

12

scDD

dim: 462 142

metadata(0):

assays(3): normcounts counts normcounts-orig

rownames(462): FAM161B EIF2AK4 ... BHLHB9 GLIPR2

rowData names(0):

colnames(142): C1.073 C1.074 ... C2.068 C2.070

colData names(2): condition sizeFactor

reducedDimNames(0):

mainExpName: NULL

altExpNames(0):

We can see that 38 genes were removed due to having more than 50 percent zeroes. The
warning message here is letting us know that our SingleCellExperiment object already con-
tained a normcounts assay, and that by specifying scran_norm=TRUE, we are replacing that
with the scran normalized counts and moving the original values to a new slot called norm

counts-orig.
Also included is the option to use median normalization, invoked by setting median_norm to
TRUE.

6 Plotting
Next we demonstrate the plotting routine that is implemented in the sideViolin function.
This function produces side-by-side violin plots (where the curves represent a smoothed kernel
density estimate) of the log-transformed data. A count of 1 is added before log-transformation
so that zeroes can be displayed, but they are not included in the density estimation. Each
condition is represented by one violin plot. Individual data points are plotted (with jitter) on
top.
We illustrate this function by displaying the six types of simulated genes using the toy example
simulated dataset. First, load the toy simulated dataset:
data(scDatExSim)

Next, load the SingleCellExperiment package to facilitate subset operations on SingleCell

Experiment class objects:
library(SingleCellExperiment)

The following lines will produce the figures in Figure 2.
Plot side by side violin plots for Gene 1 (DE):
de <- sideViolin(normcounts(scDatExSim)[1,], scDatExSim$condition,

title.gene=rownames(scDatExSim)[1])

Plot side by side violin plots for Gene 6 (DP):
dp <- sideViolin(normcounts(scDatExSim)[6,], scDatExSim$condition,

title.gene=rownames(scDatExSim)[6])

Plot side by side violin plots for Gene 11 (DM):

13

scDD

dm <- sideViolin(normcounts(scDatExSim)[11,], scDatExSim$condition,

title.gene=rownames(scDatExSim)[11])

Plot side by side violin plots for Gene 16 (DB):
db <- sideViolin(normcounts(scDatExSim)[16,], scDatExSim$condition,

title.gene=rownames(scDatExSim)[16])

Plot side by side violin plots for Gene 21 (EP):
ep <- sideViolin(normcounts(scDatExSim)[21,], scDatExSim$condition,

title.gene=rownames(scDatExSim)[21])

Plot side by side violin plots for Gene 26 (EE):
ee <- sideViolin(normcounts(scDatExSim)[26,], scDatExSim$condition,

title.gene=rownames(scDatExSim)[26])

The plot objects returned by sideViolin are standard ggplot2 objects, and thus can be
manipulated into multipanel figures with the help of the gridExtra or cowplot packages.
Here we use grid.arrange from the gridExtra package to visualize all the plots generated
above. The end result is shown in Figure 2.
library(gridExtra)

grid.arrange(de, dp, dm, db, ep, ee, ncol=2)

14

scDD

0

2

4

6

1 2
Condition

lo
g(

E
C

 +
 1

)

DE1

0

2

4

6

8

1 2
Condition

lo
g(

E
C

 +
 1

)

DP6

2

4

6

1 2
Condition

lo
g(

E
C

 +
 1

)

DM11

0

2

4

6

1 2
Condition

lo
g(

E
C

 +
 1

)

DB16

0

2

4

6

8

1 2
Condition

lo
g(

E
C

 +
 1

)

EP21

0

2

4

1 2
Condition

lo
g(

E
C

 +
 1

)

EE26

Figure 2: Example Simulated DD genes

7 Session Info
Here is the output of sessionInfo on the system where this document was compiled:
sessionInfo()

R version 4.2.0 RC (2022-04-19 r82224)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 20.04.4 LTS

##

Matrix products: default

BLAS: /home/biocbuild/bbs-3.15-bioc/R/lib/libRblas.so

LAPACK: /home/biocbuild/bbs-3.15-bioc/R/lib/libRlapack.so

##

locale:

15

scDD

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_GB LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

##

attached base packages:

[1] stats4 stats graphics grDevices utils datasets methods

[8] base

##

other attached packages:

[1] gridExtra_2.3 SingleCellExperiment_1.18.0

[3] SummarizedExperiment_1.26.0 Biobase_2.56.0

[5] GenomicRanges_1.48.0 GenomeInfoDb_1.32.0

[7] IRanges_2.30.0 S4Vectors_0.34.0

[9] BiocGenerics_0.42.0 MatrixGenerics_1.8.0

[11] matrixStats_0.62.0 scDD_1.20.0

##

loaded via a namespace (and not attached):

[1] minqa_1.2.4 colorspace_2.0-3

[3] ellipsis_0.3.2 mclust_5.4.9

[5] scuttle_1.6.0 bluster_1.6.0

[7] XVector_0.36.0 BiocNeighbors_1.14.0

[9] farver_2.1.0 fansi_1.0.3

[11] splines_4.2.0 sparseMatrixStats_1.8.0

[13] knitr_1.38 spam_2.8-0

[15] EBSeq_1.36.0 nloptr_2.0.0

[17] cluster_2.1.3 BiocManager_1.30.17

[19] compiler_4.2.0 dqrng_0.3.0

[21] assertthat_0.2.1 Matrix_1.4-1

[23] fastmap_1.1.0 limma_3.52.0

[25] cli_3.3.0 BiocSingular_1.12.0

[27] htmltools_0.5.2 tools_4.2.0

[29] blockmodeling_1.0.5 rsvd_1.0.5

[31] igraph_1.3.1 dotCall64_1.0-1

[33] coda_0.19-4 gtable_0.3.0

[35] glue_1.6.2 GenomeInfoDbData_1.2.8

[37] dplyr_1.0.8 maps_3.4.0

[39] Rcpp_1.0.8.3 vctrs_0.4.1

[41] nlme_3.1-157 DelayedMatrixStats_1.18.0

[43] xfun_0.30 stringr_1.4.0

[45] brio_1.1.3 testthat_3.1.4

[47] beachmat_2.12.0 lme4_1.1-29

[49] lifecycle_1.0.1 irlba_2.3.5

[51] gtools_3.9.2 statmod_1.4.36

[53] edgeR_3.38.0 zlibbioc_1.42.0

[55] MASS_7.3-57 scales_1.2.0

[57] BiocStyle_2.24.0 parallel_4.2.0

[59] fields_13.3 yaml_2.3.5

[61] ggplot2_3.3.5 stringi_1.7.6

16

scDD

[63] highr_0.9 ScaledMatrix_1.4.0

[65] scran_1.24.0 caTools_1.18.2

[67] boot_1.3-28 BiocParallel_1.30.0

[69] rlang_1.0.2 pkgconfig_2.0.3

[71] bitops_1.0-7 arm_1.12-2

[73] evaluate_0.15 lattice_0.20-45

[75] purrr_0.3.4 labeling_0.4.2

[77] tidyselect_1.1.2 magrittr_2.0.3

[79] R6_2.5.1 gplots_3.1.3

[81] generics_0.1.2 metapod_1.4.0

[83] DelayedArray_0.22.0 DBI_1.1.2

[85] pillar_1.7.0 withr_2.5.0

[87] abind_1.4-5 RCurl_1.98-1.6

[89] tibble_3.1.6 crayon_1.5.1

[91] KernSmooth_2.23-20 utf8_1.2.2

[93] rmarkdown_2.14 viridis_0.6.2

[95] locfit_1.5-9.5 grid_4.2.0

[97] digest_0.6.29 outliers_0.15

[99] munsell_0.5.0 viridisLite_0.4.0

References
[1] Keegan D Korthauer, Li-Fang Chu, Michael A. Newton, Yuan Li, James Thomson, Ron

Stewart, and Christina Kendziorski. A statistical approach for identifying differential
distributions in single-cell RNA-seq experiments. Genome Biology, 17:222, 10 2016.

17

	1 Background
	2 Identify and Classify DD genes
	3 Alternate test for Differential Distributions
	4 Simulation
	5 Formatting and Preprocessing
	5.1 Constructing a SingleCellExperiment object
	5.2 Filtering and Normalization

	6 Plotting
	7 Session Info

