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This tutorial gives you some of the technical background underlying genphen
that should enable you to understand and use this tool.

1 genphen quanti�es genotype-phenotype associations

Genome wide association studies (GWAS) have become an important tool for un-
derstanding the association between genotypes and phenotypes. With GWAS we
try to answer questions such as “what are the genotypes in the human genome
which predispose to a disease?” or “what are the genotypes in certain strains of
mice which confer resistance against a speci�c virus?”. The advances in high-
throughput sequencing technology (HTSeq) have provided massive genetic data
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and thus potentially countless applications for GWAS, with genotypes represent-
ing single nucleotide polymorphisms (SNPs) or single amino acid polymorphisms
(SAAPs) identi�ed in a group of individuals, whereas the phenotype can be any
quantiative or discrete trait or charactersitic measured in each individual.

The classical (frequentist) statistical methods for GWAS rely on simple and of-
ten inadequate methods to capture complex and potentially non-linear genotype-
phenotype associations. By quantifying the strength of the association using P-
values, the frequentist methods often run into the multiple-comparison problem,
which when countered with a rigorous P-value correction results in large amounts
of false-negatives. Additional disadvantages of the P-values include the facts that
they are di�cult to interpret and compare between studies.

With genphen we provide a hybrid method for the joint analysis of multiple
traits of di�erent typies which reaps the bene�ts of two approaches: i) statisti-
cal learning approaches such as random forest (RF) and support vector machine
(SVM) to capture complex associations; ii) Bayesian inference using hierarchi-
cal models for accurate quanti�cation of the strength of association, whereby the
models are robust to outliers, consistent with the data and automatically deal with
the multiple-hypothesis problem.

Furthermore, genphen provides a set of additional procedures, including a test
for phylogenetic bias (used to discover biases in the data due to the population
structure) and procedure for data reduction (used for the removal of non-informative
genotypes and thereby simplifying the otherwiese computationally costly GWAS).
Future updates will include procedures for data augmentation (to augment small/noisy
datasets) and methods for gene prioritization based on network di�usion algo-
rithms using functional network data.
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2 Methods

2.1 Input

Two types of data are necessary to perform a genetic association study:

• genotype data (e.g. set of 1,000 SNPs found along the aligned genomes of
10 individuals), provided in one of three possible input types:

– character vector of lengthN (if only a single SNP/SAAP is provided),
containing the genotypes of N individuals.

– character matrix with dimensions N × S (with N = individuals, S
= SNPs/SAAPs)

– AAMultipleAlignment or DNAMultipleAlignment object (pack-
age Biostrings) - if the genotype data is a multiple sequence
alignment, composed of N sequences (individuals).

• phenotype data which can include a combination of dichotomous and quan-
titative traits is allowed (experimental measurement made for each individ-
ual such as body mass index, immune response, survival, case-control, etc.)
provided as:

– numerical vector of length N if only a single phenotype is analyzed

– numerical matrix N × P , if P phenotypes are provided.

2.2 Association Scores

Withgenphenwe quantify the association between each genotype (SNP/SAAP)
and phenotype using multiple metrics of association, each of which is explained
in the following paragraphs.

Classi�cation accuracy (CA) CA quanti�es the degree of accuracy with which
one can classify (predict) the alleles of a SNP from the phenotype. If there exists
a strong association between a particular SNP and the phenotype, one should be
able to train a statistical model (using RF or SVM) which accurately classi�es the
two alleles of that SNP solely from the phenotype data (withCA ≈ 1). Otherwise,
the model should perform poorly, with the classi�cation accuracy of the model
being approximately similar to that of simple guessing (CA ≈ 0.5).

To estimate CA, genphen uses RF and SVM in a cross-validation (CV) mode,
computing a distribution of possible CAs for each SNP. During each iteration of
the CV procedure, a subset (e.g. 66%) of the genotype-phenotype data is selected
at random (with replacement) and used to train a classi�er, followed by testing
(prediction) based on the remaining data. To summarize CA, we compute its
mean and 95% highest density interval (95% HDI), which is de�ned as the interval
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that covers 95% of theCA distribution, with every point inside the interval having
higher credibility than any point outside it. The SNPs withCA ≈ 1, and a narrow
HDI have a strong association with the phenotype.

Cohen’s κ statistic There is one pitfall where the CA estimate can be mis-
leading, and this is the case when the analyzed SNP is composed of unevenly
represented genetic states (alleles). For instance, the allele A of a given SNP is
found in 90% of the individuals, while the other allele T in only 10%. Such an
uneven composition of the alleles can lead to a misleading CA, i.e. even without
learning, the algorithm can produce a high CA ≈ 0.9 by always predicting the
dominant label. The Cohen’s κ statistics can be used to estimate the degree of
CA above the expected accuracy (CAexp):

κ = (CA− CAexp)/(1− CAexp)

The κ statistics is a quality metric, which is to be used together with CA. Cohen
de�nes the following meaningful κ intervals: [κ<0]: “no agreement”, [0.0-0.2]:
“slight agreement”, [0.2-0.4]: “fair agreement” , [0.4-0.6]: “moderate agreement”,
[0.6-0.8]: “substantial agreement” and [0.8-1.0]: “almost perfect agreement”. To
summarize the Cohen’s κ, we compute its mean and 95% highest density interval
(95% HDI).

E�ect size Given N individuals, each having genotype values for S refSNPs,
we generate the genotype matrix XN×S . The genotype matrix can also be ref-
ereed to as a design matrix in the genetic association study, with Xij set to 1 if
an individual has the �rst allele, and X set to -1 for the second allele. For multi-
allelic genotypes, the genotype matrix is expanded (colmn-wise) to include each
bi-allelic permutation. The phenotypes P can also be grouped to form the pheno-
type matrix Y N×P . We model the e�ect of each SNP/SAAP on each phenotype
using the following Bayesian model:

Yik ∼

{
Student-t (νk, αjk + βjk ·Xij , σk) , if k quant.
Bernoulli

(
logit-1(αjk + βjk ·Xij)

)
, if k dich.

where i and j and k index di�erent individuals, SNPs and phenotypes; For quan-
titative trait, the model assumes Student-t distributed measurement errors with
phenotype-speci�c standard deviation (σ) and degrees of freedom (ν), with cen-
tral tendency de�ned by αk + βjk ·Xij , where α and β are the inferred intercept
and slope (e�ect size) coe�cients of the model. For dichotomous traits, the model
assumes Bernoulli distributed measurement errors. Assuming that all SNPs are
independent, we can use the univariate model setting in genphen to place in-
dependent vague priors on all slope and intercept coe�cients as:

βjk ∼ Student-t(1, 0, 10)
αjk ∼ Student-t(1, 0, 100)
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On the other hand, if we assume that the estimated slopes are not completely
independent and originate from a common overarching distribution, we can use
the hierarchical model setting in genphen to model the hierarchy as:

βjk ∼ Student-t(νβk , µβk , σβk)αjk ∼ Student-t(ναk
, µαk

, σαk
)

The remaining lines of the model describes the priors of the remaining parameters
de�ned in either model type:

µβk ∼ Student-t (1, 0, 10)

µαk
∼ Student-t (1, 0, 100)

νk, νβk ∼ Gamma (1, 2)

σk, σβk ∼ Half-Cauchy (0, 5)

Importantly, the hierarchical version of the model performs partial-pooling, and
therefore does an automatic correction for multiple-comparison. The model was
implemented in Stan 1.

We summarize each association using the mean of its slope coe�cient (β) and
95% (for instance) highest density interval (HDI), which is de�ned as the interval
that covers a 95% of the posterior distribution, with every point inside the inter-
val having a higher credibility than any point outside it. Thus we can de�ne an
association as signi�cant if the null-e�ect, i.e. β = 0 lies outside the 95% HDI.
The complete posterior is provided to the user, enabling checks for MCMC con-
vergence and posterior prediction using built-in routines for poterior predictive
checks.

2.3 Phylogenetic Bias (B)

To control for potential phylogenetic biases (population structure), we devised
the following procedure. First, we use the complete genotype data (all SNPs) to
compute a kinship matrix (KN×N - dissimilarity matrix for the N individuals).
Alternatively, the users can provide their own kinship matrix (e.g. kinship es-
timated using more accurate phylogenetic methods). For a group of individuals
which belong to a group de�ned by an alleles of a given SNP, we next compute
their mean kinship distance using the kinship matrix data. If the individuals in the
group are related, the compute mean kinship distance must be signi�cantly lower
than the mean kinship distance computed from the complete kinship matrix. We
de�ne the phylogenetic bias as:

B = 1− d̂g/d̂t

1Stan Development Team. 2017. Stan Modeling Language Users Guide and Reference Manual,
Version 2.17.0. http://mc-stan.org
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where d̂g is the mean kinship distance between the individuals who share the
genotype g; d̂t is the mean kinship distance of the complete kinship matrix. For a
complete phylogenetic bias, B = 1 (d̂g << d̂t), and B = 0 (or slightly negative)
for no bias. This estimate is computed for each SNP and genotype group within
each SNP.

To compute the phylogenetic bias associated with a SNP we compute:

B = 1−min(d̂g1 , d̂g2)/d̂t

where d̂g1 and d̂g2 represent the mean kinship distance between the individuals
who share the genotype (allele) g1 and g2 or a given SNP; d̂t is the mean kinship
distance in the complete kinship matrix. For a complete phylogenetic bias,B = 1
and B = 0 (or slightly negative) for no bias. This estimate is computed for each
SNP and each pair of genotypes.

2.4 Pareto Optimization

We use Pareto optimization (with R package rPref) to rank the SNPs based on
their multi-factorial association. Given that CA is encoded into κ, we use only
β and κ with an objective function that prioritizes SNPs which score high with
respect to both of them. The Pareto optimization procedure assigns each SNP to
a non-dominated front (rank).
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3 Case studies

3.1 I: Association between SNPs and a *quantiative* phenotype

In the �rst case study, we show a typical genotype-phenotype analysis, whereby
the genotype is a multiple sequence alignment containing of 120 protein sequences
(individuals), each composed of 8 amino acids (positions), and a quantiative phe-
notype measured for each individual.
> require(genphen)
> require(ggplot2)
> require(knitr)
> require(ggrepel)
> require(reshape)
> require(ape)
> require(xtable)
> require(gridExtra)
> options(xtable.floating = FALSE)

> # genotype as matrix (120x154), we will subset part of it:
> data(genotype.saap)
> # phenotype as vector (120 measurements):
> data(phenotype.saap)

Genotype-phenotype data First we show an overview of the distribution of
the phenotype across the genetic states found at each of the 8 studied positions
in the multiple sequence alignment.
> # Format the genotype-phenotype data, such that it can then
> # be visualized with ggplot
> df <- data.frame(genotype.saap[, 82:89],
+ phenotype = phenotype.saap,
+ stringsAsFactors = FALSE)
> df <- melt(data = df, id.vars = "phenotype")
> colnames(df) <- c("phenotype", "site", "genotype")
> df$site <- gsub(pattern = "X", replacement = '', x = df$site)
> df$site <- factor(x = df$site, levels = unique(df$site))

> # Visualization
> g <- ggplot(data = df)+
+ facet_wrap(facets = ~site, nrow = 2, scales = "free_x")+
+ geom_violin(aes(x = genotype, y = phenotype))+
+ ylab(label = "Quantitative phenotype")+
+ xlab(label = "Genotypes")+
+ geom_point(aes(x = genotype, y = phenotype, col = genotype),
+ size = 1, shape = 21, position = position_jitterdodge())+
+ scale_color_discrete(name = "genotype")+
+ theme_bw(base_size = 14)+
+ theme(legend.position = "none")
> g
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Important remark: We recommended that the quantiative phenotypes are roughly
normally (or T) distributed. While our models are designed to be robust against
outliers, we advise you to perform the data transformations of skewed phenotypes
(e.g. log-transformations) before the analysis. Here the phenotype has already
been log10-transformed and is normally distributed.

Association analysis Next, we perform the genetic association study for a sin-
gle quantitative (’Q’) phenotype with genphen using the following settings:

• hierarchical Bayesian model will be run with 2 MCMC chains composed of
1,500 iterations each, including 500 warmup iterations.

• Random forest was selected for the statistical learning, which will be run in
a cross-validation mode with 200 iterations, whereby in each iteration 66%
of the data (default: cv.fold = 0.66) will be used to train the model.

• We report for each metrics its mean and 95% HDI

• Whenever possible, 1 core will be used.
> # Run genphen
> c.out <- genphen::runGenphen(genotype = genotype.saap[, 82:89],
+ phenotype = phenotype.saap,
+ phenotype.type = "Q",
+ model.type = "hierarchical",
+ mcmc.chains = 2,
+ mcmc.steps = 1500,
+ mcmc.warmup = 500,
+ cores = 1,
+ hdi.level = 0.95,
+ stat.learn.method = "rf",
+ cv.steps = 200)

Typical way of visualizing the genphen results is with the following plot, where
each point represents a SAAP plotted according to x = classi�cation accuracy
(CA), y = e�ect slize (β), color = Cohen’s κ. The most promising SAAPs have
CA and κ close to 1, with a non-null β, i.e. β with 95% HDI that does not overlap
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with 0 (shown as a dashed line in the �gure). The labels show the SAAP site in
the genotype data, and its constituting genotypes.
> # Get the scores data
> c.score <- c.out$scores
> # Some optional formatting for the SNPs (label = site : genotype1 -> genotype2)
> c.score$label <- paste(c.score$site, ":", c.score$ref,
+ "->", c.score$alt, sep = '')
> # Visualization
> g <- ggplot(data = c.score)+
+ geom_errorbar(aes(x = ca.mean, ymin = beta.hdi.low, ymax = beta.hdi.high),
+ width = 0.015, col = "darkgray")+
+ geom_point(aes(x = ca.mean, y = beta.mean, fill = kappa.mean),
+ shape = 21, size = 4)+
+ geom_text_repel(aes(x = ca.mean, y = beta.mean, label = label), size = 5)+
+ theme_bw(base_size = 14)+
+ ylab(label = expression("Effect size ("*beta*") (with 95% HDI)"))+
+ scale_x_continuous(name = "CA", limits = c(0, 1.05))+
+ geom_hline(yintercept = 0, linetype = "dashed")+
+ theme(legend.position = "top")+
+ scale_fill_distiller(palette = "Spectral", limits = c(-0.2, 1))+
+ guides(fill = guide_colorbar(barwidth = 10, barheight = 1.5))
> g
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The association scores are also shown in the following table:
> # Description:
> # Rounds digits to 2-decimal points, and concatinates the lower and upper
> # limits of the HDI to have a simpler visualization
> getHdiPretty <- function(x, digits = 2) {
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+ x[1] <- round(x = x[1], digits = digits)
+ x[2] <- round(x = x[2], digits = digits)
+ return(paste("(", x[1], ", ", x[2], ")", sep = ''))
+ }
> c.score$beta.hdi <- apply(X = c.score[, c("beta.hdi.low", "beta.hdi.high")],
+ MARGIN = 1, getHdiPretty, digits = 2)
> c.score$ca.hdi <- apply(X = c.score[, c("ca.hdi.low", "ca.hdi.high")],
+ MARGIN = 1, getHdiPretty, digits = 2)
> c.score$kappa.hdi <- apply(X = c.score[, c("kappa.hdi.low", "kappa.hdi.high")],
+ MARGIN = 1, getHdiPretty, digits = 2)
> # Print table
> print(xtable(c.score[, c("label", "beta.mean", "beta.hdi", "ca.mean",
+ "ca.hdi", "kappa.mean", "kappa.hdi"), ],
+ align = rep(x = "c", times = 8, digits = 2)),
+ include.rownames = FALSE, size = "scriptsize")

label beta.mean beta.hdi ca.mean ca.hdi kappa.mean kappa.hdi
1:h->n 2.18 (1.66, 2.73) 0.96 (0.9, 1) -0.00 (0, 0)
3:a->d -1.49 (-2.1, -0.87) 0.93 (0.89, 1) 0.83 (0.57, 1)
1:q->n -1.92 (-2.48, -1.38) 0.93 (0.84, 1) -0.01 (-0.08, 0)
1:h->q 1.36 (1.04, 1.66) 0.80 (0.69, 0.9) 0.61 (0.37, 0.8)
3:q->a 1.13 (0.5, 1.76) 0.80 (0.5, 1) 0.53 (0, 1)
7:t->a 1.21 (0.29, 2.1) 0.73 (0.5, 1) -0.06 (-0.33, 0)
3:e->a 0.82 (0.44, 1.25) 0.79 (0.65, 0.88) 0.29 (-0.13, 0.64)
7:k->t 1.01 (0.47, 1.56) 0.97 (0.9, 1) -0.00 (-0.03, 0)
7:k->a 0.96 (0.51, 1.41) 0.83 (0.73, 0.91) 0.14 (-0.16, 0.44)
7:q->a -0.03 (-0.65, 0.56) 0.72 (0.5, 0.9) 0.35 (-0.2, 0.8)
3:q->d -0.69 (-1.41, 0.03) 0.64 (0.33, 0.83) 0.29 (-0.33, 0.67)
7:k->q 0.73 (0.35, 1.12) 0.77 (0.67, 0.89) 0.24 (-0.12, 0.56)
7:t->q 0.85 (0.15, 1.57) 0.83 (0.57, 1) -0.02 (-0.17, 0)
6:i->v -0.66 (-1.15, -0.15) 0.78 (0.6, 0.93) 0.12 (-0.19, 0.63)
6:l->v 0.13 (-0.32, 0.61) 0.89 (0.78, 0.96) 0.23 (-0.11, 0.65)
8:p->h -0.35 (-0.95, 0.23) 0.92 (0.85, 0.98) 0.18 (-0.06, 0.66)
3:e->q 0.56 (0.09, 1.04) 0.85 (0.74, 0.94) 0.03 (-0.14, 0.35)
6:i->l -0.29 (-0.61, 0.02) 0.58 (0.47, 0.74) 0.10 (-0.13, 0.39)
3:e->d 0.24 (-0.21, 0.68) 0.82 (0.68, 0.94) 0.13 (-0.18, 0.47)

Pareto optimization We use Pareto optimization (with R package rPref) to
rank the SNPs based on their multi-factorial association. Given that CA is en-
coded into κ, we use only β and κ with an objective function that prioritizes
SNPs which score high with respect to both of them. The results from the Pareto
optimization procedure are shown below:
> # Visualization
> g <- ggplot(data = c.score)+
+ facet_wrap(facets = ~phenotype.id, scales = "free")+
+ geom_line(aes(y = abs(beta.mean), x = kappa.mean, group = rank))+
+ geom_point(aes(y = abs(beta.mean), x = kappa.mean, fill = rank),
+ shape = 21, size = 4)+
+ geom_text_repel(aes(y = abs(beta.mean), x = kappa.mean, label = label),
+ size = 5)+
+ theme_bw(base_size = 14)+
+ ylab(label = expression("|"*beta*"|"))+
+ xlab(label = expression(kappa))+
+ scale_fill_gradientn(colours = terrain.colors(n = 10))+
+ theme(legend.position = "top")
> g
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MCMC convergence and sampling issues You might want to check the va-
lidity your Bayesian inference by inspecting thegenphen output named conver-
gence which contains information about the markov chain monte carlo (MCMC)
simulation done with R package rstan including potential scale reduction factor
(Rhat) and e�ective sampling size (ESS), as well as information concerning poten-
tial convergence issues such as divergences and tree depth exceeded warnings.
For detailed information about each warning please read Stan documentation (mc-
stan.org/users/documentation/).
> rstan::check_hmc_diagnostics(c.out$complete.posterior)
> rstan::stan_rhat(c.out$complete.posterior)
> rstan::stan_ess(c.out$complete.posterior)
> rstan::stan_diag(c.out$complete.posterior)

Phylogenetic bias control Next, we compute the phylogenetic bias of each
mutation, shown in the table below:
> # Compute the phylogenetic bias
> bias <- runPhyloBiasCheck(genotype = genotype.saap,
+ input.kinship.matrix = NULL)
> # Extract kinship matrix
> kinship.matrix <- bias$kinship.matrix
> # Extract the bias associated with mutations of the sites which
> # were included in the association analysis
> mutation.bias <- bias$bias
> # To make site id concordant with data
> mutation.bias$site <- mutation.bias$site - 81
> mutation.bias <- merge(x = c.score, y = mutation.bias,
+ by = c("site", "ref", "alt"))
> # Show the bias table

11



> print(xtable(mutation.bias[, c("site", "ref", "alt", "bias.ref", "bias.alt")],
+ align = rep(x = "c", times = 6, digits = 2)),
+ include.rownames = FALSE, size = "small")

site ref alt bias.ref bias.alt
1 h n 0.04 0.43
1 h q 0.04 0.15
1 q n 0.15 0.43
3 a d 0.29 0.43
3 e a 0.04 0.29
3 e d 0.04 0.43
3 e q 0.04 0.19
3 q a 0.19 0.29
3 q d 0.19 0.43
6 i l 0.10 0.07
6 i v 0.10 0.86
6 l v 0.07 0.86
7 k a 0.04 0.46
7 k q 0.04 0.09
7 k t 0.04 0.79
7 q a 0.09 0.46
7 t a 0.79 0.46
7 t q 0.79 0.09
8 p h 0.03 0.86

We use the kinship matrix to perform hierarchical clustering, visualizing the pop-
ulation strcuture and two examples (mutations) with genotype 1 marked with
blue and genotype 2 marked with orange in either case. Individuals not covered
by either genotype are marked with gray color. The shown examples di�er in the
degree of phylogenetic bias.
> color.a <- character(length = nrow(genotype.saap))
> color.a[1:length(color.a)] <- "gray"
> color.a[which(genotype.saap[, 82] == "h")] <- "orange"
> color.a[which(genotype.saap[, 82] == "q")] <- "blue"
> color.b <- character(length = nrow(genotype.saap))
> color.b[1:length(color.b)] <- "gray"
> color.b[which(genotype.saap[, 84] == "a")] <- "orange"
> color.b[which(genotype.saap[, 84] == "d")] <- "blue"
> c.hclust <- hclust(as.dist(kinship.matrix), method = "average")
> par(mfrow = c(1, 2), mar = c(0,0,1,0) + 0.1)
> plot(as.phylo(c.hclust), tip.color = color.a, cex = 0.6,
+ type = "fan", main = "B = 0.15")
> plot(as.phylo(c.hclust), tip.color = color.b, cex = 0.6,
+ type = "fan", main = "B = 0.43")
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3.2 II: Association between SNP and two phenotypes (quantitative
and dichotomous)

In the second case study we show you how to use genphen in case of two phe-
notypes of di�erent types (quantitative and dichotomouse). Here, the genotype
is a single simulated SNP in 40 individuals. First we show an overview of the
distribution of the phenotypes in each genotype.
> # simulate genotype
> genotype <- rep(x = c("A", "C", "T", "G"), each = 10)
> # simulate quantitative and dichotomous phenotypes
> phenotype.Q <- c(rnorm(n = 10, mean = 0, sd = 1),
+ rnorm(n = 10, mean = 0.5, sd = 1),
+ rnorm(n = 10, mean = -0.5, sd = 1),
+ rnorm(n = 10, mean = 2, sd = 1))
> phenotype.D <- c(rbinom(n = 10, size = 1, prob = 0.3),
+ rbinom(n = 10, size = 1, prob = 0.5),
+ rbinom(n = 10, size = 1, prob = 0.6),
+ rbinom(n = 10, size = 1, prob = 0.7))
> phenotype <- cbind(phenotype.Q, phenotype.D)
> rm(phenotype.Q, phenotype.D)
> out <- runGenphen(genotype = genotype,
+ phenotype = phenotype,
+ phenotype.type = c("Q", "D"),
+ model.type = "hierarchical",
+ mcmc.chains = 4,
+ mcmc.steps = 2500,
+ mcmc.warmup = 500,
+ cores = 1,
+ hdi.level = 0.95,
+ stat.learn.method = "svm",
+ cv.steps = 500)

> # Format the genotype-phenotype data, such that it can then
> # be visualized with ggplot
> df <- data.frame(genotype = genotype,
+ phenotype.Q = phenotype[, 1],
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+ phenotype.D = phenotype[, 2],
+ stringsAsFactors = FALSE)

> # Visualization
> g1 <- ggplot(data = df)+
+ geom_point(aes(x = genotype, y = phenotype.Q, col = genotype), size = 1,
+ shape = 21, position = position_jitterdodge(jitter.width = 0.2,
+ jitter.height = 0,
+ dodge.width = 0.5))+
+ xlab(label = "Genotypes")+
+ ylab(label = "Phenotype (Q)")+
+ theme_bw(base_size = 14)+
+ theme(legend.position = "none")
> g2 <- ggplot(data = df)+
+ geom_point(aes(x = genotype, y = phenotype.D, col = genotype), size = 1,
+ shape = 21, position = position_jitterdodge(jitter.width = 0.2,
+ jitter.height = 0.05,
+ dodge.width = 0.5))+
+ xlab(label = "Genotypes")+
+ scale_y_continuous(name = "Phenotype (D)",
+ breaks = c(0, 1), labels = c(0, 1))+
+ theme_bw(base_size = 14)+
+ theme(legend.position = "none")
> gridExtra::grid.arrange(g1, g2, ncol = 2)
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Important remark: The dichotomous phenotype can be provided as both nu-
meric or character vector. The elements of these vectors are then encoded into
two categories (1 and 0). If the user has a preference of how the encoding has to
be done (which category is to be encoded to 1 or 0), the encoding should be done
prior to the analysis.

Association analysis We perform a genetic association study for multiple phenotypes
of di�erent types, including one quantiative (’Q’) and one dichotomous phenotype
(’D’), using the following settings:

• univariate Bayesian model will be run with 4 MCMC chains composed of
1500 iterations each, including 500 warmup iterations.
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• Support vector machines was selected for the statistical learning, which will
be run in a cross-validation mode with 500 iterations, whereby in each iter-
ation 80% of the data will be used to train the model.

• All estimates will be reported according to their mean and 95% HDI

• Whenever possible, 1 core will be used.
> # run genphen
> m.out <- genphen::runGenphen(genotype = genotype,
+ phenotype = phenotype,
+ phenotype.type = c("Q", "D"),
+ model.type = "univariate",
+ mcmc.chains = 4,
+ mcmc.steps = 1500,
+ mcmc.warmup = 500,
+ cores = 1,
+ hdi.level = 0.95,
+ stat.learn.method = "svm",
+ cv.steps = 500,
+ cv.fold = 0.8)

Once again we visualize the genphen results is with a plot in which the point
represents the SNP, plotted according to x = classi�cation accuracy (CA), y =
slope (β) with error bars representing the 95% HDI, color = Cohen’s κ.
> # Get the scores data
> m.score <- m.out$scores
> # Some optional formatting for the SNPs
> # (label = site : genotype1 -> genotype2)
> m.score$label <- paste(m.score$site, ":", m.score$ref,
+ "->", m.score$alt, sep = '')
> # Visualization
> g1 <- ggplot(data = m.score[m.score$phenotype.id == 1, ])+
+ geom_errorbar(aes(x = ca.mean, ymin = beta.hdi.low, ymax = beta.hdi.high),
+ width = 0.015, col = "darkgray")+
+ geom_point(aes(x = ca.mean, y = beta.mean, fill = kappa.mean),
+ shape = 21, size = 4)+
+ geom_text_repel(aes(x = ca.mean, y = beta.mean, label = label), size = 5)+
+ theme_bw(base_size = 14)+
+ ylab(label = expression("Effect size ("*beta*") (with 95% HDI)"))+
+ scale_x_continuous(name = "CA", limits = c(0, 1.05))+
+ geom_hline(yintercept = 0, linetype = "dashed")+
+ theme(legend.position = "top")+
+ scale_fill_distiller(palette = "Spectral", limits = c(-0.2, 1))+
+ guides(fill = guide_colorbar(barwidth = 10, barheight = 1.5))+
+ ggtitle(label = "Phenotype Q")
> g2 <- ggplot(data = m.score[m.score$phenotype.id == 2, ])+
+ geom_errorbar(aes(x = ca.mean, ymin = beta.hdi.low, ymax = beta.hdi.high),
+ width = 0.015, col = "darkgray")+
+ geom_point(aes(x = ca.mean, y = beta.mean, fill = kappa.mean),
+ shape = 21, size = 4)+
+ geom_text_repel(aes(x = ca.mean, y = beta.mean, label = label), size = 5)+
+ theme_bw(base_size = 14)+
+ ylab(label = expression("Effect size ("*beta*") (with 95% HDI)"))+
+ scale_x_continuous(name = "CA", limits = c(0, 1.05))+
+ geom_hline(yintercept = 0, linetype = "dashed")+
+ theme(legend.position = "top")+
+ scale_fill_distiller(palette = "Spectral", limits = c(-0.2, 1))+
+ guides(fill = guide_colorbar(barwidth = 10, barheight = 1.5))+
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+ ggtitle(label = "Phenotype D")
> grid.arrange(g1, g2, ncol = 2)
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4 Extra Utilities

4.1 Data Reduction

The methods implemented in genphen are statistically superior to the ones im-
plemented by most classical (frequentist) tools for GWAS. The major challenge,
however, is the substantially increased computational cost when analyzing the
e�ects of hundreeds of thousands of SNPs. Inspired by the biological assumption
that the major fraction of the studied SNPs are non- informative (genetic noise)
with respect to the selected phenotype, various data reduction techniques can be
implemented to quickly scan the SNP scpae and discard a substantial portion of
the the SNPs deemed clearly non-informative.

Our data reduction procedure includes the following steps:

1. The complete data (genotypes and a single phenotype) is used to train a ran-
dom forest (RF) model, which will quantify the importance of each SNP/SAAP
in explaining the phenotypeassociation between each SNP and the pheno-
type.

2. We can then plot the distribution of variable importances, to get an insight
into the structure of the importances values and potentially disect the signal
from the noise.

3. The main analysis can then be performed with runGenphen using a subset
(based on their importance) of SNPs

Using a case study based on a simulated data of 50,000 SNPs (60 subjects),
we elaborate the typical data reduction steps in more detail. The typical
runtime for the provided dataset (60× 50, 000) is few minutes.
> # Simulate 50,000 SNPs and 60 phenotypes
> set.seed(seed = 551155)
> g1 <- replicate(n=1*10^4, expr=as.character(
+ rbinom(n=30, size = 1,prob = 0.49)))
> g2 <- replicate(n=1*10^4, expr=as.character(
+ rbinom(n=30, size = 1,prob = 0.51)))
> gen <- rbind(g1, g2)
> phen <- c(rnorm(n = 30, mean = 3, sd = 3),
+ rnorm(n = 30, mean = 5, sd = 3))

> # Run diagnostics
> diag <- genphen::runDiagnostics(genotype = gen,
+ phenotype = phen,
+ phenotype.type = "Q",
+ rf.trees = 50000)

We can inspect the distribution of importances and select a set of promising
SNP based on their importance score, which can then be studied in the main
association study as explained previously.
> # Visualization
> g <- ggplot(data = diag)+
+ geom_density(aes(importance))+
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+ xlab("Importance")+
+ theme_bw(base_size = 14)+
+ scale_x_continuous(trans = "log10")+
+ annotation_logticks(base = 10, sides = "b")
> g
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