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1 Introduction

The edge package implements methods for carrying out differential expression analyses of genome-wide gene
expression studies. Significance testing using the optimal discovery procedure and generalized likelihood
ratio test (equivalent to F-tests and t-tests) are implemented for general study designs. Special functions
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are available to facilitate the analysis of common study designs, including time course experiments. Other
packages such as snm, sva, and qvalue are integrated in edge to provide a wide range of tools for gene
expression analysis.

edge performs significance analysis by using a framework developed by Storey (2007) called the optimal
discovery procedure (ODP). Whereas standard methods employ statistics that are essentially designed for
testing one gene at a time (e.g., t-statistics and F-statistics), the ODP-statistic uses information across all
genes to test for differential expression. Storey et al. (2007) shows that the ODP is a principled, often times
more powerful, approach to multiple hypothesis testing compared to traditional methods. The improvements
in power from using the optimal discovery procedure can be substantial; Figure 1 shows a comparison between
edge and five leading software packages based on the Hedenfalk et al. (2001) breast cancer expression
study.
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Figure 1: Comparison of EDGE to various other leading methods for identifying differential expressed genes
in the Hedenfalk et al. (2001) study. This figure is from Leek et al. (2006).

edge also implements strategies that have been specifically designed for time course experiments and other
complex study designs. Specifically, Storey et al. (2005) developed a procedure that simplifies the modelling
process for time course experiments. In addition to identifying differentially expressed genes in multi-class,
time course, and general study designs, edge includes implementations of popular packages such as snm, sva
and qvalue to help simplify the analysis process for researchers.

The rest of the document details how to use edge in three different case studies: static sampling among
K groups, independent time course, and longitudinal time course. For additional information regarding
the optimal discovery procedure or the Storey et al. (2005) methodology for time course experiments, see
section 2.
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2 Citing this package

When reporting results involving the estimation of false discovery rate or q-value quantities,
please cite:

JD Storey. A direct approach to false discovery rates. Journal of the Royal Statistical Society Series B-
Statistical Methodology, 64:479–498, 2002

John D Storey and Robert Tibshirani. Statistical significance for genomewide studies. Proc Natl Acad Sci
U S A, 100(16):9440–5, Aug 2003. doi: 10.1073/pnas.1530509100

When reporting results involving the analysis of time course studies, please cite:

John D. Storey, Wenzhong Xiao, Jeffrey T. Leek, Ronald G. Tompkins, and Ronald W. Davis. Significance
analysis of time course microarray experiments. Proceedings of the National Academy of Sciences of the
United States of America, 102(36):12837–12842, 2005. doi: 10.1073/pnas.0504609102. URL http://www.

pnas.org/content/102/36/12837.abstract

When reporting results involving use of the optimal discovery procedure (odp), please cite:

John D. Storey. The optimal discovery procedure: a new approach to simultaneous significance testing. Jour-
nal of the Royal Statistical Society: Series B (Statistical Methodology), 69(3):347–368, 2007. ISSN 1467-9868.
doi: 10.1111/j.1467-9868.2007.005592.x. URL http://dx.doi.org/10.1111/j.1467-9868.2007.005592.

x

John D. Storey, James Y. Dai, and Jeffrey T. Leek. The optimal discovery procedure for large-scale signif-
icance testing, with applications to comparative microarray experiments. Biostatistics, 8(2):414–432, 2007.
doi: 10.1093/biostatistics/kxl019. URL http://biostatistics.oxfordjournals.org/content/8/2/414.

abstract

Sangsoon Woo, Jeffrey T. Leek, and John D. Storey. A computationally efficient modular optimal dis-
covery procedure. Bioinformatics, 27(4):509–515, 2011. doi: 10.1093/bioinformatics/btq701. URL http:

//bioinformatics.oxfordjournals.org/content/27/4/509.abstract

When reporting results involving surrogate variable analysis (apply sva), please cite:

Jeffrey T Leek and John D Storey. Capturing heterogeneity in gene expression studies by surrogate variable
analysis. PLoS Genet, 3(9):e161, 09 2007. doi: 10.1371/journal.pgen.0030161

Jeffrey T Leek and John D Storey. A general framework for multiple testing dependence. Proc Natl Acad
Sci U S A, 105(48):18718–23, Dec 2008. doi: 10.1073/pnas.0808709105

When reporting results involving supervised normalization of microarrays (apply snm), please
cite:

Brigham H. Mecham, Peter S. Nelson, and John D. Storey. Supervised normalization of microarrays. Bioin-
formatics, 26(10):1308–1315, 2010. doi: 10.1093/bioinformatics/btq118. URL http://bioinformatics.

oxfordjournals.org/content/26/10/1308.abstract

To cite the edge R package itself, please type the following to retrieve the citation:

citation("edge")

##
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## To cite package 'edge' in publications

## use:

##

## Storey JD, Leek JT, Bass AJ (2022).

## _edge: Extraction of Differential Gene

## Expression_. R package version 2.28.1,

## <https://github.com/jdstorey/edge>.

##

## A BibTeX entry for LaTeX users is

##

## @Manual{,

## title = {edge: Extraction of Differential Gene Expression},

## author = {John D. Storey and Jeffrey T. Leek and Andrew J. Bass},

## year = {2022},

## note = {R package version 2.28.1},

## url = {https://github.com/jdstorey/edge},

## }

##

## ATTENTION: This citation information has

## been auto-generated from the package

## DESCRIPTION file and may need manual

## editing, see 'help("citation")'.

3 Getting help

Many questions about qvalue will hopefully be answered by this documentation and references therein. As
with any R package, detailed information on functions, their arguments and values, can be obtained in the
help files. To view the help for qvalue within R, type

help(package = "edge")

If you identify bugs related to basic usage please contact the authors directly, preferably via GitHub at https:
//github.com/jdstorey/edge/issues. Otherwise, any questions or problems regarding edge will most
efficiently be addressed on the Bioconductor support site, https://support.bioconductor.org/.

4 Quick start guide

To get started, first load the kidney dataset included in the package:

library(edge)

data(kidney)

age <- kidney$age

sex <- kidney$sex

kidexpr <- kidney$kidexpr

The kidney study is interested in determining differentially expressed genes with respect to age in the kidney.
The age variable is the age of the subjects and the sex variable is whether the subjects are male or female.
The expression values for the genes are contained in the kidexpr variable.

Once the data has been loaded, the user has two options to create the experimental models: build models

or build study. If the experiment models are unknown to the user, build study can be used to create the
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models:

de_obj <- build_study(data = kidexpr, adj.var = sex,

tme = age, sampling = "timecourse")

full_model <- fullModel(de_obj)

null_model <- nullModel(de_obj)

sampling describes the type of experiment performed, adj.var is the adjustment variable and time is
the time variable in the study. If the experiment is more complex then type ?build study for additional
arguments.

If the full and null models are known to the user then build models can be used to make an deSet object:

library(splines)

cov <- data.frame(sex = sex, age = age)

null_model <- ~sex

full_model <- ~sex + ns(age, df = 4)

de_obj <- build_models(data = kidexpr, cov = cov,

null.model = null_model, full.model = full_model)

cov is a data frame of covariates, null.model is the null model and full.model is the full model. The input
cov is a data frame with the column names the same as the variables in the full and null models.

The odp or lrt function can be used on de obj to implement either the optimal discovery procedure or the
likelihood ratio test, respectively:

# optimal discovery procedure

de_odp <- odp(de_obj, bs.its = 50, verbose = FALSE)

# likelihood ratio test

de_lrt <- lrt(de_obj)

To access the π0 estimate, p-values, q-values and local false discovery rates for each gene, use the function
qvalueObj:

qval_obj <- qvalueObj(de_odp)

qvals <- qval_obj$qvalues

pvals <- qval_obj$pvalues

lfdr <- qval_obj$lfdr

pi0 <- qval_obj$pi0

The following sections of the manual go through various case studies for a more comprehensive overview of
the edge package.

5 Case study: static experiment

In the static sampling experiment, the arrays have been collected from distinct biological groups without
respect to time. The goal is to identify genes that have a statistically significant difference in average
expression across these distinct biological groups. The example data set that will be used in this section is
the gibson data set and it is a random subset of the data from Idaghdour et al..

The gibson data set provides gene expression measurements in peripheral blood leukocyte samples from
three Moroccan Amazigh groups leading distinct ways of life: desert nomadic (DESERT), mountain agrar-
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Figure 2: Plot of gene 1 in the gibson study.

ian (VILLAGE), and coastal urban (AGADIR). We are interested in finding the genes that differentiate
the Moroccan Amazigh groups the most. See Idaghdour et al. for additional information regarding the
data.

5.1 Importing the data

To import the gibson data use the data function:

data(gibson)

gibexpr <- gibson$gibexpr

batch <- gibson$batch

gender <- gibson$gender

location <- gibson$location

There are a few variables in the data set: batch, gibexpr, gender, and location. The three covariates of
interest are gender, batch and location. The biological variable is the location variable, which contains
information on where individuals are sampled: “VILLAGE”, “DESERT” or “AGADIR”. The gender variable
specifies whether the individual is a male or a female and there are two different batches in the study. The
gibexpr variable contains the gene expression measurements.

As an example, the expression values of the first gene are shown in Figure 2. In the figure, it appears that
the individuals from “VILLAGE” are more expressed when compared to the other lifestyles. We should stop
short of that observation because the data needs to be adjusted with the experimental models. Before that,
the full and null models of the study needs to be carefully formulated.

5.2 Creating the full and null models

In order to find deferentially expressed genes, there first needs to be a full and null model for the study. There
are two ways to input the experimental models in edge: build models and build study. build study
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should be used by users unfamiliar with formulating the full and null models but are familiar with the
covariates in the study:

de_obj <- build_study(data = gibexpr, adj.var = cbind(gender,

batch), grp = location, sampling = "static")

adj.var is for the adjustment variables, grp is the variable containing the group assignments for each
individual in the study and sampling describes the type of experiment. Since gibson is a static study, the
sampling argument will be “static”. The grp variable will be the location variable and the adjustment
variables are gender and batch.

Alternatively, if the user is familiar with their full and null models in the study then build models can be
used to input the models directly:

cov <- data.frame(Gender = gender, Batch = batch,

Location = location)

null_model <- ~Gender + Batch

null_model <- ~Gender + Batch + Location

de_obj <- build_models(data = gibexpr, cov = cov,

full.model = null_model, null.model = null_model)

The cov argument is a data frame of all the relevant covariates, full.model and null.model are the full
and null models of the experiment, respectively. Notice that the models must be formatted as a formula and
contain the same variable names as in the cov data frame. The null model contains the gender and batch

covariates and the full model includes the location variable. Therefore, we are interested in testing whether
the full model improves the model fit of a gene when compared to the null model. If it does not, then we
can conclude that there is no significant difference between Moroccan Amazigh groups for this particular
gene.

The variable de obj is an deSet object that stores all the relevant experimental data. The deSet object is
discussed further in the next section.

5.3 The deSet object

Once either build models or build study is used, an deSet object is created. To view the slots contained
in the object:

slotNames(de_obj)

## [1] "null.model" "full.model"

## [3] "null.matrix" "full.matrix"

## [5] "individual" "qvalueObj"

## [7] "experimentData" "assayData"

## [9] "phenoData" "featureData"

## [11] "annotation" "protocolData"

## [13] ".__classVersion__"

A description of each slot is listed below:

� full.model: the full model of the experiment. Contains the biological variables of interest and the
adjustment variables.

� null.model: the null model of the experiment. Contains the adjustment variables in the experiment.
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� full.matrix: the full model in matrix form.

� null.matrix: the null model in matrix form.

� individual: variable that keeps track of individuals (if same individuals are sampled multiple times).

� qvalueObj: qvalue list. Contains p-values, q-values and local false discovery rates of the significance
analysis. See the qvalue package for more details.

� ExpressionSet: inherits the slots from ExpressionSet object.

ExpressionSet contains the expression measurements and other information from the experiment. The
deSet object inherits all the functions from an ExpressionSet object. As an example, to access the expres-
sion values, one can use the function exprs or to access the covariates, pData:

gibexpr <- exprs(de_obj)

cov <- pData(de_obj)

The ExpressionSet class is a widely used object in Bioconductor and more information can be found here.
See the section 11 on ExpressionSet to get a better understanding of how it integrates into the edge

framework.

As an example of how to access the slots of de obj suppose we are interested in viewing the full and null
models. The models can be accessed by:

fullModel(de_obj)

## ~Gender + Batch + Location

nullModel(de_obj)

## ~Gender + Batch + Location

Next, we can extract the models in matrix form for computational analysis:

full_matrix <- fullMatrix(de_obj)

null_matrix <- nullMatrix(de_obj)

See ?deSet for additional functions to access different slots of the deSet object.

5.4 Fitting the data

The fit models function is an implementation of least squares using the full and null models:

ef_obj <- fit_models(de_obj, stat.type = "lrt")

The stat.type argument specifies whether you want the odp or lrt fitted values. The difference between
choosing “odp” and “lrt” is that “odp” centers the data by the null model fit which is necessary for down-
stream analysis in the optimal discovery procedure. fit models creates another object with the following
slots:

� fit.full: fitted values from the full model.

� fit.null: fitted values from null model.
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Figure 3: Plot of gene 1 in the gibson study after applying the full and null model fit. The “raw” column
are the expression values of the original data.

� res.full: residuals from the full model.

� res.null: residuals from the null model.

� dH.full: diagonal elements in the projection matrix for the full model.

� beta.coef: the coefficients for the full model.

� stat.type: statistic type used, either “odp” or “lrt”.

To access the fitted coefficients of the full model in ef obj:

betaCoef(ef_obj)

To access the full and null residuals:

alt_res <- resFull(ef_obj)

null_res <- resNull(ef_obj)

To access the fitted values:

alt_fitted <- fitFull(ef_obj)

null_fitted <- fitNull(ef_obj)

See ?deFit for more details on accessing the slots in an deFit object. The fitted values of the first gene are
shown in Figure 3. The null model fit is the average expression value across the interaction of batch and
sex. The full model fit seems to pick up some differences relative to the null model. Next, we have to test
whether the observed differences between the model fits are significant.
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5.5 Significance analysis

Interpreting the models in a hypothesis test is very intuitive: Does the full model better fit the data when
compared to the null model? For the fitted values of the first gene plotted in Figure 3, it seems that the
full model fits the data better than the null model. In order to conclude that it is significant, we need to
calculate the p-value. The user can use either the optimal discovery procedure or likelihood ratio test.

5.5.1 Likelihood ratio test

The lrt function performs a likelihood ratio test to determine p-values:

de_lrt <- lrt(de_obj, nullDistn = "normal")

If the null distribution, nullDistn, is calculated using “bootstrap” then residuals from the full model are
re-sampled and added to the null model to simulate a distribution where there is no differential expression.
Otherwise, the default input is “normal” and the assumption is that the null statistics follow a F-distribution.
See ?lrt for additional arguments.

5.5.2 Optimal discovery procedure

odp performs the optimal discovery procedure, which is a new approach developed by Storey et al. (2007) for
optimally performing many hypothesis tests in a high-dimensional study. When testing a feature, information
from all the features is utilized when testing for significance of a feature. It guarantees to maximize the
number of expected true positive results for each fixed number of expected false positive results which is
related to the false discovery rate.

The optimal discovery procedure can be implemented on de obj by the odp function:

de_odp <- odp(de_obj, bs.its = 50, verbose = FALSE,

n.mods = 50)

The number of bootstrap iterations is controlled by bs.its, verbose prints each bootstrap iteration number
and n.mods is the number of clusters in the k-means algorithm.

A k-means algorithm is used to assign genes to groups in order to speed up the computational time of the
algorithm. If n.mods is equal to the number of genes then the original optimal discovery procedure is used.
Depending on the number of genes, this setting can take a very long time. Therefore, it is recommended to
use a small n.mods value to substantially decrease the computational time. In Woo et al. (2011), it is shown
that assigning n.mods to about 50 will cause a negligible loss in power. Type ?odp for more details on the
algorithm.

5.6 Significance results

The summary function can be used on an deSet object to give an overview of the analysis:

summary(de_odp)

##

## ExpressionSet Summary

##

## ExpressionSet (storageMode: lockedEnvironment)

## assayData: 500 features, 46 samples

## element names: exprs

## protocolData: none

## phenoData
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Figure 4: Applying the function hist to the slot qvalueObj in the gibson data set. Function is derived
from the qvalue package.

## sampleNames: 1 2 ... 46 (46 total)

## varLabels: gender batch grp

## varMetadata: labelDescription

## featureData: none

## experimentData: use 'experimentData(object)'

## Annotation:

##

## de Analysis Summary

##

## Total number of arrays: 46

## Total number of probes: 500

##

## Biological variables:

## Null Model:~gender + batch

## <environment: 0x55e4b5ffe148>

##

## Full Model:~gender + batch + grp

## <environment: 0x55e4b5ffe148>

##

## .......

##

##

## Statistical significance summary:

## pi0: 0.3493855

##

## Cumulative number of significant calls:

##

12



## <1e-04 <0.001 <0.01 <0.025 <0.05 <0.1

## p-value 66 87 146 189 223 260

## q-value 0 79 137 193 239 294

## local fdr 0 66 92 116 146 189

## <1

## p-value 500

## q-value 500

## local fdr 500

There are three core summaries: ExpressionSet summary, edge analysis and statistical significance sum-
mary. The ExpressionSet summary shows a summary of the ExpressionSet object. edge analysis shows
an overview of the models used and other information about the data set. The significance analysis shows
the proportion of null genes, π0, and significant genes at various cutoffs in terms of p-values, q-values and
local false discovery rates.

The function qvalueObj can be used on de odp to extract the significance results:

sig_results <- qvalueObj(de_odp)

The object sig results is a list with the following slots:

names(sig_results)

## [1] "call" "pi0" "qvalues"

## [4] "pvalues" "lfdr" "pi0.lambda"

## [7] "lambda" "pi0.smooth" "stat0"

## [10] "stat"

The key variables are pi0, pvalues, lfdr and qvalues. The pi0 variable provides an estimate of the
proportion of null p-values, pvalues are the p-values, qvalues are the estimated q-values and lfdr are the
local false discovery rates. Using the function hist on sig results will produce a p-value histogram along
with the density curves of q-values and local false discovery rate values:

hist(sig_results)

The plot is shown in Figure 4. To extract the p-values, q-values, local false discovery rates and the π0
estimate:

pvalues <- sig_results$pvalues

qvalues <- sig_results$qvalues

lfdr <- sig_results$lfdr

pi0 <- sig_results$pi0

Making significance decisions based on p-values in multiple hypothesis testing problems can lead to accepting
a lot of false positives in the study. Instead, using q-values to determine significant genes is recommended
because it controls the false discovery rate. Q-values measure the proportion of false positives incurred when
calling a particular test significant. For example, to complete our analysis of gene 1 in this example, lets
view the q-value estimate:

qvalues[1]

## [1] 0.02652478

So for this particular gene, the q-value is 0.0265248. If we consider a false discovery rate cutoff of 0.1 then this
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gene is significant. Therefore, the observed differences observed in Figure 3 are significant so this particular
gene is differentially expressed between locations.

To get a list of all the significant genes at a false discovery rate cutoff of 0.01:

fdr.level <- 0.01

sigGenes <- qvalues < fdr.level

View the qvalue vignette to get a more thorough discussion in how to use p-values, q-values, π0 estimate
and local false discovery rates to determine significant genes.

6 Case study: independent time course experiment

In the independent time course study, the arrays have been sampled with respect to time from one biological
group and the goal is to identify genes that show “within-class temporal differential expression”, i.e., genes
that show statistically significant changes in expression over time. The example data set used in this section
is a kidney data set by Rodwell et al. (2004). Gene expression measurements, from cortex and medulla
samples in the kidney, were obtained from 72 human subjects ranging in age from 27 to 92 years. Only one
array was obtained per sample and the age and tissue type of each subject was recorded. See Rodwell et al.
(2004) for additional information regarding the data set.

6.1 Importing the data

To import the kidney data use the data function:

data(kidney)

age <- kidney$age

sex <- kidney$sex

kidexpr <- kidney$kidexpr

There are a few covariates in this data set: sex, age, and kidexpr. The two main covariates of interest are
the sex and age covariates. The sex variable is whether the subject was male or female and the age variable
is the age of the patients. kidexpr contains the gene expression values for the study.

As an example of a gene in the study, the expression values of the fifth gene are shown in Figure 5. It is
very difficult to find a trend for this particular gene. Instead, we need to adjust the data with the models in
the study which is discussed in the next section.

6.2 Creating the full and null models

In order to find differentially expressed genes, the full and null model for the study need to be formulated.
There are two ways to input the experimental models in edge: build models and build study. build study

should be used by users unfamiliar with formulating the full and null models but are familiar with the
covariates in the study:

de_obj <- build_study(data = kidexpr, adj.var = sex,

tme = age, sampling = "timecourse", basis.df = 4)

adj.var is for the adjustment variables, tme is the time variable, basis.df is the degrees of freedom for
the spline fit, and sampling describes the type of experiment. Since kidney is a time course study, the
sampling argument will be “timecourse”. The tme variable will be the age variable, basis.df will be 4
based on previous work by Storey et al. (2005) and the adjustment variable is sex. To view the models
generated by build study:
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Figure 5: Plot of gene 5 in the kidney study.

fullModel(de_obj)

## ~adj.var + ns(tme, df = 4, intercept = FALSE)

## <environment: 0x55e4b2f75390>

nullModel(de_obj)

## ~adj.var

## <environment: 0x55e4b2f75390>

Notice that the difference between the full and null model is the natural spline fit of the age variable. If we
look at Figure 5, it becomes evident that a spline curve can be used to approximate the fit of the data, and
4 degrees of freedom is chosen based on previous analysis of the expression patterns. See Storey et al. (2005)
for a detailed discussion on modelling in time course studies.

Alternatively, if the user is familiar with their full and null models in the study then build models can be
used to input the models directly:

library(splines)

cov <- data.frame(sex = sex, age = age)

null_model <- ~sex

null_model <- ~sex + ns(age, df = 4)

de_obj <- build_models(data = kidexpr, cov = cov,

full.model = null_model, null.model = null_model)

The cov argument is a data frame of all the relevant covariates, full.model and null.model are the full
and null models of the experiment, respectively. Notice that the models must be formatted as a formula
and contain the same variable names as in the cov data frame. The null model contains the sex covariate
and the full model includes the age variable. Therefore, we are interested in testing whether the full model
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improves the model fit of a gene significantly when compared to the null model. If it does not, then we can
conclude that there is no significant difference in the gene as it ages in the cortex.

The variable de obj is an deSet object that stores all the relevant experimental data. The deSet object is
discussed further in the next section.

6.3 The deSet object

Once either build models or build study is used, an deSet object is created. To view the slots contained
in the object:

slotNames(de_obj)

## [1] "null.model" "full.model"

## [3] "null.matrix" "full.matrix"

## [5] "individual" "qvalueObj"

## [7] "experimentData" "assayData"

## [9] "phenoData" "featureData"

## [11] "annotation" "protocolData"

## [13] ".__classVersion__"

A description of each slot is listed below:

� full.model: the full model of the experiment. Contains the biological variables of interest and the
adjustment variables.

� null.model: the null model of the experiment. Contains the adjustment variables in the experiment.

� full.matrix: the full model in matrix form.

� null.matrix: the null model in matrix form.

� individual: variable that keeps track of individuals (if same individuals are sampled multiple times).

� qvalueObj: qvalue list. Contains p-values, q-values and local false discovery rates of the significance
analysis. See the qvalue package for more details.

� ExpressionSet: inherits the slots from ExpressionSet object.

ExpressionSet contains the expression measurements and other information from the experiment. The
deSet object inherits all the functions from an ExpressionSet object. As an example, to access the expres-
sion values, one can use the function exprs or to access the covariates, pData:

gibexpr <- exprs(de_obj)

cov <- pData(de_obj)

The ExpressionSet class is a widely used object in Bioconductor and more information can be found here.
See the section 11 on ExpressionSet to get a better understanding of how it integrates into the edge

framework.

As an example of how to access the slots of de obj suppose we are interested in viewing the full and null
models. The models can be accessed by:

fullModel(de_obj)

nullModel(de_obj)

16

http://www.bioconductor.org/packages/release/bioc/html/qvalue.html
http://www.bioconductor.org/packages/2.14/bioc/html/Biobase.html


null.model full.model raw

40 60 80 40 60 80 40 60 80

2.74

2.75

2.76

2.77

2.78

age

va
lu

e

sex

f

m

Figure 6: Plot of gene 5 in the kidney study after applying the full and null model fit. The “raw” column
are the expression values of the original data.

Next, we can extract the models in matrix form for computational analysis:

full_matrix <- fullMatrix(de_obj)

null_matrix <- nullMatrix(de_obj)

See ?deSet for additional functions to access different slots of the deSet object.

6.4 Fitting the data

The fit models function is an implementation of least squares using the full and null models:

ef_obj <- fit_models(de_obj, stat.type = "lrt")

The stat.type argument specifies whether you want the odp or lrt fitted values. The difference between
choosing “odp” and “lrt” is that “odp” centers the data by the null model fit which is necessary for down-
stream analysis in the optimal discovery procedure. fit models creates another object with the following
slots:

� fit.full: fitted values from the full model.

� fit.null: fitted values from null model.

� res.full: residuals from the full model.

� res.null: residuals from the null model.

� dH.full: diagonal elements in the projection matrix for the full model.

� beta.coef: the coefficients for the full model.
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� stat.type: statistic type used, either “odp” or “lrt”.

To access the fitted coefficients of the full model in ef obj:

betaCoef(ef_obj)

To access the full and null residuals:

alt_res <- resFull(ef_obj)

null_res <- resNull(ef_obj)

To access the fitted values:

alt_fitted <- fitFull(ef_obj)

null_fitted <- fitNull(ef_obj)

See ?deFit for more details on accessing the slots in a deFit object. The fitted values of the fifth gene are
shown in Figure 6. The null model fit is the average expression. It appears that the full model fits the raw
data better than the null model. Next, we have to test whether the observed differences between the model
fits are significant.

6.5 Significance analysis

Interpreting the models in a hypothesis test is very intuitive: Does the full model better fit the data when
compared to the null model? For the fitted values of the fifth gene plotted in Figure 6, it seems that the full
model fits the data better than the null model. In order to conclude it is significant, we need to calculate
the p-value. The user can use either the optimal discovery procedure or likelihood ratio test.

6.5.1 Likelihood ratio test

The lrt function performs a likelihood ratio test to determine p-values:

de_lrt <- lrt(de_obj, nullDistn = "normal")

If the null distribution, nullDistn, is calculated using “bootstrap” then residuals from the full model are
re-sampled and added to the null model to simulate a distribution where there is no differential expression.
Otherwise, the default input is “normal” and the assumption is that the null statistics follow a F-distribution.
See ?lrt for additional arguments.

6.5.2 Optimal discovery procedure

odp performs the optimal discovery procedure, which is a new approach developed by Storey et al. (2005) for
optimally performing many hypothesis tests in a high-dimensional study. When testing a feature, information
from all the features is utilized when testing for significance of a feature. It guarantees to maximize the
number of expected true positive results for each fixed number of expected false positive results which is
related to the false discovery rate.

The optimal discovery procedure can be implemented on de obj by the odp function:

de_odp <- odp(de_obj, bs.its = 50, verbose = FALSE,

n.mods = 50)

The number of bootstrap iterations is controlled by bs.its, verbose prints each bootstrap iteration number
and n.mods is the number of clusters in the k-means algorithm.
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A k-means algorithm is used to assign genes to groups in order to speed up the computational time of the
algorithm. If n.mods is equal to the number of genes then the original optimal discovery procedure is used.
Depending on the number of genes, this setting can take a very long time. Therefore, it is recommended to
use a small n.mods value to substantially decrease the computational time. In Woo et al. (2011), it is shown
that assigning n.mods to about 50 will cause a negligible loss in power. Type ?odp for more details on the
algorithm.

6.6 Significance results

The summary function can be used on an deSet object to give an overview of the analysis:

summary(de_odp)

##

## ExpressionSet Summary

##

## ExpressionSet (storageMode: lockedEnvironment)

## assayData: 500 features, 72 samples

## element names: exprs

## protocolData: none

## phenoData

## sampleNames: 1 2 ... 72 (72 total)

## varLabels: adj.var tme

## varMetadata: labelDescription

## featureData: none

## experimentData: use 'experimentData(object)'

## Annotation:

##

## de Analysis Summary

##

## Total number of arrays: 72

## Total number of probes: 500

##

## Biological variables:

## Null Model:~adj.var

## <environment: 0x55e4b6e60a38>

##

## Full Model:~adj.var + ns(tme, df = 4, intercept = FALSE)

## <environment: 0x55e4b6e60a38>

##

## .......

##

##

## Statistical significance summary:

## pi0: 0.4274339

##

## Cumulative number of significant calls:

##

## <1e-04 <0.001 <0.01 <0.025 <0.05 <0.1

## p-value 2 5 35 62 93 149

## q-value 0 0 2 2 28 83

## local fdr 0 0 0 2 14 37
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## <1

## p-value 500

## q-value 500

## local fdr 500

There are three core summaries: ExpressionSet summary, edge analysis and statistical significance sum-
mary. The ExpressionSet summary shows a summary of the ExpressionSet object. edge analysis shows
an overview of the models used and other information about the data set. The significance analysis shows
the proportion of null genes, π0, and significant genes at various cutoffs in terms of p-values, q-values and
local false discovery rates.

The function qvalueObj can be used on de odp to extract the significance results:

sig_results <- qvalueObj(de_odp)

The object sig results is a list with the following slots:

names(sig_results)

## [1] "call" "pi0" "qvalues"

## [4] "pvalues" "lfdr" "pi0.lambda"

## [7] "lambda" "pi0.smooth" "stat0"

## [10] "stat"

The key variables are pi0, pvalues, lfdr and qvalues. The pi0 variable provides an estimate of the
proportion of null p-values, pvalues are the p-values, qvalues are the estimated q-values and lfdr are the
local false discovery rates. Using the function hist on sig results will produce a p-value histogram along
with the density curves of q-values and local false discovery rate values:

hist(sig_results)

The plot is shown in Figure 7. To extract the p-values, q-values, local false discovery rates and the π0
estimate:

pvalues <- sig_results$pvalues

qvalues <- sig_results$qvalues

lfdr <- sig_results$lfdr

pi0 <- sig_results$pi0

Making significance decisions based on p-values in multiple hypothesis testings problems can lead to accepting
a lot of false positives in the study. Instead, using q-values to determine significant genes is recommended
because it controls the false discovery rate at a level alpha. Q-values measure the proportion of false positives
incurred when calling a particular test significant. For example, to complete our analysis of gene 5 in this
example, lets view the q-value estimate:

qvalues[5]

## [1] 0.1647915

So for this particular gene, the q-value is 0.1647915. If we consider a false discovery rate cutoff of 0.1 then
this gene is not significant. Therefore, the observed differences observed in Figure 6 are not significant so
this particular gene is not differentially expressed as the kidney ages.

To get a list of all the significant genes at a false discovery rate cutoff of 0.1:

20



π̂0 = 0.427

0

1

2

3

4

0.00 0.25 0.50 0.75 1.00
p−value

de
ns

ity

Variables

q−values

local FDR

π̂0 = 0.427

p−value density histogram

Figure 7: Applying the function hist to the slot qvalueObj in the kidney data set. Function is derived
from the qvalue package.

fdr.level <- 0.1

sigGenes <- qvalues < fdr.level

View the qvalue vignette to get a more thorough discussion in how to use p-values, q-values, π0 estimate
and local false discovery rates to determine significant genes.

7 Case study: longitudinal time course experiment

In the longitudinal time course study, the goal is to identify genes that show “between-class temporal differ-
ential expression”, i.e., genes that show statistically significant differences in expression over time between
the various groups. The endotoxin data set provides gene expression measurements in an endotoxin study
where four subjects were given endotoxin and four subjects were given a placebo. Blood samples were col-
lected and leukocytes were isolated from the samples before infusion. Measurements were recorded at times
2, 4, 6, 9, 24 hours. We are interested in identifying genes that vary over time between the endotoxin and
control groups. See Calvano et al. (2005) for more details regarding the endotoxin dataset.

7.1 Importing the data

To import the endotoxin data use the data function:

data(endotoxin)

endoexpr <- endotoxin$endoexpr

class <- endotoxin$class

ind <- endotoxin$ind

time <- endotoxin$time

There are a few covariates in this data set: endoexpr, class, ind, and time. There are 8 individuals in
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Figure 8: Plot of gene 2 in the endotoxin study.

the experiment (ind) that were sampled at multiple time points (time) that were either “endotoxin” or
“control” (class). The endoexpr variable contains the expression values of the experiment.

To show an example gene, the expression values of the second gene are shown in Figure 8. It is very difficult
to find a trend for this particular gene. Instead, we need to adjust the data with the models in the study.

7.2 Creating the full and null models

In order to find differentially expressed genes, there first needs to be an full and null model for the study.
There are two ways to input the experimental models in edge: build models and build study. build study

should be used by users unfamiliar with formulating the full and null models but are familiar with the
covariates in the study:

de_obj <- build_study(data = endoexpr, grp = class,

tme = time, ind = ind, sampling = "timecourse")

grp is for the variable which group each individual belongs to, tme is the time variable, ind is used when
individuals are sampling multiple times and sampling describes the type of experiment. Since endotoxin

is a time course study, the sampling argument will be “timecourse”. The tme variable will be the time

variable, ind is the individuals variable and the grp variable is class. To view the models created by
build study:

fullModel(de_obj)

## ~grp + ns(tme, df = 2, intercept = FALSE) + (grp):ns(tme, df = 2,

## intercept = FALSE)

## <environment: 0x55e4c3cb8c60>

nullModel(de_obj)
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## ~grp + ns(tme, df = 2, intercept = FALSE)

## <environment: 0x55e4c3cb8c60>

See Storey et al. (2005) for how the models in the endotoxin experiment are formed. Alternatively, if the
user is familiar with their full and null models in the study then build models can be used to input the
models directly:

cov <- data.frame(ind = ind, tme = time, grp = class)

null_model <- ~grp + ns(tme, df = 2, intercept = FALSE)

null_model <- ~grp + ns(tme, df = 2, intercept = FALSE) +

(grp):ns(tme, df = 2, intercept = FALSE)

de_obj <- build_models(data = endoexpr, cov = cov,

full.model = null_model, null.model = null_model)

The cov argument is a data frame of all the relevant covariates, full.model and null.model are the full
and null models of the experiment, respectively. Notice that the models must be formatted as a formula
and contain the same variable names as in the cov data frame. We are interested in testing whether the full
model improves the model fit of a gene significantly when compared to the null model. If it does not, then
we can conclude that there is no significant difference in this gene between the endotoxin and the control as
time goes on.

The variable de obj is an deSet object that stores all the relevant experimental data. The deSet object is
discussed further in the next section.

7.3 The deSet object

Once either build models or build study is used, an deSet object is created. To view the slots contained
in the object:

slotNames(de_obj)

## [1] "null.model" "full.model"

## [3] "null.matrix" "full.matrix"

## [5] "individual" "qvalueObj"

## [7] "experimentData" "assayData"

## [9] "phenoData" "featureData"

## [11] "annotation" "protocolData"

## [13] ".__classVersion__"

A description of each slot is listed below:

� full.model: the full model of the experiment. Contains the biological variables of interest and the
adjustment variables.

� null.model: the null model of the experiment. Contains the adjustment variables in the experiment.

� full.matrix: the full model in matrix form.

� null.matrix: the null model in matrix form.

� individual: variable that keeps track of individuals (if same individuals are sampled multiple times).

� qvalueObj: qvalue list. Contains p-values, q-values and local false discovery rates of the significance
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analysis. See the qvalue package for more details.

� ExpressionSet: inherits the slots from ExpressionSet object.

ExpressionSet contains the expression measurements and other information from the experiment. The
deSet object inherits all the functions from an ExpressionSet object. As an example, to access the expres-
sion values, one can use the function exprs or to access the covariates, pData:

gibexpr <- exprs(de_obj)

cov <- pData(de_obj)

The ExpressionSet class is a widely used object in Bioconductor and more information can be found here.
See the section 11 on ExpressionSet to get a better understanding of how it integrates into the edge

framework.

As an example of how to access the slots of de obj suppose we are interested in viewing the full and null
models. The models can be accessed by:

fullModel(de_obj)

## ~grp + ns(tme, df = 2, intercept = FALSE) + (grp):ns(tme, df = 2,

## intercept = FALSE)

nullModel(de_obj)

## ~grp + ns(tme, df = 2, intercept = FALSE) + (grp):ns(tme, df = 2,

## intercept = FALSE)

Next, we can extract the models in matrix form for computational analysis:

full_matrix <- fullMatrix(de_obj)

null_matrix <- nullMatrix(de_obj)

See ?deSet for additional functions to access different slots of the deSet object.

7.4 Fitting the data

The fit models function is an implementation of least squares using the full and null models:

ef_obj <- fit_models(de_obj, stat.type = "lrt")

The stat.type argument specifies whether you want the odp or lrt fitted values. The difference between
choosing “odp” and “lrt” is that “odp” centers the data by the null model fit which is necessary for down-
stream analysis in the optimal discovery procedure. fit models creates another object with the following
slots:

� fit.full: fitted values from the full model.

� fit.null: fitted values from null model.

� res.full: residuals from the full model.

� res.null: residuals from the null model.

� dH.full: diagonal elements in the projection matrix for the full model.
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Figure 9: Plot of gene 2 in the endotoxin study after applying the full and null model fit. The “raw” column
is the expression values of the original data.

� beta.coef: the coefficients for the full model.

� stat.type: statistic type used, either “odp” or “lrt”.

To access the fitted coefficients of the full model in ef obj:

betaCoef(ef_obj)

To access the full and null residuals:

alt_res <- resFull(ef_obj)

null_res <- resNull(ef_obj)

To access the fitted values:

alt_fitted <- fitFull(ef_obj)

null_fitted <- fitNull(ef_obj)

See ?deFit for more details on accessing the slots in an deFit object. The fitted values of the second gene
are shown in Figure 9. It appears that the full model fits a pattern that might be observed in the raw data.
Next, we have to test whether the observed differences between the model fits are significant.

7.5 Significance analysis

Interpreting the models in a hypothesis test is very intuitive: Does the full model better fit the data when
compared to the null model? For the fitted values of the second gene plotted in Figure 9, it seems that the
full model fits the data better than the null model. In order to conclude it is significant, we need to calculate
the p-value. The user can use either the optimal discovery procedure or likelihood ratio test.
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7.5.1 Likelihood ratio test

The lrt function performs a likelihood ratio test to determine p-values:

de_lrt <- lrt(de_obj, nullDistn = "normal")

If the null distribution, nullDistn, is calculated using “bootstrap” then residuals from the full model are
re-sampled and added to the null model to simulate a distribution where there is no differential expression.
Otherwise, the default input is “normal” and the assumption is that the null statistics follow a F-distribution.
See ?lrt for additional arguments.

7.5.2 Optimal discovery procedure

odp performs the optimal discovery procedure, which is a new approach developed by Storey et al. (2005) for
optimally performing many hypothesis tests in a high-dimensional study. When testing a feature, information
from all the features is utilized when testing for significance of a feature. It guarantees to maximize the
number of expected true positive results for each fixed number of expected false positive results which is
related to the false discovery rate.

The optimal discovery procedure can be implemented on de obj by the odp function:

de_odp <- odp(de_obj, bs.its = 50, verbose = FALSE,

n.mods = 50)

The number of bootstrap iterations is controlled by bs.its, verbose prints each bootstrap iteration number
and n.mods is the number of clusters in the k-means algorithm.

A k-means algorithm is used to assign genes to groups in order to speed up the computational time of the
algorithm. If n.mods is equal to the number of genes then the original optimal discovery procedure is used.
Depending on the number of genes, this setting can take a very long time. Therefore, it is recommended to
use a small n.mods value to substantially decrease the computational time. In Woo et al. (2011), it is shown
that assigning n.mods to about 50 will cause a negligible loss in power. Type ?odp for more details on the
algorithm.

7.6 Significance results

The summary function can be used on an deSet object to give an overview of the analysis:

summary(de_odp)

##

## ExpressionSet Summary

##

## ExpressionSet (storageMode: lockedEnvironment)

## assayData: 500 features, 46 samples

## element names: exprs

## protocolData: none

## phenoData

## sampleNames: 1 2 ... 46 (46 total)

## varLabels: tme grp

## varMetadata: labelDescription

## featureData: none

## experimentData: use 'experimentData(object)'

## Annotation:
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##

## de Analysis Summary

##

## Total number of arrays: 46

## Total number of probes: 500

##

## Biological variables:

## Null Model:~grp + ns(tme, df = 2, intercept = FALSE)

## <environment: 0x55e4bcddc050>

##

## Full Model:~grp + ns(tme, df = 2, intercept = FALSE) + (grp):ns(tme, df = 2,

## intercept = FALSE)

## <environment: 0x55e4bcddc050>

##

## Individuals:

## [1] 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4

## [23] 4 4 5 5 5 5 5 5 6 6 6 6 7 7 7 7 7 7 8 8 8 8

## [45] 8 8

## Levels: 1 2 3 4 5 6 7 8

##

## .......

##

##

## Statistical significance summary:

## pi0: 0.3701472

##

## Cumulative number of significant calls:

##

## <1e-04 <0.001 <0.01 <0.025 <0.05 <0.1

## p-value 17 27 66 91 113 144

## q-value 0 17 29 53 91 128

## local fdr 0 0 21 29 43 76

## <1

## p-value 500

## q-value 500

## local fdr 500

There are three core summaries: ExpressionSet summary, edge analysis and statistical significance sum-
mary. The ExpressionSet summary shows a summary of the ExpressionSet object. edge analysis shows
an overview of the models used and other information about the data set. The significance analysis shows
the proportion of null genes, π0, and significant genes at various cutoffs in terms of p-values, q-values and
local false discovery rates.

The function qvalueObj can be used on de odp to extract the significance results:

sig_results <- qvalueObj(de_odp)

The object sig results is a list with the following slots:

names(sig_results)

## [1] "call" "pi0" "qvalues"

27



π̂0 = 0.37

0

1

2

3

4

5

0.00 0.25 0.50 0.75 1.00
p−value

de
ns

ity

Variables

q−values

local FDR

π̂0 = 0.37

p−value density histogram

Figure 10: Applying the function hist to the slot qvalueObj in the endotoxin data set. Function is derived
from the qvalue package.

## [4] "pvalues" "lfdr" "pi0.lambda"

## [7] "lambda" "pi0.smooth" "stat0"

## [10] "stat"

The key variables are pi0, pvalues, lfdr and qvalues. The pi0 variable provides an estimate of the
proportion of null p-values, pvalues are the p-values, qvalues are the estimated q-values and lfdr are the
local false discovery rates. Using the function hist on sig results will produce a p-value histogram along
with the density curves of q-values and local false discovery rate values:

hist(sig_results)

The plot is shown in Figure 10. To extract the p-values, q-values, local false discovery rates and the π0
estimate:

pvalues <- sig_results$pvalues

qvalues <- sig_results$qvalues

lfdr <- sig_results$lfdr

pi0 <- sig_results$pi0

Making significance decisions based on p-values in multiple hypothesis testings problems can lead to accepting
a lot of false positives in the study. Instead, using q-values to determine significant genes is recommended
because it controls the false discovery rate at a level alpha. Q-values measure the proportion of false positives
incurred when calling a particular test significant. For example, to complete our analysis of gene 2 in this
example, lets view the q-value estimate:

qvalues[2]

## [1] 0.2315859
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So for this particular gene, the q-value is 0.2315859. If we consider a false discovery rate cutoff of 0.1 then
this gene is not significant. Therefore, the observed differences observed in Figure 9 are not significant so
this particular gene is not differentially expressed between class as time varies.

To get a list of all the significant genes at a false discovery rate cutoff of 0.1:

fdr.level <- 0.1

sigGenes <- qvalues < fdr.level

View the qvalue vignette to get a more thorough discussion in how to use p-values, q-values, π0 estimate
and local false discovery rates to determine significant genes.

8 sva: Surrogate variable analysis

The sva package is useful for removing batch effects or any unwanted variation in an experiment. It does
this by forming surrogate variables to adjust for sources of unknown variation. Details on the algorithm
can be found in Leek and Storey (2007). edge uses the sva package in the function apply sva. Suppose
we are working with the kidney data in 6, then the first step is to create an deSet object by either using
build models or build study:

library(splines)

cov <- data.frame(sex = sex, age = age)

null_model <- ~sex

full_model <- ~sex + ns(age, df = 4)

de_obj <- build_models(data = kidexpr, cov = cov,

full.model = full_model, null.model = null_model)

To find the surrogate variables and add them to the experimental models in de obj, use the function
apply sva:

de_sva <- apply_sva(de_obj, n.sv = 3, B = 10)

## Number of significant surrogate variables is: 3

## Iteration (out of 10 ):1 2 3 4 5 6 7 8 9 10

n.sv is the number of surrogate variables and B is the number of bootstraps. See ?apply sva for additional
arguments. To see the terms that have been added to the models:

fullModel(de_sva)

## ~SV1 + SV2 + SV3 + sex + ns(age, df = 4)

## <environment: 0x55e4ae2d4180>

nullModel(de_sva)

## ~SV1 + SV2 + SV3 + sex

## <environment: 0x55e4ae2d4180>

The variables SV1, SV2 and SV3 are the surrogate variables formed by sva. To access the surrogate variables:

cov <- pData(de_sva)

names(cov)
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## [1] "sex" "age" "SV1" "SV2" "SV3"

surrogate.vars <- cov[, 3:ncol(cov)]

Now odp or lrt can be used as in previous examples:

de_odp <- odp(de_sva, bs.its = 50, verbose = FALSE)

de_lrt <- lrt(de_sva, verbose = FALSE)

summary(de_odp)

##

## ExpressionSet Summary

##

## ExpressionSet (storageMode: lockedEnvironment)

## assayData: 500 features, 72 samples

## element names: exprs

## protocolData: none

## phenoData

## sampleNames: 1 2 ... 72 (72 total)

## varLabels: sex age ... SV3 (5 total)

## varMetadata: labelDescription

## featureData: none

## experimentData: use 'experimentData(object)'

## Annotation:

##

## de Analysis Summary

##

## Total number of arrays: 72

## Total number of probes: 500

##

## Biological variables:

## Null Model:~SV1 + SV2 + SV3 + sex

## <environment: 0x55e4ae2d4180>

##

## Full Model:~SV1 + SV2 + SV3 + sex + ns(age, df = 4)

## <environment: 0x55e4ae2d4180>

##

## .......

##

##

## Statistical significance summary:

## pi0: 0.2933229

##

## Cumulative number of significant calls:

##

## <1e-04 <0.001 <0.01 <0.025 <0.05 <0.1

## p-value 2 6 33 54 83 136

## q-value 0 0 5 16 42 124

## local fdr 0 0 2 7 22 52

## <1

## p-value 500

## q-value 500
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## local fdr 500

And to extract the π0 estimate, q-values, local false discovery rates and p-values:

qval_obj <- qvalueObj(de_odp)

qvals <- qval_obj$qvalues

lfdr <- qval_obj$lfdr

pvals <- qval_obj$pvalues

pi0 <- qval_obj$pi0

9 snm: Supervised normalization of microarray data

There has been a lot of work done on separating signal from confounding factors, but a lot of algorithms
fail to consider both the models of the study and the technical factors such as batch or array processing
date. The snm package allows for supervised normalization of microarrays on a gene expression matrix. It
takes into account both the experimental models and other technical factors in the experiments. Details on
the algorithm can be found in Mecham et al. (2010). The snm package is implemented in the apply snm

function. Continuing the analysis on the kidney study in 6:

library(splines)

cov <- data.frame(sex = sex, age = age)

null_model <- ~sex

full_model <- ~sex + ns(age, df = 4)

de_obj <- build_models(data = kidexpr, cov = cov,

full.model = full_model, null.model = null_model)

Now that we have created de obj, we can adjust for additional array effects, dye effects and other intensity-
dependent effects. In this example, we created array effects that are not existent in the real data set in order
to show how to use the function:

int.var <- data.frame(array.effects = as.factor(1:72))

de_snm <- apply_snm(de_obj, int.var = int.var, num.iter = 2,

diagnose = FALSE, verbose = FALSE)

The int.var is where the data frame of intensity-dependent effects are inputted, diagnose is a flag to
let the software know whether to produce diagnostic plots. Additional arguments can be found by typing
?apply snm.

Once the data has been normalized, we can access the normalized matrix by using exprs:

norm.matrix <- exprs(de_obj)

To run the significance analysis, odp or lrt can be used:

de_odp <- odp(de_snm, bs.its = 50, verbose = FALSE)

summary(de_odp)

##

## ExpressionSet Summary

##

## ExpressionSet (storageMode: lockedEnvironment)

## assayData: 500 features, 72 samples

## element names: exprs
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## protocolData: none

## phenoData

## sampleNames: 1 2 ... 72 (72 total)

## varLabels: sex age

## varMetadata: labelDescription

## featureData: none

## experimentData: use 'experimentData(object)'

## Annotation:

##

## de Analysis Summary

##

## Total number of arrays: 72

## Total number of probes: 500

##

## Biological variables:

## Null Model:~sex

##

## Full Model:~sex + ns(age, df = 4)

##

## .......

##

##

## Statistical significance summary:

## pi0: 0.2799641

##

## Cumulative number of significant calls:

##

## <1e-04 <0.001 <0.01 <0.025 <0.05 <0.1

## p-value 2 11 41 69 107 157

## q-value 0 0 5 29 69 194

## local fdr 0 0 5 17 37 92

## <1

## p-value 500

## q-value 500

## local fdr 500

And to extract the π0 estimate, q-values, local false discovery rates and p-values:

qval_obj <- qvalueObj(de_odp)

qvals <- qval_obj$qvalues

lfdr <- qval_obj$lfdr

pvals <- qval_obj$pvalues

pi0 <- qval_obj$pi0

10 qvalue: Estimate the q-values

After odp or lrt is used, the user may wish to change some parameters used when calculating the q-values.
This can be done by using the apply qvalue function. Lets review the analysis process for the kidney

dataset in 6: create the full and null models and then run odp or lrt to get significance results. Applying
these steps in the kidney dataset:
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# create models

library(splines)

cov <- data.frame(sex = sex, age = age)

null_model <- ~sex

full_model <- ~sex + ns(age, df = 4)

de_obj <- build_models(data = kidexpr, cov = cov,

full.model = full_model, null.model = null_model)

# run significance analysis

de_obj <- odp(de_obj, bs.its = 50, verbose = FALSE)

Suppose we wanted to estimate π0 using the “bootstrap” method in qvalue (see qvalue vignette for more
details):

old_pi0est <- qvalueObj(de_obj)$pi0

de_obj <- apply_qvalue(de_obj, pi0.method = "bootstrap")

new_pi0est <- qvalueObj(de_obj)$pi0

## old_pi0est new_pi0est

## 1 0.32008 0.3733333

In this case, there is a difference between using the “smoother” method and “bootstrap” method. See
apply qvalue for additional arguments.

11 Advanced topic: Using the ExpressionSet object

edge was designed for complementing ExpressionSet objects in significance analysis. The deSet inherits
all the slots from an ExpressionSet object and adds vital slots for significance analysis. The rest of this
section is for advanced users because it requires knowledge of full and null model creation. To begin, lets
create an ExpressionSet object from the kidney dataset:

library(edge)

anon_df <- as(data.frame(age=age, sex=sex), "AnnotatedDataFrame")

exp_set <- ExpressionSet(assayData = kidexpr, phenoData = anon_df)

In the kidney experiment they were interested in finding the effect of age on gene expression. In this case,
we handle the time variable, age, by fitting a natural spline curve as done in Storey et al. (2005). The
relevant models for the experiment can be written as

library(splines)

null_model <- ~1 + sex

full_model <- ~1 + sex + ns(age, intercept = FALSE,

df = 4)

where null model is the null model and full model is the full model. The sex covariate is an adjustment
variable while age is the biological variable of interest. It is important to note that it is necessary to include
the adjustment variables in the formulation of the full models as done above.

Having both expSet and the hypothesis models, the function deSet can be used to create an deSet object:

de_obj <- deSet(exp_set, full.model = full_model,

null.model = null_model)

slotNames(de_obj)
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## [1] "null.model" "full.model"

## [3] "null.matrix" "full.matrix"

## [5] "individual" "qvalueObj"

## [7] "experimentData" "assayData"

## [9] "phenoData" "featureData"

## [11] "annotation" "protocolData"

## [13] ".__classVersion__"

From the slot names, it is evident that the deSet object inherits the ExpressionSet slots in addition to
other slots relating to the significance analysis. See section 6.3 for more details on the deSet slots. We can
now simply run odp or lrt for significance results:

de_odp <- odp(de_obj, bs.its = 50, verbose = FALSE)

de_lrt <- lrt(de_obj)

summary(de_odp)

##

## ExpressionSet Summary

##

## ExpressionSet (storageMode: lockedEnvironment)

## assayData: 500 features, 72 samples

## element names: exprs

## protocolData: none

## phenoData

## sampleNames: 1 2 ... 72 (72 total)

## varLabels: age sex

## varMetadata: labelDescription

## featureData: none

## experimentData: use 'experimentData(object)'

## Annotation:

##

## de Analysis Summary

##

## Total number of arrays: 72

## Total number of probes: 500

##

## Biological variables:

## Null Model:~1 + sex

##

## Full Model:~1 + sex + ns(age, intercept = FALSE, df = 4)

##

## .......

##

##

## Statistical significance summary:

## pi0: 0.3650684

##

## Cumulative number of significant calls:

##

## <1e-04 <0.001 <0.01 <0.025 <0.05 <0.1

## p-value 1 3 31 55 93 142
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## q-value 0 0 1 1 28 102

## local fdr 0 0 0 2 17 43

## <1

## p-value 500

## q-value 500

## local fdr 500

And use the function qvalueObj to extract the π0 estimate, q-values, local false discovery rates and p-values:

qval_obj <- qvalueObj(de_odp)

qvals <- qval_obj$qvalues

lfdr <- qval_obj$lfdr

pvals <- qval_obj$pvalues

pi0 <- qval_obj$pi0

Acknowledgements

This software development has been supported in part by funding from the National Institutes of Health
and the Office of Naval Research.

References

SE Calvano, W Xiao, DR Richards, RM Felciano, HV Baker, RJ Cho, RO Chen, BH Brownstein, JP Cobb,
SK Tschoeke, C Miller-Graziano, LL Moldawer, MN Mindrinos, RW Davis, RG Tompkins, and SF Lowry.
A network-based analysis of systemic inflammation in humans. Nature, 437:1032–1037, 2005. doi: 10.1038/
nature03985. URL http://www.nature.com/nature/journal/v437/n7061/full/nature03985.html.

Ingrid Hedenfalk, David Duggan, Yidong Chen, Michael Radmacher, Michael Bittner, Richard Simon,
Paul Meltzer, Barry Gusterson, Manel Esteller, Mark Raffeld, Zohar Yakhini, Amir Ben-Dor, Edward
Dougherty, Juha Kononen, Lukas Bubendorf, Wilfrid Fehrle, Stefania Pittaluga, Sofia Gruvberger,
Niklas Loman, Oskar Johannsson, H̊akan Olsson, Benjamin Wilfond, Guido Sauter, Olli-P. Kallion-
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