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Protein Microarray Data Analysis using the PAA Package

1 Introduction

1.1 General information
Protein Array Analyzer (PAA, Turewicz et al. [1]) is a package for protein microarray data
analysis (esp., ProtoArray data). It imports single color (protein) microarray data that has
been saved in ‘gpr’ file format. After preprocessing (background correction, batch filtering,
normalization) univariate feature preselection is performed (e.g., using the "minimum M
statistic" approach - hereinafter referred to as "mMs", [2]). Subsequently, a multivariate
feature selection is conducted to discover biomarker candidates. For this purpose, either a
frequency-based backwards elimination approach or ensemble feature selection can be used.
PAA provides a complete toolbox of analysis tools including several different plots for results
examination and evaluation.
In this vignette the general workflow of PAA will be outlined by analyzing an exemplary data
set that accompanies this package.

1.2 Installation
The recommended way to install PAA is to type the commands described below in the R
console (note: an active internet connection is needed):
> # only if you install a Bioconductor package for the first time

> if (!requireNamespace("BiocManager", quietly=TRUE))

+ install.packages("BiocManager")

> # else

> library("BiocManager")

> BiocManager::install("PAA", dependencies=TRUE)

This will install PAA including all dependencies.
Furthermore, PAA has an external dependency that is needed to provide full functionality.
This external dependency is the free C++ software package “Random Jungle” that can be
downloaded from http://www.randomjungle.de/. Note: PAA will be usable without Random
Jungle. However, it needs this package for random jungle recursive feature elimination (RJ-
RFE ) provided by the function selectFeatures(). Please follow the instructions for your OS
in the README file to install Random Jungle properly on your machine.
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2 Loading PAA and importing data
After launching R, the first step of the exemplary analysis is to load PAA.
> library(PAA)

New microarray data should be imported using the function loadGPR() which is mainly a
wrapper to limma’s function read.maimages() featuring optional duplicate aggregation for
ProtoArray data. PAA supports the import of files in ‘gpr’ file format. The imported data is
stored in an expression list object (EList, respectively, EListRaw, see Bioconductor package
limma). Paths to a targets file and to a folder containing ‘gpr’ files (all ‘gpr’ files in this
folder that are listed in the targets file will be read) are mandatory arguments. The folder that
can be obtained by the command system.file("extdata", package = "PAA") contains an
exemplary targets file that can be used as a template. Below, the first 3 rows of this targets
file are shown.
> targets <- read.table(file=list.files(system.file("extdata", package="PAA"),

+ pattern = "^targets", full.names = TRUE), header=TRUE)

> print(targets[1:3,])

ArrayID FileName Group Batch Date Array SerumID

1 AD1 GSM734833_PA41992_-_AD1.gpr AD Batch1 10.11.2010 41992 AD1

2 AD2 GSM734834_PA41994_-_AD2.gpr AD Batch2 10.11.2010 41994 AD2

3 AD3 GSM734835_PA42006_-AD3.gpr AD Batch1 12.11.2010 42006 AD3

The columns “ArrayID”, “FileName”, and “Group” are mandatory. “Batch” is mandatory for
microarray data that has been processed in batches. The remaining three columns as well as
custom columns containing further information (e.g., clinical data) are optional.
If array.type is set to "ProtoArray" duplicate spots can be aggregated. After importing,
the object can be saved in a ‘\*.RData’ file for further sessions. In the following code chunk,
loadGPR() is demonstrated using an exemplary dummy data set that comes with PAA and
has been created from the real data set analyzed in this vignette.
> gpr <- system.file("extdata", package="PAA")

> targets <- list.files(system.file("extdata", package="PAA"),

+ pattern = "dummy_targets", full.names=TRUE)

> dummy.elist <- loadGPR(gpr.path=gpr, targets.path=targets,

+ array.type="ProtoArray")

> save(dummy.elist, file=paste(gpr, "/DummyData.RData",

+ sep=""), compress="xz")

In many gpr files the mandatory column “Description” is not available and the needed in-
formation is stored in another column. In order to process such gpr files loadGPR() con-
structs a makeshift “Description” column. If array.type is set to "ProtoArray" this is
performed automatically. Otherwise, loadGPR() provides the arguments description, de

scription.features and description.discard to pass the information needed for the con-
struction of the makeshift “Description” column. In the following code chunk these arguments
are demonstrated.
> targets2 <- list.files(system.file("extdata", package="PAA"),

+ pattern = "dummy_no_descr_targets", full.names=TRUE)

> elist2 <- loadGPR(gpr.path=gpr, targets.path=targets2, array.type="other",
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+ description="Name", description.features="^Hs~", description.discard="Empty")

PAA comes with an exemplary protein microarray data set. This 20 Alzheimer’s disease
serum samples vs. 20 controls data is a subset of a publicly available ProtoArray data
set. It can be downloaded from the repository “Gene Expression Omnibus” (GEO, http:
//www.ncbi.nlm.nih.gov/geo/, record “GSE29676”). It has been contributed by Nagele E et
al. [3] (note: Because a data set stored in ‘gpr’ files would be too large to accompany this
package the exemplary data is stored as an ‘\*.RData’ file).
In the following code chunk, the PAA installation path (where exemplary data is located) is
localized, the new folder ‘demo\_output’ (where all output of the following analysis will be
saved) is created, and the exemplary data set is loaded (note: here, exceptionally not via
loadGPR()).
> cwd <- system.file(package="PAA")

> dir.create(paste(cwd, "/demo/demo_output", sep=""))

> output.path <- paste(cwd, "/demo/demo_output", sep="")

> load(paste(cwd, "/extdata/Alzheimer.RData", sep=""))
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3 Preprocessing
Before preprocessing the microarrays should be inspected visually for any strong spatial biases.
In PAA this can be done using the function plotArray() which plots the imported microarray
data in the original arrangement mimicking the original scan image. Thus, plotArray() is a
visualization tool that can be used to visualize arrays for which the original scan image is not
available. Visual inspection of the spatial expression pattern can then identify possible local
tendencies and strong spatial biases. Moreover, the array can be inspected at all stages of
the preprocessing workflow in order to check the impact of the particular methods that have
been applied.
Consequently, as a first step, always the plots of the foreground signals (data.type="fg")
should be compared with the plots of the background signals (data.type="bg").

> plotArray(elist=elist, idx=3, data.type="bg", log=FALSE, normalized=FALSE,

+ aggregation="min", colpal="topo.colors")

> plotArray(elist=elist, idx=3, data.type="fg", log=FALSE, normalized=FALSE,

+ aggregation="min", colpal="topo.colors")
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In the exemplary plots shown above there is a relatively strong artifact in the background
signal that has a slight impact on the foreground signal. In both figures an irregular stripe
runs from the upper right part of the array to the bottom left corner. Although in the
background plot this artifact is more visible than in the foreground plot the corresponding
spatial bias is obvious.
For background correction limma’s function backgroundCorrect() can be used:
> library(limma)

> elist <- backgroundCorrect(elist, method="normexp",

+ normexp.method="saddle")

If the microarrays were manufactured or processed in lots/batches, data analysis will suffer
from batch effects resulting in wrong results. Hence, the elimination of batch effects is a
crucial step of data preprocessing. A simple method to remove the most obvious batch effects
is to find features that are extremely differential in different batches. In PAA this can be done
for two batches using the function batchFilter(). This function takes an EList or EListRaw
object and the batch-specific column name vectors lot1 and lot2 to find differential features
regarding the batches/lots. For this purpose, thresholds for p-values (Student’s t-test) and
fold changes can be defined. To visualize the differential features a volcano plot is drawn.
Finally, the differential features are removed and the remaining data is returned.

> lot1 <- elist$targets[elist$targets$Batch=='Batch1','ArrayID']

> lot2 <- elist$targets[elist$targets$Batch=='Batch2','ArrayID']

> elist.bF <- batchFilter(elist=elist, lot1=lot1, lot2=lot2, log=FALSE,

+ p.thresh=0.001, fold.thresh=3)
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For multi-batch scenarios (i.e., where the number of distinct batches is larger than two) PAA
provides the function batchFilter.anova(). This function calculates p-values via an one-way
analysis of variance (ANOVA) in order to identify features which are differential regarding at
least two batches. Apart from that this function works analogously to batchFilter() which
has been designed for the scenario of two batches.

> elist.bF.a <- batchFilter.anova(elist=elist, log=FALSE, p.thresh=0.001,

+ fold.thresh=3)

> elist <- elist.bF

Another important step in preprocessing is normalization. To assist in choosing an appropriate
normalization method for a given data set, PAA provides two functions: plotNormMethods()
and plotMAPlots(). plotNormMethods() draws sample-wise boxplots of raw data and data
after all kinds of normalization provided by PAA. For each normalization approach a plot
containing all sample-wise boxplots is created. All boxplots will be saved as a high-quality
‘tiff’ file, if an output path is specified.

> plotNormMethods(elist=elist)

plotMAPlots() draws MA plots of raw data and data after applying all kinds of normalization
methods provided by PAA. If idx="all" and an output path is defined (default), for each
microarray one ‘tiff’ file containing MA plots will be created. If idx is an integer indicating
the column index of a particular sample, MA plots only for this sample will be created.
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> plotMAPlots(elist=elist, idx=10)

After choosing a normalization method, the function normalizeArrays() can be used in
order to normalize the data. normalizeArrays() takes an EListRaw object, normalizes the
data, and returns an EList object containing normalized data in log2 scale. As normalization
methods "cyclicloess", "quantile" or "vsn" can be chosen. Furthermore, for ProtoArrays
robust linear normalization ("rlm", see Sboner A. et al. [4]) is provided.
> elist <- normalizeArrays(elist=elist, method="cyclicloess",

+ cyclicloess.method="fast")

In addition to batchFilter(), the function batchAdjust() can be used after normalization
via normalizeArrays() to adjust the data for batch effects. This is a wrapper to sva’s
function ComBat() for batch adjustment using the empirical Bayes approach [5]. To use
batchAdjust() the targets file information of the EList object must contain the columns
“Batch” and “Group”.
> elist <- batchAdjust(elist=elist, log=TRUE)

After preprocessing, the corrected data can be inspected via plotArray() again. E.g., now
the plot of the ProtoArray already plotted shows that the revealed spatial bias is less obvious
after preprocessing.

> plotArray(elist=elist, idx=3, data.type="fg", log=TRUE, normalized=TRUE,

+ aggregation="min", colpal="topo.colors")
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Because for further analysis also data in original scale will be needed, a copy of the EList
object containing unlogged data should be created.
> elist.unlog <- elist

> elist.unlog$E <- 2^(elist$E)
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4 Differential analysis
The goal of univariate differential analysis is to detect relevant differential features. There-
fore, statistical measures such as p-values or fold changes are considered. PAA provides
plotting functions in order to depict the number and the quality of the differential features
in the data set. Accordingly, the function volcanoPlot() draws a volcano plot to visualize
differential features. For this purpose, thresholds for p-values and fold changes can be de-
fined. Furthermore, the p-value computation method ("mMs" or "tTest") can be set. When
an output path is defined (via output.path) the plot will be saved as a ‘tiff’ file. In the
next code chunk, an example with method="tTest" is given.

> c1 <- paste(rep("AD",20), 1:20, sep="")

> c2 <- paste(rep("NDC",20), 1:20, sep="")

> #volcanoPlot(elist=elist.unlog, group1=c1, group2=c2, method="tTest",

> volcanoPlot(elist=elist, group1=c1, group2=c2, log=TRUE, method="tTest",

+ p.thresh=0.01, fold.thresh=2)

Here, an example with method="mMs" is given:
> mMs.matrix1 <- mMs.matrix2 <- mMsMatrix(x=20, y=20)

> volcanoPlot(elist=elist.unlog, group1=c1, group2=c2, log=FALSE, method="mMs",

+ p.thresh=0.01, fold.thresh=2, mMs.matrix1=mMs.matrix1,

+ mMs.matrix2=mMs.matrix2, above=1500, between=400)
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Another plotting function is pvaluePlot() which draws a plot of p-values for all features in
the data set (sorted in increasing order and in log2 scale). The p-value computation method
("tTest" or "mMs") can be set via the argument method. Furthermore, when adjust=TRUE

adjusted p-values (method: Benjamini & Hochberg, 1995, computed via p.adjust()) will be
used. For a better orientation, horizontal dashed lines indicate which p-values are smaller than
0.05 and 0.01. If adjust=FALSE, additionally, the respective Bonferroni significance threshold
(to show p-values that would be smaller than 0.05 after a possible Bonferroni correction)
for the given data is indicated by a third dashed line. Note: Bonferroni is not used for the
adjustment. The dashed line is for better orientation only. When an output path is defined
(via output.path) the plot will be saved as a ‘tiff’ file. In the next code chunk, an example
with method="tTest" is given.

> pvaluePlot(elist=elist, group1=c1, group2=c2, log=TRUE, method="tTest")

Here, an example with method="mMs" is given:
> mMs.matrix1 <- mMs.matrix2 <- mMsMatrix(x=20, y=20)

> pvaluePlot(elist=elist.unlog, group1=c1, group2=c2, log=FALSE, method="mMs",

+ mMs.matrix1=mMs.matrix1, mMs.matrix2=mMs.matrix2, above=1500,

+ between=400)

Here, an example with method="tTest" and adjust=TRUE is given:

> pvaluePlot(elist=elist, group1=c1, group2=c2, log=TRUE, method="tTest",

+ adjust=TRUE)
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Here, an example with method="mMs" and adjust=TRUE is given:
> pvaluePlot(elist=elist.unlog, group1=c1, group2=c2, log=FALSE, method="mMs",

+ mMs.matrix1=mMs.matrix1, mMs.matrix2=mMs.matrix2, above=1500,

+ between=400, adjust=TRUE)

Finally, diffAnalysis() performs a detailed univariate differential analysis. This function
takes an EList$E- or EListRaw$E- matrix (e.g., temp <- elist$E) extended by row names
comprising “BRC”-IDs of the corresponding features. The BRC-IDs can be created via:
brc <- paste(elist$genes[,1], elist$genes[,3], elist$genes[,2]).
Next, the row names can be assigned as follows: rownames(temp) <- brc. Furthermore, the
corresponding column name vectors, group labels and mMs- parameters are needed to perform
the univariate differential analysis. This analysis covers inter alia p-value computation, p-
value adjustment (method: Benjamini & Hochberg, 1995), and fold change computation.
Since the results table is usually large, a path for saving the results should be defined via out

put.path. Optionally, a vector of row indices (features) and additionally (not mandatory for
subset analysis) a vector of corresponding feature names (feature.names) can be forwarded
to perform the analysis for a feature subset.
> E <- elist.unlog$E

> rownames(E) <- paste(elist.unlog$genes[,1], elist.unlog$genes[,3],

+ elist.unlog$genes[,2])

> write.table(x=cbind(rownames(E),E),

+ file=paste(cwd,"/demo/demo_output/data.txt", sep=""), sep="\t", eol="\n",

+ row.names=FALSE, quote=FALSE)

> mMs.matrix1 <- mMs.matrix2 <- mMsMatrix(x=20, y=20)
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> diff.analysis.results <- diffAnalysis(input=E, label1=c1, label2=c2,

+ class1="AD", class2="NDC", output.path=output.path,

+ mMs.matrix1=mMs.matrix1, mMs.matrix2=mMs.matrix2, above=1500,

+ between=400)

> print(diff.analysis.results[1:10,])

BRC t.test FDR.t. min..M.stat...mMs.

1 1 2 11 0.352751286646466 0.653940320256442 0.243589743589744

2 1 2 13 0.15129653649193 0.501988087542915 0.0241860325286354

3 1 2 15 0.320875589014852 0.63421050246844 1

4 1 2 17 0.178493270666023 0.52723150928707 0.150422391245528

5 1 2 19 0.271589613948769 0.59793213561654 0.243589743589744

6 1 2 21 0.0707666042203707 0.394970369965039 0.0457380457380457

7 1 3 1 0.0284911744794213 0.268607060873836 1

8 1 3 3 0.00921968894879159 0.142280968989527 0.5

9 1 3 5 0.00592168460061229 0.106226964810386 0.053014553014553

10 1 3 7 0.806173147194642 0.916805614435088 0.302494802494803

FDR.mMs. fold.change mean.AD mean.NDC

1 0.835015538626552 1.36257910953312 1384.85432520349 1016.34783295481

2 0.330335726331277 0.260784177611614 2189.55822304562 8396.05471121231

3 1 1.10224097047813 450.550786587285 408.758881818594

4 0.835015538626552 0.595491172830503 1518.91515397688 2550.69297964089

5 0.835015538626552 0.454051309774646 2530.1344545838 5572.35360875746

6 0.484098604098604 0.759043204421857 2636.25422481143 3473.12802414112

7 1 1.26294406395723 484.784697258338 383.852864979107

8 0.910368401063426 1.48059072464481 692.098536568906 467.447570114244

9 0.484098604098604 1.3602309262767 1991.44021666422 1464.045683857

10 0.910368401063426 0.908397966805546 818.482441505167 901.017474074085

median.AD median.NDC sd.AD sd.NDC

1 839.980702981771 857.735001801976 1643.99677640782 564.430270630399

2 1305.46661974481 2548.69868040326 2970.84080119716 18364.0058765935

3 413.716205403228 417.428604869084 165.734824607582 82.0150145643133

4 1215.20762270891 1689.1444916955 1062.44868297829 3151.76500089474

5 1824.40003073847 1864.76465290004 2444.44412207378 11793.1087294661

6 2248.99036532219 2924.27002197574 1276.31835442119 1553.96096388883

7 446.558759285452 349.263285007632 154.993619177929 122.909766431917

8 556.15638977055 455.41188100012 339.123207021637 93.501996624578

9 1873.36646648453 1436.18751389589 718.441427077343 323.488045744026

10 730.232223314621 469.463840773123 433.002023903253 1422.22599366312

Subsequently, the most relevant differential features (i.e., features having low p-values and
high absolute fold changes) can be extracted as a univariate feature selection. Nevertheless, it
is recommended to perform also multivariate feature selection and to consider feature panels
obtained from both approaches.
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5 Feature preselection
Before multivariate feature selection will be performed, it is recommended to discard fea-
tures that are obviously not differential. Discarding them will accelerate runtimes without
any negative impact on results. In PAA, this task is called “feature preselection” and it is
performed by the function preselect(). This function iterates all features of the data set
to score them via mMs, Student’s t-test, or mRMR. If discard.features is TRUE (default),
all features that are considered as obviously not differential will be collected and returned
for discarding. Which features are considered as not differential depends on the parameters
method, discard.threshold, and fold.thresh.

• If method = "mMs" features having an mMs value larger than discard.threshold (here:
numeric between 0.0 and 1.0) or do not satisfy the minimal absolute fold change
fold.thresh will be considered as not differential.

• If method = "tTest" features having a p-value larger than discard.threshold (here:
numeric between 0.0 and 1.0) or do not satisfy the minimal absolute fold change
fold.thresh will be considered as not differential.

• If method = "mrmr" mRMR scores for all features will be computed as scoring method
(using the function mRMR.classic() of the R package mRMRe). Subsequently, features
that are not the discard.threshold (here: integer indicating a number of features)
features having the best mRMR scores are considered as not differential.

> mMs.matrix1 <- mMs.matrix2 <- mMsMatrix(x=20, y=20)

> pre.sel.results <- preselect(elist=elist.unlog, columns1=c1, columns2=c2,

+ label1="AD", label2="NDC", log=FALSE, discard.threshold=0.5,

+ fold.thresh=1.5, discard.features=TRUE, mMs.above=1500, mMs.between=400,

+ mMs.matrix1=mMs.matrix1, mMs.matrix2=mMs.matrix2,

+ method="mMs")

> elist <- elist[-pre.sel.results$discard,]
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6 Feature selection
For multivariate feature selection PAA provides the function selectFeatures(). It performs
a multivariate feature selection using “frequency-based” feature selection (based on RF-RFE,
RJ-RFE or SVM-RFE ) or “ensemble” feature selection (based on SVM-RFE ).
Frequency-based feature selection (method="frequency"): The whole data is splitted in
k cross validation training and test set pairs. For each training set a multivariate feature
selection procedure is performed. The resulting k feature subsets are tested using the cor-
responding test sets (via classification). As a result, selectFeatures() returns the average
k-fold cross validation classification accuracy as well as the selected feature panel (i.e., the
union set of the k particular feature subsets). As multivariate feature selection methods
random forest recursive feature elimination (RF-RFE ), random jungle recursive feature elim-
ination (RJ-RFE ) and support vector machine recursive feature elimination (SVM-RFE ) are
supported. To reduce running times, optionally, an additional univariate feature preselection
can be performed (control via preselection.method). As univariate preselection methods
mMs ("mMs"), Student’s t-test ("tTest") and mRMR ("mrmr") are supported. Alternatively,
no preselection can be chosen ("none"). This approach is similar to the method proposed in
Baek et al. [6].
Ensemble feature selection (method="ensemble"): From the whole data a previously de-
fined number of subsamples is drawn defining pairs of training and test sets. Moreover, for
each training set a previously defined number of bootstrap samples is drawn. Then, for each
bootstrap sample SVM-RFE is performed and a feature ranking is obtained. To obtain a final
ranking for a particular training set, all associated bootstrap rankings are aggregated to a sin-
gle ranking. To score the cutoff best features, for each subsample a classification of the test
set is performed (using a svm trained with the cutoff best features from the training set) and
the classification accuracy is determined. Finally, the stability of the subsample-specific pan-
els is assessed (via Kuncheva index, Kuncheva LI, 2007 [7]), all subsample-specific rankings
are aggregated, the top n features (defined by cutoff) are selected, the average classiification
accuracy is computed, and all these results are returned in a list. This approach has been
proposed in Abeel et al. [8].
selectFeatures() takes an EListRaw or EList object, group-specific sample numbers, group
labels and parameters choosing and configuring a multivariate feature selection method
(frequency-based or ensemble feature selection) to select a panel of differential features.
When an output path is defined (via output.path) results will be saved on the hard disk and
when verbose is TRUE additional information will be printed to the console. Depending on
the selection method, one of two different results lists will be returned:

1. If method is "frequency", the results list contains the following elements:
• accuracy: average k-fold cross validation accuracy.
• sensitivity: average k-fold cross validation sensitivity.
• specificity: average k-fold cross validation specificity.
• features: selected feature panel.
• all.results: complete cross validation results.

2. If method is "ensemble", the results list contains the following elements:
• accuracy: average accuracy regarding all subsamples.
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• sensitivity: average sensitivity regarding all subsamples.
• specificity: average specificity regarding all subsamples.
• features: selected feature panel.
• all.results: all feature ranking results.
• stability: stability of the feature panel (i.e., Kuncheva index for the subrun-specific

panels).
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In the following two code chunks first “frequency-based” feature selection and then “ensem-
ble” feature selection is demonstrated.
> selectFeatures.results <- selectFeatures(elist,n1=20,n2=20,label1="AD",

+ label2="NDC",log=TRUE,selection.method="rf.rfe",subruns=2,

+ candidate.number=1000,method="frequency")

> selectFeatures.results <- selectFeatures(elist,n1=20,n2=20,label1="AD",

+ label2="NDC",log=TRUE,subsamples=10,bootstraps=10,method="ensemble")

Because runtimes would take too long for this vignette PAA comes with precomputed se

lectFeatures.results objects stored in ‘\*.RData’ files. These objects can be loaded as
follows:
> # results of frequency-based feature selection:

> load(paste(cwd, "/extdata/selectFeaturesResultsFreq.RData", sep=""))

> # or results of ensemble feature selection:

> load(paste(cwd, "/extdata/selectFeaturesResultsEns.RData", sep=""))

17

http://bioconductor.org/packages/PAA
http://bioconductor.org/packages/PAA


Protein Microarray Data Analysis using the PAA Package

7 Results inspection
After the selection of a feature panel, these features should be validated by manual inspection
and evaluation for further research. To aid results inspection, PAA provides several functions.
The function plotFeatures() plots the intensities of all features (represented by BRC-IDs)
that have been selected by selectFeatures() (one sub-plot per feature) in group-specific
colors. All sub-plots are aggregated in one figure. If output.path is not NULL, this figure
will be saved as a ‘tiff’ file in output.path.

> plotFeatures(features=selectFeatures.results$features, elist=elist, n1=20,

+ n2=20, group1="AD", group2="NDC")

Alternatively, the function plotFeaturesHeatmap() plots intensities of all features given in
the vector features (represented by BRC-IDs) as a heatmap. If description is TRUE (default:
FALSE), features will be described via protein names instead of UniProtKB accessions. Again,
if output.path is not NULL, the heatmap will be saved as a ‘tiff’ file in output.path.

> plotFeaturesHeatmap(features=selectFeatures.results$features, elist=elist,

+ n1=20, n2=20, description=TRUE)
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As an alternative to plotFeaturesHeatmap() the function plotFeaturesHeatmap.2() which is
based on the gplots function heatmap.2() gives similar plots with some additional information.
Apart from that both functions plotFeaturesHeatmap() and plotFeaturesHeatmap.2() are
analogous.

> plotFeaturesHeatmap.2(features=selectFeatures.results$features, elist=elist,

+ n1=20, n2=20, description=TRUE)
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Finally, the function printFeatures() creates a table containing the selected biomarker can-
didate panel as well as additional information for results inspection. If output.path is defined,
this table will be saved in a ‘txt’ file (‘candidates.txt’).

> elist$E <- round(elist$E,2)

> printFeatures(features=selectFeatures.results$features, elist=elist)[,-2]

BRC AD1 AD2 AD3 AD4 AD5 AD6 AD7 AD8 AD9 AD10 AD11

1 3 14 13 9.59 9.53 8.98 9.52 9.96 8.95 9.64 9.16 9.23 9.23 8.94

2 11 3 15 10.73 10.55 10.57 10.64 10.85 10.93 10.53 10.81 11.1 11.22 10.54

3 14 4 3 11.83 11.3 10.83 10.72 10.59 10.43 11.19 12.2 10.5 10.62 11.1

4 15 12 9 9.68 10.04 10.57 10.4 10.03 9.9 9.61 10.24 10.19 10.83 10.67

5 17 9 11 12.52 12.49 12.6 12.68 12.05 12.04 14.02 13.22 12.19 12.35 12.84

6 24 17 3 9.26 8.74 9.66 9.32 9.3 9.1 10 10.04 10.15 9.89 10.03

7 25 3 7 11.85 12.99 12.25 11.57 11.8 11.71 11.59 11.81 11.53 12.01 11.88

8 25 11 21 11.31 11.2 11.73 11.71 11.18 11.14 11.25 11.67 11.48 11.58 11.78

9 29 4 13 12.52 12.26 12.63 12.65 12.67 12.8 12.78 12.67 13.15 13.05 12.6

10 48 19 11 8.89 9.88 8.17 9.49 9.29 9.52 9.4 9.03 9.5 9.38 10.68

AD12 AD13 AD14 AD15 AD16 AD17 AD18 AD19 AD20 NDC1 NDC2 NDC3

1 9.04 8.9 9.22 9.65 8.86 8.8 9.27 9.01 8.99 9.58 10.13 9.44

2 10.88 11.12 11.03 10.82 10.63 10.9 9.91 10.02 11.51 9.84 9.91 9.41

3 10.69 11.37 10.66 11.39 11.03 10.43 11.08 11.6 10.42 10.52 10.23 10.65

4 10.85 10.95 10.26 10.3 10.65 10.41 10.5 10.52 10.08 9.68 9.82 9.1

5 12.36 12.46 12.15 12.08 12.48 12.48 12.84 13.35 11.86 11.53 11.39 11.33

6 9.63 10.14 9.58 10.51 9.98 9.64 10.68 10.64 9.54 8.4 8.92 8.23
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7 11.61 12.09 12.24 11.69 11.73 12.62 11.49 12.43 14.09 13.56 13.02 12.68

8 11.47 12.45 11.56 11.76 11.55 10.92 11.47 11.15 11.57 10.31 10.63 10.21

9 12.86 12.99 13.05 13.17 12.72 12.07 13.34 11.4 12.71 11.24 10.58 11.67

10 9.69 10.19 9.45 9.4 9.57 10.02 9.29 9.64 9.29 7.51 8.63 7.83

NDC4 NDC5 NDC6 NDC7 NDC8 NDC9 NDC10 NDC11 NDC12 NDC13 NDC14 NDC15

1 9.64 9.57 9.91 10.76 10.16 9.39 9.5 9.97 8.9 9.19 9.66 9.36

2 9.83 10.14 9.85 9.69 9.91 10.35 9.91 9.91 9.63 10.17 10 10.05

3 9.47 9.94 10.71 9.63 9.64 10.64 10.23 9.48 10.43 10.28 10.2 11.15

4 9.9 9.12 8.68 9.53 9.42 8.88 9.6 9.21 9.91 9.91 10.44 8.78

5 11.87 11.88 11.41 11.07 13.23 11.02 11.18 11.04 11.66 11.61 12.08 11.25

6 8.94 8.24 9.06 8.35 8.63 8.38 8.82 7.85 8.66 5.92 8.47 8.36

7 12.93 12.97 12.83 12.69 13.15 13.91 12.84 14.21 13.89 13.85 13.29 13.35

8 9.98 10.19 10.27 10.62 10.12 10.37 10.23 10.72 10.28 10.18 10.97 10.27

9 12.03 11.56 10.6 11.89 11.39 11.8 11.26 11.24 10.72 11.35 11.06 11.62

10 6.52 8.48 8.42 8.76 7.82 7.97 8.7 8.35 8.55 8.28 8.58 8.86

NDC16 NDC17 NDC18 NDC19 NDC20

1 10.3 9.96 11.14 10.22 9.51

2 10.28 10.38 10.1 9.87 9.96

3 9.75 9.58 10.04 10.16 10.39

4 9.55 9.84 8.96 9.27 9.99

5 11.14 11.42 11.19 11.56 11.82

6 6.42 8.55 8.22 8.41 8.05

7 13.31 14.4 12.61 12.87 12.92

8 10.44 10.36 11.57 10.32 10.07

9 11.53 11.75 12.26 11.32 10.58

10 8.76 8.68 8.62 8.71 8.41
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