Package 'orthogene'

October 18, 2022

```
Title Interspecies gene mapping
Version 1.2.1
Description
     orthogene is an R package for easy mapping of orthologous genes across hundreds of species.
     It pulls up-to-date interspecies gene ortholog mappings across 700+ organisms.
     It also provides various utility functions to map common objects
     (e.g. data.frames, gene expression matrices, lists)
     onto 1:1 gene orthologs from any other species.
URL https://github.com/neurogenomics/orthogene
BugReports https://github.com/neurogenomics/orthogene/issues
License GPL-3
Depends R (>= 4.1)
VignetteBuilder knitr
biocViews Genetics, ComparativeGenomics, Preprocessing, Phylogenetics,
     Transcriptomics, GeneExpression
Imports dplyr, methods, stats, utils, Matrix, isonlite, homologene,
     gprofiler2, babelgene, data.table, parallel, ggplot2, ggpubr,
     patchwork, DelayedArray, DelayedMatrixStats, Matrix.utils, grr,
     repmis, ggtree, tools
Suggests remotes, knitr, BiocStyle, covr, markdown, rmarkdown, here,
     testthat (>= 3.0.0), piggyback, badger, magick, desc,
     hrbrthemes, Cairo, yulab.utils, haven, GenomeInfoDbData, ape,
     phytools, rphylopic, TreeTools, RColorBrewer, ggimage
RoxygenNote 7.1.2
Encoding UTF-8
Config/testthat/edition 3
Config/rcmdcheck/_R_CHECK_FORCE_SUGGESTS_ false
git_url https://git.bioconductor.org/packages/orthogene
git_branch RELEASE_3_15
```

Type Package

2 orthogene-package

git_last_commit 1dc2ecb
git_last_commit_date 2022-10-02

Date/Publication 2022-10-18

Author Brian Schilder [cre] (https://orcid.org/0000-0001-5949-2191)

Maintainer Brian Schilder <bri> schilder@alumni.brown.edu>

R topics documented:

	ormogene-package	
	aggregate_mapped_genes	3
	all_genes	4
	convert_orthologs	5
	create_background	9
	exp_mouse	10
	exp_mouse_enst	11
	gprofiler_orgs	12
	infer_species	12
	map_genes	14
	map_orthologs	15
	map_species	16
	plot_orthotree	17
	prepare_tree	19
	report_orthologs	20
Index		23
Huex		43
orth	ogene-package arthogene: Interspecies gene manning	

Description

orthogene is an R package for easy mapping of orthologous genes across hundreds of species.

Details

It pulls up-to-date interspecies gene ortholog mappings across 700+ organisms.

It also provides various utility functions to map common objects (e.g. data.frames, gene expression matrices, lists) onto 1:1 gene orthologs from any other species.

Author(s)

Maintainer: Brian Schilder <bri> Schilder @alumni.brown.edu > (ORCID)

Source

- GitHub: Source code and Issues submission.
- Author Site: orthogene was created by Brian M. Schilder.

See Also

Useful links:

- https://github.com/neurogenomics/orthogene
- Report bugs at https://github.com/neurogenomics/orthogene/issues

aggregate_mapped_genes

Aggregate a gene matrix by gene symbols

Description

Map matrix rownames to standardised gene symbols, and then aggregate many-to-one rows into a new matrix.

Usage

```
aggregate_mapped_genes(
   gene_df,
   species = "human",
   FUN = "sum",
   method = c("monocle3", "stats"),
   transpose = FALSE,
   gene_map = NULL,
   gene_map_col = "name",
   non121_strategy = "drop_output_species",
   as_sparse = TRUE,
   as_DelayedArray = FALSE,
   dropNA = TRUE,
   sort_rows = FALSE,
   verbose = TRUE
```

Arguments

gene_df Input matrix where row names are genes.

species Species to map against.

FUN Aggregation function (DEFAULT: "sum").

method Aggregation method.

transpose gene_df before mapping genes.

gene_map A user-supplied gene_map. If NULL (DEFAULT)), map_genes will be used to create a gene_map.

gene_map_col Column in gene_map to aggregate gene_df by.

all_genes

non121_strategy

How to handle genes that don't have 1:1 mappings between input_species:output_species. Options include:

- "drop_both_species" or "dbs" or 1:
 Drop genes that have duplicate mappings in either the input_species or output_species
 (DEFAULT).
- "drop_input_species" or "dis" or 2:
 Only drop genes that have duplicate mappings in the input_species.
- "drop_output_species" or "dos" or 3:
 Only drop genes that have duplicate mappings in the output_species.
- "keep_both_species" or "kbs" or 4:
 Keep all genes regardless of whether they have duplicate mappings in either species.
- "keep_popular" or "kp" or 5: Return only the most "popular" interspecies ortholog mappings. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs.
- "sum", "mean", "median", "min" or "max":

 When gene_df is a matrix and gene_output="rownames", these options
 will aggregate many-to-one gene mappings (input_species-to-output_species)
 after dropping any duplicate genes in the output_species.

as_sparse Convert aggregated matrix to sparse matrix.

as_DelayedArray

Convert aggregated matrix to DelayedArray.

dropNA Drop genes assigned to NA in groupings. sort_rows Sort gene_df rows alphanumerically.

verbose Print messages.

Value

Aggregated matrix

Examples

```
data("exp_mouse")
X_agg <- aggregate_mapped_genes(gene_df = exp_mouse, species = "mouse")</pre>
```

all_genes

Get all genes

Description

Return all known genes from a given species.

Usage

```
all_genes(
   species,
   method = c("gprofiler", "homologene", "babelgene"),
   ensure_filter_nas = FALSE,
   run_map_species = TRUE,
   verbose = TRUE,
   ...
)
```

Arguments

Additional arguments to be passed to gconvert when method="gprofiler".

Details

References homologeneData or gconvert.

Value

Table with all gene symbols from the given species.

Examples

```
genome_mouse <- all_genes(species = "mouse")
genome_human <- all_genes(species = "human")</pre>
```

convert_orthologs

Map genes from one species to another

Description

Currently supports ortholog mapping between any pair of 700+ species. Use map_species to return a full list of available organisms.

Usage

```
convert_orthologs(
   gene_df,
   gene_input = "rownames",
   gene_output = "rownames",
   standardise_genes = FALSE,
   input_species,
   output_species = "human",
   method = c("gprofiler", "homologene", "babelgene"),
   drop_nonorths = TRUE,
   non121_strategy = "drop_both_species",
   mthreshold = Inf,
   as_sparse = FALSE,
   sort_rows = FALSE,
   verbose = TRUE,
   ...
)
```

Arguments

gene_df

Data object containing the genes (see gene_input for options on how the genes can be stored within the object).

Can be one of the following formats:

• matrix:

A sparse or dense matrix.

• data.frame:

A data.frame, data.table. or tibble.

• codelist:

A list or character vector.

Genes, transcripts, proteins, SNPs, or genomic ranges can be provided in any format (HGNC, Ensembl, RefSeq, UniProt, etc.) and will be automatically converted to gene symbols unless specified otherwise with the . . . arguments. *Note*: If you set method="homologene", you must either supply genes in gene symbol format (e.g. "Sox2") OR set standardise_genes=TRUE.

gene_input

Which aspect of gene_df to get gene names from:

• "rownames":

From row names of data.frame/matrix.

• "colnames":

From column names of data.frame/matrix.

• <column name>:

From a column in gene_df, e.g. "gene_names".

gene_output

How to return genes. Options include:

• "rownames":

As row names of gene_df.

• "colnames":

As column names of gene_df.

• "columns":

As new columns "input_gene", "ortholog_gene" (and "input_gene_standard" if standardise_genes=TRUE) in gene_df.

• "dict":

As a dictionary (named list) where the names are input_gene and the values are ortholog_gene.

"dict_rev":

As a reversed dictionary (named list) where the names are ortholog_gene and the values are input_gene.

standardise_genes

If TRUE AND gene_output="columns", a new column "input_gene_standard" will be added to gene_df containing standardised HGNC symbols identified by gorth.

input_species

Name of the input species (e.g., "mouse", "fly"). Use map_species to return a full list of available species.

output_species Name of the output species (e.g. "human", "chicken"). Use map_species to return a full list of available species.

method

R package to to use for gene mapping:

- "gprofiler": Slower but more species and genes.
- "homologene": Faster but fewer species and genes.
- "babelgene": Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.

drop_nonorths non121_strategy

Drop genes that don't have an ortholog in the output_species.

How to handle genes that don't have 1:1 mappings between input_species:output_species. Options include:

- "drop_both_species" or "dbs" or 1: Drop genes that have duplicate mappings in either the input_species or output_species (DEFAULT).
- "drop_input_species" or "dis" or 2: Only drop genes that have duplicate mappings in the input_species.
- "drop_output_species" or "dos" or 3: Only drop genes that have duplicate mappings in the output_species.
- "keep_both_species" or "kbs" or 4: Keep all genes regardless of whether they have duplicate mappings in either species.
- "keep_popular" or "kp" or 5: Return only the most "popular" interspecies ortholog mappings. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs.

• "sum", "mean", "median", "min" or "max":

When gene_df is a matrix and gene_output="rownames", these options
will aggregate many-to-one gene mappings (input_species-to-output_species)
after dropping any duplicate genes in the output_species.

mthreshold

Maximum number of ortholog names per gene to show. Passed to gorth. Only used when method="gprofiler" (*DEFAULT*: Inf).

as_sparse

Convert gene_df to a sparse matrix. Only works if gene_df is one of the following classes:

- matrix
- Matrix
- data.frame
- data.table
- tibble

If gene_df is a sparse matrix to begin with, it will be returned as a sparse matrix (so long as gene_output= "rownames" or "colnames").

sort_rows

Sort gene_df rows alphanumerically.

verbose

Print messages.

Additional arguments to be passed to gorth or homologene.

NOTE: To return only the most "popular" interspecies ortholog mappings, supply mthreshold=1 here AND set method="gprofiler" above. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs.

For more details, please see here.

Value

```
gene_df with orthologs converted to the output_species.

Instead returned as a dictionary (named list) if gene_output="dict" or "dict_rev".
```

Examples

```
data("exp_mouse")
gene_df <- convert_orthologs(
    gene_df = exp_mouse,
    input_species = "mouse"
)</pre>
```

create_background 9

create_background

Create gene background

Description

Create a gene background as the union/intersect of all orthologs between input species (species1 and species2), and the output_species. This can be useful when generating random lists of background genes to test against in analyses with data from multiple species (e.g. enrichment of mouse cell-type markers gene sets in human GWAS-derived gene sets).

Usage

```
create_background(
   species1,
   species2,
   output_species = "human",
   as_output_species = TRUE,
   use_intersect = TRUE,
   bg = NULL,
   gene_map = NULL,
   method = "homologene",
   non121_strategy = "drop_both_species",
   verbose = TRUE
)
```

Arguments

species1 First species. species2 Second species.

output_species Species to convert all genes from species1 and species2 to first. Default="human",

but can be to either any species supported by **orthogene**, including species1 or

species2.

as_output_species

Return background gene list as output_species orthologs, instead of the gene

names of the original input species.

use_intersect When species1 and species2 are both different from output_species, this

argument will determine whether to use the intersect (TRUE) or union (FALSE) of

all genes from species1 and species2.

bg User supplied background list that will be returned to the user after removing

duplicate genes.

gene_map User-supplied gene_map data table from map_orthologs or map_genes.

method R package to to use for gene mapping:

- "gprofiler": Slower but more species and genes.
- "homologene": Faster but fewer species and genes.

10 exp_mouse

• "babelgene": Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.

non121_strategy

How to handle genes that don't have 1:1 mappings between input_species:output_species. Options include:

- "drop_both_species" or "dbs" or 1:
 Drop genes that have duplicate mappings in either the input_species or output_species
 (DEFAULT).
- "drop_input_species" or "dis" or 2:
 Only drop genes that have duplicate mappings in the input_species.
- "drop_output_species" or "dos" or 3:
 Only drop genes that have duplicate mappings in the output_species.
- "keep_both_species" or "kbs" or 4:
 Keep all genes regardless of whether they have duplicate mappings in either species.
- "keep_popular" or "kp" or 5: Return only the most "popular" interspecies ortholog mappings. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs.
- "sum", "mean", "median", "min" or "max":

 When gene_df is a matrix and gene_output="rownames", these options
 will aggregate many-to-one gene mappings (input_species-to-output_species)
 after dropping any duplicate genes in the output_species.

verbose

Print messages.

Value

Background gene list.

Examples

exp_mouse

Gene expression data: mouse

Description

Mean pseudobulk single-cell RNA-seq gene expression matrix.

Data originally comes from Zeisel et al., 2018 (Cell).

exp_mouse_enst 11

Usage

```
data("exp_mouse")
```

Format

sparse matrix

Source

```
Publication ctd <- ewceData::ctd() exp_mouse <- as(ctd[[1]]$mean_exp, "sparseMatrix")
usethis::use_data(exp_mouse, overwrite = TRUE)</pre>
```

exp_mouse_enst

Transcript expression data: mouse

Description

Mean pseudobulk single-cell RNA-seq Transcript expression matrix.

Data originally comes from Zeisel et al., 2018 (Cell).

Usage

```
data("exp_mouse_enst")
```

Format

sparse matrix

Source

```
Publication data("exp_mouse") mapped_genes <- map_genes(genes = rownames(exp_mouse)[seq(1,100)],
target = "ENST", species = "mouse", drop_na = FALSE) exp_mouse_enst <- exp_mouse[mapped_genes$input,]
rownames(exp_mouse_enst) <- mapped_genes$target all_nas <- orthogene:::find_all_nas(rownames(exp_mouse
exp_mouse_enst <- exp_mouse_enst[!all_nas,] exp_mouse_enst <- phenomix::add_noise(exp_mouse_enst)
usethis::use_data(exp_mouse_enst, overwrite = TRUE)</pre>
```

infer_species

gprofiler_orgs

Reference organisms

Description

Organism for which gene references are available via gProfiler API.

Used as a backup if API is not available.

Usage

```
gprofiler_orgs
```

Format

```
data.frame URL <- 'https://biit.cs.ut.ee/gprofiler/api/util/organisms_list' gprofiler_orgs
<- jsonlite::fromJSON(URL) gprofiler_orgs <- dplyr::arrange(gprofiler_orgs, scientific_name)
usethis::use_data(gprofiler_orgs, overwrite = TRUE, internal=TRUE)</pre>
```

Source

gProfiler site

infer_species

Infer species from gene names

Description

Infers which species the genes within gene_df is from. Iteratively test the percentage of gene_df genes that match with the genes from each test_species.

Usage

```
infer_species(
  gene_df,
  gene_input = "rownames",
  test_species = c("human", "monkey", "rat", "mouse", "zebrafish", "fly"),
  method = c("homologene", "gprofiler", "babelgene"),
  make_plot = TRUE,
  show_plot = TRUE,
  verbose = TRUE
)
```

infer_species 13

Arguments

gene_df

Data object containing the genes (see gene_input for options on how the genes can be stored within the object).

Can be one of the following formats:

• matrix:

A sparse or dense matrix.

• data.frame:

A data.frame, data.table.ortibble.

• codelist:

A list or character vector.

Genes, transcripts, proteins, SNPs, or genomic ranges can be provided in any format (HGNC, Ensembl, RefSeq, UniProt, etc.) and will be automatically converted to gene symbols unless specified otherwise with the . . . arguments. *Note*: If you set method="homologene", you must either supply genes in gene symbol format (e.g. "Sox2") OR set standardise_genes=TRUE.

gene_input

Which aspect of gene_df to get gene names from:

• "rownames":

From row names of data.frame/matrix.

• "colnames":

From column names of data.frame/matrix.

• <column name>:

From a column in gene_df, e.g. "gene_names".

test_species

Which species to test for matches with. If set to NULL, will default to a list of humans and 5 common model organisms. If test_species is set to one of the following options, it will automatically pull all species from that respective package and test against each of them:

- "homologene"20+ species (default)
- "gprofiler"700+ species
- "babelgene"19 species

method

R package to to use for gene mapping:

- "gprofiler": Slower but more species and genes.
- "homologene": Faster but fewer species and genes.
- "babelgene": Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.

make_plot 1

Make a plot of the results.

show_plot

Print the plot of the results.

verbose

Print messages.

Value

An ordered dataframe of test_species from best to worst matches.

14 map_genes

Examples

```
data("exp_mouse")
matches <- infer_species(gene_df = exp_mouse[1:200,])</pre>
```

map_genes

Map genes

Description

Input a list of genes, transcripts, proteins, SNPs, or genomic ranges in any format (HGNC, Ensembl, RefSeq, UniProt, etc.) and return a table with standardised gene symbols (the "names" column).

Usage

```
map_genes(
 genes,
  species = "hsapiens",
  target = "ENSG",
 mthreshold = Inf,
 drop_na = FALSE,
 numeric_ns = "",
 run_map_species = TRUE,
  verbose = TRUE
)
```

Arguments

Gene list. genes species Species to map against. target target namespace. mthreshold maximum number of results per initial alias to show. Shows all by default. Drop all genes without mappings. Sets gprofiler2::gconvert(filter_na=) drop_na as well an additional round of more comprehensive NA filtering by orthogene. namespace to use for fully numeric IDs (list of available namespaces). numeric_ns run_map_species Standardise species names with map_species first (Default: TRUE).

verbose

Print messages.

Details

Uses gconvert. The exact contents of the output table will depend on target parameter. See ?gprofiler2::gconvert for more details.

Value

Table with standardised genes.

15 map_orthologs

Examples

```
"Klf4", "Sox2", "TSPAN12", "NM_173007", "Q8BKT6",
    "ENSMUSG00000012396", "ENSMUSG00000074637"
)
mapped_genes <- map_genes(</pre>
    genes = genes,
    species = "mouse"
```

map_orthologs

Map orthologs

Description

Map orthologs from one species to another.

Usage

```
map_orthologs(
  genes,
  standardise_genes = FALSE,
  input_species,
  output_species = "human",
 method = c("gprofiler", "homologene"),
 mthreshold = Inf,
 verbose = TRUE,
)
```

Arguments

genes

can be a mixture of any format (HGNC, Ensembl, RefSeq, UniProt, etc.) and will be automatically converted to standardised HGNC symbol format.

standardise_genes

If TRUE AND gene_output="columns", a new column "input_gene_standard" will be added to gene_df containing standardised HGNC symbols identified by gorth.

input_species

Name of the input species (e.g., "mouse", "fly"). Use map_species to return a full list of available species.

output_species Name of the output species (e.g. "human", "chicken"). Use map_species to return a full list of available species.

method

R package to to use for gene mapping:

- "gprofiler": Slower but more species and genes.
- "homologene": Faster but fewer species and genes.

map_species

• "babelgene": Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.

mthreshold

Maximum number of ortholog names per gene to show. Passed to gorth. Only used when method="gprofiler" (*DEFAULT*: Inf).

verbose

Print messages.

. . .

Additional arguments to be passed to gorth or homologene.

NOTE: To return only the most "popular" interspecies ortholog mappings, supply mthreshold=1 here AND set method="gprofiler" above. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs.

For more details, please see here.

Details

map_orthologs() is a core function within convert_orthologs(), but does not have many of the extra checks, such as non121_strategy) and drop_nonorths.

Value

Ortholog map data.frame with at least the columns "input_gene" and "ortholog_gene".

Examples

```
data("exp_mouse")
gene_map <- map_orthologs(
    genes = rownames(exp_mouse),
    input_species = "mouse"
)</pre>
```

map_species

Standardise species names

Description

Search gprofiler database for species that match the input text string. Then translate to a standardised species ID.

Usage

```
map_species(
  species = NULL,
  search_cols = c("display_name", "id", "scientific_name", "taxonomy_id"),
  output_format = c("scientific_name", "id", "display_name", "taxonomy_id", "version"),
  method = c("homologene", "gprofiler", "babelgene"),
  use_local = TRUE,
  verbose = TRUE
)
```

plot_orthotree 17

Arguments

species Species query (e.g. "human", "homo sapiens", "hapiens", or 9606). If given a

list, will iterate queries for each item. Set to NULL to return all species.

search_cols Which columns to search for species substring in metadata API.

output_format Which column to return.

method R package to to use for gene mapping:

• "gprofiler": Slower but more species and genes.

• "homologene": Faster but fewer species and genes.

• "babelgene": Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.

use_local If TRUE default, map_species uses a locally stored version of the species meta-

data table instead of pulling directly from the gprofiler API. Local version may

not be fully up to date, but should suffice for most use cases.

verbose Print messages.

Value

Species ID of type output_format

Examples

```
ids <- map_species(species = c(
   "human", 9606, "mus musculus",
   "fly", "C elegans"
))</pre>
```

plot_orthotree

Create a phylogenetic tree of shared orthologs

Description

Automatically creates a phylogenetic tree plot annotated with metadata describing how many orthologous genes each species shares with the reference_species ("human" by default).

Usage

```
plot_orthotree(
    tree = NULL,
    orth_report = NULL,
    species = NULL,
    method = c("homologene", "gprofiler", "babelgene"),
    reference_species = "human",
    clades = list(Primates = c("Homo sapiens", "Macaca mulatta"), Eutherians =
        c("Homo sapiens", "Mus musculus", "Bos taurus"), Mammals = c("Homo sapiens",
    "Mus musculus", "Bos taurus", "Ornithorhynchus anatinus", "Monodelphis domestica"),
```

18 plot_orthotree

Arguments

tree A phylogenetic tree of class phylo. If no tree is provided (NULL) a 100-way

multiz tree will be imported from UCSC Genome Browser.

orth_report An ortholog report from one or more species generated by report_orthologs.

species Species to include in the final plot. If NULL, then all species from the given

database (method) will be included (via map_species), so long as they also exist

in the tree.

method R package to to use for gene mapping:

• "gprofiler": Slower but more species and genes.

• "homologene": Faster but fewer species and genes.

• "babelgene": Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.

reference_species

Reference species.

clades A named list of clades each containing list fo species to define the respective

clade using MRCA.

show_plot Whether to print the final tree plot.

save_paths Paths to save plot to.

width Plot size in units ("in", "cm", "mm", or "px"). If not supplied, uses the size of

current graphics device.

height Plot size in units ("in", "cm", "mm", or "px"). If not supplied, uses the size of

current graphics device.

mc.cores Number of cores to parallelise different steps with.

verbose Print messages.

Value

A list containing:

plot : Annotated ggtree object.

• tree: The pruned, standardised phylogenetic tree used in the plot.

• orth_report : Ortholog reports for each species against the reference_species.

• metadata: Metadata used in the plot, including silhouette PNG ids from phylopic.

prepare_tree 19

- clades: Metadata used for highlighting clades.
- method: method used.
- reference_species : reference_species used.
- save_paths : save_paths to plot.

Source

```
ggtree tutorial
```

Examples

```
orthotree <- orthogene::plot_orthotree(species = c("human", "monkey", "mouse"))</pre>
```

prepare_tree

Prepare a phylogenetic tree

Description

Import a phylogenetic tree and then conduct a series of optional standardisation steps. Optionally, if output_format is not NULL, species names from both the tree and the species argument will first be standardised using map_species.

Usage

```
prepare_tree(
   tree_path = file.path("http://hgdownload.soe.ucsc.edu/goldenPath",
        "hg38/multiz100way", "hg38.100way.scientificNames.nh"),
   species = NULL,
   output_format = "scientific_name",
   run_map_species = c(TRUE, TRUE),
   method = c("gprofiler", "homologene", "babelgene"),
   force_ultrametric = TRUE,
   age_max = NULL,
   show_plot = TRUE,
   verbose = TRUE,
   ...
)
```

Arguments

```
tree_path Local path or URL to tree to import with read.tree.

species Species names to subset the tree by (after standardise_species step).

output_format Which column to return.

run_map_species

Whether to first standardise species names with map_species.
```

method R package to to use for gene mapping:

20 report_orthologs

- "gprofiler": Slower but more species and genes.
- "homologene": Faster but fewer species and genes.
- "babelgene": Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.

force_ultrametric

Whether to force the tree to be ultrametric (i.e. make all tips the same date)

using force.ultrametric.

age_max Rescale the edges of the tree into units of millions of years (MY) instead than

evolutionary rates (e.g. dN/dS ratios). Only used if age_max , the max number ,

is numeric. Times are computed using makeChronosCalib and chronos.

show_plot Show a basic plot of the resulting tree.

verbose Print messages.

.. Additional arguments passed to makeChronosCalib.

Value

A filtered tree of class "phylo" (with standardised species names).

Examples

```
species <- c("human","chimp","mouse")
tr <- orthogene::prepare_tree(species = species)</pre>
```

report_orthologs

Report orthologs

Description

Identify the number of orthologous genes between two species.

Usage

```
report_orthologs(
  target_species = "mouse",
  reference_species = "human",
  standardise_genes = FALSE,
  method_all_genes = c("homologene", "gprofiler", "babelgene"),
  method_convert_orthologs = method_all_genes,
  drop_nonorths = TRUE,
  non121_strategy = "drop_both_species",
  round_digits = 2,
  return_report = TRUE,
  mc.cores = 1,
  verbose = TRUE,
  ...
)
```

report_orthologs 21

Arguments

target_species Target species.

reference_species

Reference species.

standardise_genes

If TRUE AND gene_output="columns", a new column "input_gene_standard" will be added to gene_df containing standardised HGNC symbols identified by gorth.

method_all_genes

R package to to use in all_genes step:

- "gprofiler": Slower but more species and genes.
- "homologene": Faster but fewer species and genes.
- "babelgene": Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.

method_convert_orthologs

R package to to use in convert_orthologs step:

- "gprofiler": Slower but more species and genes.
- "homologene": Faster but fewer species and genes.
- "babelgene": Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.

drop_nonorths Drop genes that don't have an ortholog in the output_species. non121_strategy

How to handle genes that don't have 1:1 mappings between input_species:output_species. Options include:

- "drop_both_species" or "dbs" or 1:
 Drop genes that have duplicate mappings in either the input_species or output_species
 (DEFAULT).
- "drop_input_species" or "dis" or 2:
 Only drop genes that have duplicate mappings in the input_species.
- "drop_output_species" or "dos" or 3:
 Only drop genes that have duplicate mappings in the output_species.
- "keep_both_species" or "kbs" or 4:
 Keep all genes regardless of whether they have duplicate mappings in either species.
- "keep_popular" or "kp" or 5:
 Return only the most "popular" interspecies ortholog mappings. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs.
- "sum", "mean", "median", "min" or "max":

 When gene_df is a matrix and gene_output="rownames", these options
 will aggregate many-to-one gene mappings (input_species-to-output_species)
 after dropping any duplicate genes in the output_species.

22 report_orthologs

Number of digits to round to when printing percentages. round_digits

return_report Return just the ortholog mapping between two species (FALSE) or return both

the ortholog mapping as well a data. frame of the report statistics (TRUE).

Number of cores to parallelise each target_species with. mc.cores

verbose Print messages.

Additional arguments to be passed to gorth or homologene.

NOTE: To return only the most "popular" interspecies ortholog mappings, supply mthreshold=1 here AND set method="gprofiler" above. This procedure tends to yield a greater number of returned genes but at the cost of many of them

not being true biological 1:1 orthologs.

For more details, please see here.

Value

A list containing:

- map: A table of inter-species gene mappings.
- report : A list of aggregate orthology report statistics.

If >1 target_species are provided, then a table of aggregated report statistics concatenated across species will be returned instead.

Examples

```
orth_fly <- orthogene::report_orthologs(</pre>
    target_species = "fly",
    reference_species = "human"
)
```

Index

```
* datasets
    exp_mouse, 10
    exp\_mouse\_enst, 11
    gprofiler_orgs, 12
aggregate_mapped_genes, 3
all_genes, 4, 21
chronos, 20
convert_orthologs, 5, 21
create\_background, 9
DelayedArray, 4
exp\_mouse, 10
exp_mouse_enst, 11
force.ultrametric, 20
gconvert, 5, 14
gorth, 7, 8, 15, 16, 21, 22
gprofiler_orgs, 12
homologene, 8, 16, 22
homologeneData, 5
infer_species, 12
makeChronosCalib, 20
map\_genes, 3, 9, 14
map_orthologs, 9, 15
map_species, 5, 7, 14, 15, 16, 17-19
MRCA, 18
orthogene (orthogene-package), 2
orthogene-package, 2
phylo, 18
plot_orthotree, 17
prepare_tree, 19
read.tree, 19
report_orthologs, 18, 20
```