
Package ‘miaSim’
October 13, 2022

Type Package

Version 1.2.0

Title Microbiome Data Simulation

Description Microbiome time series simulation with generalized Lotka-Volterra model,
Self-Organized Instability (SOI), and other models. Hubbell's Neutral model
is used to determine the abundance matrix. The resulting abundance matrix
is applied to SummarizedExperiment or TreeSummarizedExperiment objects.

License Artistic-2.0 | file LICENSE

biocViews Microbiome, Software, Sequencing, DNASeq, ATACSeq, Coverage,
Network

Encoding UTF-8

LazyData false

RoxygenNote 7.1.2

Depends SummarizedExperiment, TreeSummarizedExperiment

Imports deSolve, stats, poweRlaw, gtools, S4Vectors, MatrixGenerics

Suggests rmarkdown, knitr, BiocStyle, testthat

URL https://github.com/microbiome/miaSim

BugReports https://github.com/microbiome/miaSim/issues

Roxygen list(markdown = TRUE)

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/miaSim

git_branch RELEASE_3_15

git_last_commit 496a898

git_last_commit_date 2022-04-26

Date/Publication 2022-10-13

Author Karoline Faust [aut],
Yu Gao [aut],
Emma Gheysen [aut],
Daniel Rios Garza [aut],

1

https://github.com/microbiome/miaSim
https://github.com/microbiome/miaSim/issues

2 convertToSE

Yagmur Simsek [cre, aut],
Leo Lahti [aut] (<https://orcid.org/0000-0001-5537-637X>)

Maintainer Yagmur Simsek <yagmur.simsek@hsrw.org>

R topics documented:
convertToSE . 2
powerlawA . 3
randomA . 4
randomE . 5
simulateConsumerResource . 6
simulateGLV . 7
simulateHubbell . 9
simulateHubbellRates . 10
simulateRicker . 11
simulateSOI . 13
simulateStochasticLogistic . 14

Index 16

convertToSE SummarizedExperiment(SE) or TreeSE construction function

Description

Storing the data in SummarizedExperiment enables access to various tools for further analysis of
data. A large number of Bioconductor packages contain extension of SummarizedExperiment class.
SummarizedExperiment class offers data and metadata synchronization, while still accommodating
specialized data structures for particular scientific applications.

Usage

convertToSE(matrix, output, ...)

Arguments

matrix is a matrix-like or list of matrix-like object. Rows refer to taxa and columns
refer to samples.

output character value for storing the matrix in either TreeSummarizedExperiment (output
= TSE) or SummarizedExperiment (default: output = SE)

... : additional parameters that can be implemented in the SE object.

Details

Further examples for SE object manipulation and analysis can be found at https://microbiome.github.io/OMA/

The resulting abundance matrix from the simulation functions used in miaSim can be easily con-
verted to SummarizedExperiment class object.

https://orcid.org/0000-0001-5537-637X

powerlawA 3

Value

SummarizedExperiment an object containing abundance matrix

Examples

ExampleHubbellRates <- simulateHubbellRates(
community_initial = c(0,5,10), migration_p = 0.01,
metacommunity_p = NULL, k_events = 1, growth_rates = NULL, norm = FALSE,
t_end=1000)

HubbellSE <- convertToSE(matrix = ExampleHubbellRates$counts,
colData = ExampleHubbellRates$time,
metadata = ExampleHubbellRates$metadata)

powerlawA Interaction matrix with Power-Law network adjacency matrix

Description

Where N is the an Interspecific Interaction matrix with values drawn from a normal distribution
H the interaction strength heterogeneity drawn from a power-law distribution with the parameter
alpha, and G the adjacency matrix of with out-degree that reflects the heterogeneity of the powerlaw.
A scaling factor s may be used to constrain the values of the interaction matrix to be within a desired
range. Diagonal elements of A are defined by the parameter d.

Usage

powerlawA(n_species, alpha = 3, stdev = 1, s = 0.1, d = -1, symmetric = FALSE)

Arguments

n_species integer number of species

alpha numeric power-law distribution parameter. Should be > 1. (default: alpha =
3.0) Larger values will give lower interaction strength heterogeneity, whereas
values closer to 1 give strong heterogeneity in interaction strengths between the
species. In other words, values of alpha close to 1 will give Strongly Interacting
Species (SIS).

stdev numeric standard deviation parameter of the normal distribution with mean 0
from which the elements of the nominal interspecific interaction matrix N are
drawn. (default: stdev = 1)

s numeric scaling parameter with which the final global interaction matrix A is
multiplied. (default: s = 0.1)

d numeric diagonal values, indicating self-interactions (use negative values for
stability). (default: s = 1.0)

symmetric logical scalar returning a symmetric interaction matrix (default: symmetric=FALSE)

4 randomA

Value

The interaction matrix A with dimensions (n_species x n_species)

References

Gibson TE, Bashan A, Cao HT, Weiss ST, Liu YY (2016) On the Origins and Control of Community
Types in the Human Microbiome. PLOS Computational Biology 12(2): e1004688. https://doi.org/10.1371/journal.pcbi.1004688

Examples

Low interaction heterogeneity
A_low <- powerlawA(n_species = 10, alpha = 3)
Strong interaction heterogeneity
A_strong <- powerlawA(n_species = 10, alpha = 1.01)

randomA Generate random uniform interaction matrix

Description

Generate random simplified interaction matrix from a uniform distribution.

Usage

randomA(
n_species,
d = -0.5,
min_strength = -0.5,
max_strength = 0.5,
connectance = 0.02,
symmetric = FALSE

)

Arguments

n_species integer number of species

d numeric diagonal values (should be negative) (default: d = -0.5)

min_strength numeric value of minimal off-diagonal interaction strength (default: min_strength
= -0.5)

max_strength numeric value of maximal off-diagonal interaction strength (default: max_strength
= 0.5)

connectance numeric interaction probability (default: connectance = 0.02)

symmetric logical scalar returning a symmetric interaction matrix (default: symmetric=FALSE)

randomE 5

Value

randomA returns a matrix A with dimensions (n_species x n_species)

Examples

high_inter_A <- randomA(n_species = 10, d = -0.4, min_strength = -0.8,
max_strength = 0.8, connectance = 0.5)

low_inter_A <- randomA(n_species = 10, connectance = 0.01)

randomE Generate random efficiency matrix

Description

Generate random efficiency matrix for consumer resource model from Dirichlet distribution. Pos-
itive efficiencies indicate the consumption of resources, whilst negatives indicate that the species
would produce the resource.

Usage

randomE(
n_species,
n_resources,
min_con = round(n_resources/4),
max_con = round(n_resources/3),
min_prod = round(n_resources/6),
max_prod = round(n_resources/4),
maintenance = 0.5

)

Arguments

n_species integer number of species

n_resources integer number of resources

min_con integer minimum number of resources consumed by each species

max_con integer maximum number of resources consumed by each species

min_prod integer minimum number of resources produced by each species

max_prod integer maximum number of resources produced by each species

maintenance numeric value between 0~1 the proportion of resources used to maintain the
living of microorganisms. 0 means all the resources will be used for the re-
production of microorganisms, and 1 means all the resources would be used
to maintain the living of organisms and no resources would be left for their
growth(reproduction).

6 simulateConsumerResource

Value

randomE returns a matrix E with dimensions (n_species x n_resources), and each row represents a
species.

Examples

example with minimum parameters
ExampleEfficiencyMatrix2 <- randomE(n_species = 5, n_resources = 12)

simulateConsumerResource

Consumer-resource model simulation

Description

Simulates a community time series using the consumer-resource model. The change rate of each
species was defined as dx/dt = mumax*sum(monod)*X, where mumax is the vector of maximum
growth rates for the species, monod is the monod growth rate, S/(Ks+S), where S is the concentra-
tion of the limiting resource, and Ks is the half-velocity constant for species X and S. X is the vector
of abundances of species. The concentrations of resource will be set to 0 if they were calculated
less than 0 during the iteration.

Usage

simulateConsumerResource(
n_species,
n_resources,
eff = randomE(n_species, n_resources),
consumers = runif(n = n_species, min = 0.1, max = 10),
resources = runif(n = n_resources, min = 1, max = 100),
mumax = rep(1, n_species),
k_table = matrix(rgamma(n = n_species * n_resources, shape = 50, rate = 0.25), nrow =

n_species),
t_end = 1000,
...

)

Arguments

n_species integer number of species

n_resources interger number of resources

eff a matrix of efficiency. How efficient are resources converted into biomass, neg-
ative values represent excreted resources (default: eff = randomE(n_species,
n_resources))

consumers numeric vector of species (default: consumers = runif(n = n_species, min =
0.1, max = 10))

simulateGLV 7

resources numeric vector of resources (default: resources = runif(n = n_resources,
min = 1, max = 100))

mumax numeric vector of maximum mu of species (default: mumax = rep(1, n_species))
k_table a matrix of K values in monod model (default: k_table = matrix(rgamma(n=n_species*n_resources,shape

= 50, rate = 0.25), nrow = n_species))
t_end numeric scalar indicating the final time of the simulation (default: t_end =

1000)
... additional parameters including ’t_start’, ’t_step’, and ’t_store’

Value

an abundance matrix with species and resources abundance as rows and time points as columns

See Also

convertToSE

Examples

example1 users provide least parameters.
ExampleConsumerResource <- simulateConsumerResource(n_species = 2,
n_resources = 4)

simulateGLV Generalized Lotka-Volterra (gLV) simulation

Description

Simulates time series with the generalized Lotka-Volterra model.

Usage

simulateGLV(
n_species,
A,
x = runif(n_species),
b = runif(n_species),
sigma_drift = 0.01,
sigma_epoch = 0.3,
sigma_external = 0.3,
p_epoch = 0.01,
t_external_events = c(12, 36, 48),
t_external_durations = c(3, 10, 99),
stochastic = FALSE,
norm = FALSE,
t_end = 1000,
...

)

8 simulateGLV

Arguments

n_species integer number of species

A interaction matrix

x numeric initial abundances

b numeric growth rates

sigma_drift numeric degree of drift (turnover of species) in each time step. (default: sigma_drift
= 0.01)

sigma_epoch numeric degree of epoch change of community (default: sigma_epoch = 0.3)

sigma_external numeric degree of the external events/disturbances (default: sigma_external =
0.3)

p_epoch numeric value of the probability/frequency of inherit periodic changes of com-
munity (default: p_epoch = 0.01)

t_external_events

numeric value of starting times of external events (default: t_external_events
= c(12, 36, 48))

t_external_durations

numeric durations of external events (default: t_external_durations = c(3,
10, 99))

stochastic logical scalar choosing whether the gLV model should be stochastic (default:
stochastic = FALSE)

norm logical scalar returning normalised abundances (proportions in each generation)
(default: norm = FALSE)

t_end numeric value of simulation end time (default: t_end = 1000)

... additional parameters including ’t_start’, ’t_step’, and ’t_store’

Details

Simulates a community time series using the generalized Lotka-Volterra model, defined as dx/dt =
x(b+Ax), where x is the vector of species abundances, diag(x) is a diagonal matrix with the diagonal
values set to x. A is the interaction matrix and b is the vector of growth rates.

Value

simulateGLV returns an abundance matrix

See Also

convertToSE

Examples

A <- miaSim::powerlawA(4, alpha = 1.01)

ExampleGLV <- simulateGLV(n_species = 4, A, t_end = 1000)

simulateHubbell 9

simulateHubbell Hubbell’s neutral model simulation

Description

Neutral species abundances simulation according to the Hubbell model.

Usage

simulateHubbell(
n_species,
M,
I = 1000,
d = 10,
m = 0.02,
tskip = 0,
tend,
norm = FALSE

)

Arguments

n_species integer amount of different species initially in the local community
M integer amount of different species in the metacommunity, including those of

the local community
I integer value of fixed amount of individuals in the local community (default: I

= 1000)
d integer value of fixed amount of deaths of local community individuals in each

generation (default: d = 10)
m numeric immigration rate: the probability that a death in the local community is

replaced by a migrant of the metacommunity rather than by the birth of a local
community member (default: m = 0.02)

tskip integer number of generations that should not be included in the outputted species
abundance matrix. (default: tskip = 0)

tend integer number of simulations to be simulated
norm logical scalar choosing whether the time series should be returned with the abun-

dances as proportions (norm = TRUE) or the raw counts (default: norm = FALSE)

Value

simulateHubbell returns an abundance matrix with species abundance as rows and time points as
columns

References

Rosindell, James et al. "The unified neutral theory of biodiversity and biogeography at age ten."
Trends in ecology & evolution vol. 26,7 (2011).

10 simulateHubbellRates

See Also

convertToSE

Examples

ExampleHubbell <- simulateHubbell(n_species = 8, M = 10, I = 1000, d = 50,
m = 0.02, tend = 100)

simulateHubbellRates Hubbell’s neutral model simulation applied to time series

Description

Neutral species abundances simulation according to the Hubbell model. This model shows that
losses in society can be replaced either by the birth of individuals or by immigration depending on
their probabilities. The specific time between the events of birth or migration is calculated and time
effect is considered to determine the next event.

Usage

simulateHubbellRates(
community_initial,
migration_p = 0.1,
metacommunity_p = NULL,
k_events = 1,
growth_rates = NULL,
norm = FALSE,
t_end = 1000,
list = TRUE,
...

)

Arguments

community_initial

numeric value a vector of integers, containing species counts greater or equal to
zero.

migration_p numeric immigration possibility. It defines the probability of migration when
replacement is needed in the community. The value can be between 0 and 1.
The sum of the probability of migration and the probability birth must be 1.

metacommunity_p

numeric value the probability of a species being found in the metacommunity.

k_events integer number of steps performed at a time point. It can be equal or more than
1. Bigger k_events increases speed while decreasing precision.

growth_rates numeric rate of change in community size.

simulateRicker 11

norm logical scalar choosing whether the time series should be returned with the abun-
dances as proportions (norm = TRUE) or the raw counts (default: norm = FALSE)

t_end numeric value of simulation end time (default: t_end = 1000)

list logical scalar deciding whether output is a list object or not (default: norm =
TRUE)

... additional parameters including ’t_start’, ’t_step’, and ’t_store’

Value

a community abundance matrix or a list object that contains growth rates, time points and metacom-
munity probabilities

References

Rosindell J, Hubbell SP, Etienne RS. The unified neutral theory of biodiversity and biogeography
at age ten. Trends Ecol Evol. 2011 Jul;26(7):340-8. doi: 10.1016/j.tree.2011.03.024. Epub 2011
May 10. PMID: 21561679.

See Also

convertToSE

Examples

ExampleHubbellRates <- simulateHubbellRates(community_initial = c(0,5,10),
migration_p = 0.01, metacommunity_p = NULL, k_events = 1,
growth_rates = NULL, norm = FALSE, t_end=1000)

simulateRicker Generate time series with the Ricker model

Description

The Ricker model is a discrete version of the generalized Lotka-Volterra model and is implemented
here as proposed by Fisher and Mehta in PLoS ONE 2014.

Usage

simulateRicker(
n_species,
A,
x = runif(n_species),
K = runif(n_species),
sigma = 0.05,
explosion_bound = 10^8,
tskip = 0,

12 simulateRicker

tend,
norm = FALSE

)

Arguments

n_species integer number of species

A interaction matrix

x numeric initial abundances

K numeric carrying capacities

sigma numeric value of noise level, if set to a non-positive value, no noise is added
(default: sigma = 0.05)

explosion_bound

numeric value of boundary for explosion (default: explosion_bound = 10^8)

tskip integer number of generations that should not be included in the outputted species
abundance matrix (default: tskip = 0)

tend integer number of simulations to be simulated

norm logical scalar returning normalised abundances (proportions in each generation)
(default: norm = FALSE)

Value

simulateRicker returns an abundance matrix with species abundance as rows and time points as
columns

References

Fisher & Mehta (2014). Identifying Keystone Species in the Human Gut Microbiome from Metage-
nomic Timeseries using Sparse Linear Regression. PLoS One 9:e102451

See Also

convertToSE

Examples

A <- powerlawA(10, alpha = 1.01)
ExampleRicker <- simulateRicker(n_species=10,A,tend=100)

simulateSOI 13

simulateSOI Self-Organised Instability model (SOI) simulation

Description

Generate time-series with The Self-Organised Instability (SOI) model. Implements a K-leap method
for accelerating stochastic simulation.

Usage

simulateSOI(n_species, I, A, k = 5, com = NULL, tend, norm = FALSE)

Arguments

n_species integer number of species

I integer community size, number of available sites (individuals)

A interaction matrix

k integer number of transition events that are allowed to take place during one
leap. (default: k = 5). Higher values reduce runtime, but also accuracy of the
simulation.

com a vector of initial community abundances If (default: com = NULL), based on
migration rates

tend integer timepoints to be returned in the time series (number of generations)

norm logical scalar indicating whether the time series should be returned with the
abundances as proportions (norm = TRUE) or the raw counts (default: norm =
FALSE)

Value

abundance matrix consisting of species abundance as rows and time points as columns

See Also

convertToSE

Examples

A <- miaSim::powerlawA(10, alpha = 1.2)

ExampleSOI <- simulateSOI(n_species = 10, I = 1000, A, k=5, com = NULL,
tend = 150, norm = TRUE)

14 simulateStochasticLogistic

simulateStochasticLogistic

Stochastic Logistic simulation

Description

Simulates a community time series using the logistic model. The change rate of the species was
defined as dx/dt = b*x*(1-(x/k))*rN - dr*x, where b is the vector of growth rates, x is the vector
of initial species abundances, k is the vector of maximum carrying capacities, rN is a random
number ranged from 0 to 1 which changes in each time step, dr is the vector of constant death rates.
Also, the vectors of initial dead species abundances can be set. The number of species will be set to
0 if the dead species abundances surpass the alive species abundances.

Usage

simulateStochasticLogistic(
n_species,
b = runif(n = n_species, min = 0.1, max = 0.2),
k = runif(n = n_species, min = 1000, max = 2000),
dr = runif(n = n_species, min = 5e-04, max = 0.0025),
x = runif(n = n_species, min = 0.1, max = 10),
sigma_drift = 0.001,
sigma_epoch = 0.1,
sigma_external = 0.3,
p_epoch = 0.001,
t_external_events = c(0, 240, 480),
t_external_durations = c(0, 1, 1),
stochastic = TRUE,
t_end = 1000,
...

)

Arguments

n_species integer number of species

b numeric growth rates (default: b = runif(n = n_species, min = 0.1, max = 0.2))

k numeric value of carrying capacities (default: k = runif(n = n_species, min =
1000, max = 2000))

dr numeric value of death rates (default: dr = runif(n = n_species, min = 0.0005,
max = 0.0025))

x numeric initial abundances (default: x = runif(n = n_species, min = 0.1, max
= 10))

sigma_drift numeric degree of drift (turnover of species) in each time step. (default: sigma_drift
= 0.001)

sigma_epoch numeric degree of epoch change of community (default: sigma_epoch = 0.1)

simulateStochasticLogistic 15

sigma_external numeric degree of external events/disturbances (default: sigma_external = 0.3)

p_epoch numeric value of probability/frequency of inherit periodic changes of commu-
nity (default: p_epoch = 0.001)

t_external_events

numeric value of starting times of external events (default: t_external_events
= c(0, 240, 480))

t_external_durations

numeric value of durations of external events (default: t_external_durations
= c(0, 1, 1))

stochastic logical scalar choosing whether the logistic model should be stochastic (con-
trolled by multiplying the growth rate by a random number) (default: stochastic
= TRUE)

t_end numeric final time of the simulation (default: t_end = 1000)

... additional parameters including ’t_start’, ’t_step’, and ’t_store’

Value

simulateStochasticLogistic returns an abundance matrix with species abundance as rows and
time points as columns

See Also

convertToSE

Examples

ATTENTION: Don't set a large value to t.step, otherwise the computer won't
#give a correct solution to the logistic ODE(ordinary differential equation).
#Keeping t_step under 0.05 or 0.01 is a good practice.

#while (!exists("ExampleLogistic"))
ExampleLogistic <- simulateStochasticLogistic(n_species = 5)
#plot the calculated points
matplot(ExampleLogistic, type = "l")

#calculation by setting initial parameters explicitly
ExampleLogistic2 <- simulateStochasticLogistic(n_species = 2,
b = c(0.2, 0.1), k = c(1000, 2000), dr = c(0.001, 0.0015), x = c(3, 0.1),
sigma_drift = 0.001, sigma_epoch = 0.3, sigma_external = 0.5,p_epoch = 0.001,
t_external_events = c(100, 200, 300), t_external_durations = c(1, 2, 3),
t_start = 0, t_end = 1500, t_step = 0.01,
t_store = 1500, stochastic = TRUE)

Index

convertToSE, 2, 7, 8, 10–13, 15

powerlawA, 3

randomA, 4
randomE, 5

simulateConsumerResource, 6
simulateGLV, 7
simulateHubbell, 9
simulateHubbellRates, 10
simulateRicker, 11
simulateSOI, 13
simulateStochasticLogistic, 14
SummarizedExperiment, 2, 3

TreeSummarizedExperiment, 2

16

	convertToSE
	powerlawA
	randomA
	randomE
	simulateConsumerResource
	simulateGLV
	simulateHubbell
	simulateHubbellRates
	simulateRicker
	simulateSOI
	simulateStochasticLogistic
	Index

