
Package ‘bigPint’
October 18, 2022

Version 1.12.0

Title Big multivariate data plotted interactively

Description Methods for visualizing large multivariate datasets using static and interactive scatter-
plot matrices, parallel coordinate plots, volcano plots, and litre plots. Includes examples for visu-
alizing RNA-sequencing datasets and differentially expressed genes.

License GPL-3

Depends R (>= 3.6.0)

Imports DelayedArray (>= 0.12.2), dplyr (>= 0.7.2), GGally (>= 1.3.2),
ggplot2 (>= 2.2.1), graphics (>= 3.5.0), grDevices (>= 3.5.0),
grid (>= 3.5.0), gridExtra (>= 2.3), hexbin (>= 1.27.1), Hmisc
(>= 4.0.3), htmlwidgets (>= 0.9), methods (>= 3.5.2), plotly
(>= 4.7.1), plyr (>= 1.8.4), RColorBrewer (>= 1.1.2), reshape
(>= 0.8.7), shiny (>= 1.0.5), shinycssloaders (>= 0.2.0),
shinydashboard (>= 0.6.1), stats (>= 3.5.0), stringr (>=
1.3.1), SummarizedExperiment (>= 1.16.1), tidyr (>= 0.7.0),
utils (>= 3.5.0)

VignetteBuilder knitr

Suggests BiocGenerics (>= 0.29.1), data.table (>= 1.11.8), EDASeq (>=
2.14.0), edgeR (>= 3.22.2), gtools (>= 3.5.0), knitr (>= 1.13),
matrixStats (>= 0.53.1), rmarkdown (>= 1.10), roxygen2 (>=
3.0.0), RUnit (>= 0.4.32), tibble (>= 1.4.2),

biocViews Clustering, DataImport, DifferentialExpression,
GeneExpression, MultipleComparison, Normalization,
Preprocessing, QualityControl, RNASeq, Sequencing, Software,
Transcription, Visualization

RoxygenNote 7.1.0

BugReports https://github.com/lindsayrutter/bigPint/issues

URL https://github.com/lindsayrutter/bigPint

NeedsCompilation no

LazyData true

Encoding UTF-8

1

https://github.com/lindsayrutter/bigPint/issues
https://github.com/lindsayrutter/bigPint

2 bigPint

git_url https://git.bioconductor.org/packages/bigPint

git_branch RELEASE_3_15

git_last_commit d0aeb8f

git_last_commit_date 2022-04-26

Date/Publication 2022-10-18

Author Lindsay Rutter [aut, cre],
Dianne Cook [aut]

Maintainer Lindsay Rutter <lindsayannerutter@gmail.com>

R topics documented:
bigPint . 2
convertSEPair . 3
convertSESubsetGenes . 4
plotClusters . 4
plotLitre . 10
plotLitreApp . 12
plotPCP . 14
plotPCPApp . 17
plotSM . 19
plotSMApp . 24
plotVolcano . 25
plotVolcanoApp . 28
se_soybean_cn_sub . 30
se_soybean_ir_sub . 31
soybean_cn . 33
soybean_cn_metrics . 34
soybean_cn_sub . 34
soybean_cn_sub_metrics . 35
soybean_ir . 36
soybean_ir_metrics . 37
soybean_ir_sub . 37
soybean_ir_sub_metrics . 38

Index 40

bigPint bigPint package

Description

bigPint R API

Details

See the README on GitHub

https://github.com/lindsayrutter/bigPint#readme

convertSEPair 3

convertSEPair Convert SummarizedExperiment to contain defined treatment pair

Description

Reduce a SummarizedExperiment object that initially contains more than two treatment groups to
now only contain a user-specified subset pair of treatment groups. Note that this function is only
necesary for users using the SummarizedExperiment input object (instead of the combination of
data and dataMetrics input objects.)

Usage

convertSEPair(dataSE, group1, group2)

Arguments

dataSE SUMMARIZEDEXPERIMENT | Summarized experiment format that can be
used in lieu of data and dataMetrics

group1 CHARACTER STRING | Name of one treatment group that will remain in the
dataSE object

group2 CHARACTER STRING | Name of second treatment group that will remain in
the dataSE object

Value

A new dataSE object that is a subset of the input dataSE in that it now only contains the user-
specified pair of treatment groups.

Examples

Example: Read in example SummarizedExperiment object that contains three
treatment groups (S1, S2, and S3). Reduce it to now only contain two
treatment groups (S1 and S3).

data(se_soybean_cn_sub)
se_soybean_cn_sub_2 <- convertSEPair(se_soybean_cn_sub, "S1", "S3")

4 plotClusters

convertSESubsetGenes Convert SummarizedExperiment to only contain defined genes

Description

Reduce a SummarizedExperiment object so that it only now contains a subset of genes.

Usage

convertSESubsetGenes(dataSE, geneList)

Arguments

dataSE SUMMARIZEDEXPERIMENT | Summarized experiment format that can be
used in lieu of data and dataMetrics

geneList CHARACTER ARRAY | List of gene IDs to remain in dataSE

Value

A new dataSE object that is a subset of the input dataSE in that it now only contains the user-
specified list of genes.

Examples

Example: Read in example SummarizedExperiment object that originally
contains 5604 genes. Reduce it to now only contain ten genes (specifically
the ones with the lowest FDR).

suppressMessages(library(dplyr))
suppressMessages(library(SummarizedExperiment))
data(se_soybean_ir_sub)
geneList <- as.data.frame(rowData(se_soybean_ir_sub)) %>%

arrange(N_P.FDR) %>% filter(row_number() <= 10)
geneList <- geneList[,1]
se_soybean_ir_sub_2 <- convertSESubsetGenes(se_soybean_ir_sub, geneList)

plotClusters Plot static parallel coordinate clusters

Description

Perform hierarchical clustering analysis and visualize results with parallel coordinate plots. Option-
ally, save gene IDs within each cluster to .rds files for later use.

plotClusters 5

Usage

plotClusters(
data,
dataMetrics = NULL,
dataSE = NULL,
geneList = NULL,
geneLists = NULL,
threshVar = "FDR",
threshVal = 0.05,
clusterAllData = TRUE,
showPairs = TRUE,
nC = 4,
colList = rainbow(nC),
aggMethod = c("ward.D", "ward.D2", "single", "complete", "average", "mcquitty",

"median", "centroid"),
yAxisLabel = "Count",
xAxisLabel = "Sample",
lineSize = 0.1,
lineAlpha = 0.5,
vxAxis = FALSE,
outDir = tempdir(),
saveFile = TRUE,
verbose = FALSE

)

Arguments

data DATA FRAME | Read counts

dataMetrics LIST | Differential expression metrics; default NULL

dataSE SUMMARIZEDEXPERIMENT | Summarized experiment format that can be
used in lieu of data and dataMetrics; default NULL

geneList CHARACTER ARRAY | Array of ID values of genes to be drawn from data as
parallel coordinate lines. Use this parameter if you have predetermined genes to
be drawn. These genes will be clustered. Otherwise, use dataMetrics, threshVar,
and threshVal to create clusters to be overlaid as parallel coordinate lines; default
NULL. See package website for examples

geneLists LIST | List of ID values of genes already clustered to be drawn from data as
parallel coordinate lines. Each list item is an array of genes ID values that are
already grouped as a cluster. Unlike the singular geneList object, the plural
geneLists object is not be clustered. If you instead wish to cluster genes, use
dataMetrics, threshVar, and threshVal or geneList to create clusters to be over-
laid as parallel coordinate lines; default NULL. See package website for exam-
ples

threshVar CHARACTER STRING | Name of column in dataMetrics object that is used to
threshold significance; default "FDR"

threshVal INTEGER | Maximum value to threshold significance from threshVar object;
default 0.05

6 plotClusters

clusterAllData BOOLEAN [TRUE | FALSE] | Create clusters based on the whole dataset and
then assign significant genes to those clusters; default is TRUE. If FALSE, create
clusters based on just the significant genes. With either option, the side-by-side
boxplot will represent the whole dataset (from data input) and the parallel coor-
dinate lines will represent only the significant genes (those that pass threshVal
for threshVar)

showPairs BOOLEAN [TRUE | FALSE] | When more than three treatment groups are
present, for each pairwise comparison, show only the results for that pair of
treatment groups; default is TRUE. If FALSE, show results for all treatment
groups even though clusters and significance are determined in pairwise fash-
ion. Note this parameter will not make a difference when the data only contains
two treatment groups

nC INTEGER | Number of clusters; default 4

colList CHARACTER ARRAY | List of colors for each cluster; default is rainbow(nC)

aggMethod CHARACTER STRING ["ward.D" | "ward.D2" | "single" | "complete" | "aver-
age" | "mcquitty" | "median" | "centroid"] | The agglomeration method to be used
in the hierarchical clustering; default "ward.D"

yAxisLabel CHARACTER STRING | Vertical axis label; default "Count"

xAxisLabel CHARACTER STRING | Horizontal axis label; default "Sample"

lineSize INTEGER | Size of plotted parallel coordinate lines; default 0.1

lineAlpha INTEGER | Alpha value of plotted parallel coordinate lines, default 0.5

vxAxis BOOLEAN [TRUE | FALSE] | Flip x-axis text labels to vertical orientation;
default FALSE

outDir CHARACTER STRING | Output directory to save all images; default tempdir()

saveFile BOOLEAN [TRUE | FALSE] | Save file to outDir; default TRUE

verbose BOOLEAN [TRUE | FALSE] | Print each cluster from each cluster size into
separate files and print the associated IDs of each cluster from each cluster size
into separate .rds files; default is FALSE

Value

List of n elements each containing a grid of parallel coordinate plots, where n is the number of
treatment pair combinations in the data object. If the saveFile parameter has a value of TRUE, then
each grid of parallel coordinate plots is saved to the location specified in the outDir parameter as a
JPG file. If the verbose parameter has a value of TRUE, then a JPG file for each parallel coordinate
plot in each grid, RDS file containing the superimposed IDs for each parallel coordinate plot in each
grid, and the JPG file of each grid of parallel coordinate plots is saved to the location specified in
the outDir parameter.

See Also

hclust https://lindsayrutter.github.io/bigPint/articles/clusters.html

https://lindsayrutter.github.io/bigPint/articles/clusters.html

plotClusters 7

Examples

The first set of five examples use data and dataMetrics
objects as input. The last set of five examples create the same plots now
using the SummarizedExperiment (i.e. dataSE) object input.

Example 1: Perform hierarchical clustering of size four using the
default agglomeration method "ward.D". Cluster only on the genes that have
FDR < 1e-7 (n = 113) and overlay these genes.

library(grid)
library(matrixStats)
library(ggplot2)
data(soybean_ir_sub)
soybean_ir_sub[,-1] <- log(soybean_ir_sub[-1]+1)
data(soybean_ir_sub_metrics)
colList = c("#00A600FF", rainbow(5)[c(1,4,5)])
ret <- plotClusters(data=soybean_ir_sub,

dataMetrics = soybean_ir_sub_metrics, nC=4, colList = colList,
clusterAllData = FALSE, threshVal = 1e-7, saveFile = FALSE)

grid.draw(ret[["N_P_4"]])

Example 2: Perform the same analysis, only now create the four groups by
clustering on all genes in the data (n = 5,604). Then, overlay the genes
that have FDR < 1e-7 (n = 113) into their corresponding clusters.

ret <- plotClusters(data=soybean_ir_sub,
dataMetrics = soybean_ir_sub_metrics, nC=4, colList = colList,
clusterAllData = TRUE, threshVal = 1e-7, saveFile = FALSE)

grid.draw(ret[["N_P_4"]])

Example 3: Perform the same analysis, only now overlay all genes in the
data by keeping the dataMetrics object as its default value of NULL.

ret <- plotClusters(data=soybean_ir_sub, nC=4, colList = colList,
clusterAllData = TRUE, saveFile = FALSE)

grid.draw(ret[["N_P_4"]])

Example 4: Visualization of gene clusters is usually performed on
standardized data. Here, hierarchical clustering of size four is performed
using the agglomeration method "average" on standardized data. Only genes
with FDR < 0.05 are used for the clustering. Only two of the three
pairwise combinations of treatment groups (S1 and S2; S1 and S3) have any
genes with FDR < 0.05. The output plots for these two pairs are examined.

data(soybean_cn_sub)
data(soybean_cn_sub_metrics)
soybean_cn_sub_st <- as.data.frame(t(apply(as.matrix(soybean_cn_sub[,-1]),

1, scale)))
soybean_cn_sub_st$ID <- as.character(soybean_cn_sub$ID)
soybean_cn_sub_st <- soybean_cn_sub_st[,c(length(soybean_cn_sub_st),

1:length(soybean_cn_sub_st)-1)]
colnames(soybean_cn_sub_st) <- colnames(soybean_cn_sub)

8 plotClusters

nID <- which(is.nan(soybean_cn_sub_st[,2]))
soybean_cn_sub_st[nID,2:length(soybean_cn_sub_st)] <- 0
ret <- plotClusters(data=soybean_cn_sub_st,

dataMetrics = soybean_cn_sub_metrics, nC=4,
colList = c("#00A600FF", "#CC00FFFF", "red", "darkorange"),
lineSize = 0.5, lineAlpha = 1, clusterAllData = FALSE,
aggMethod = "average", yAxisLabel = "Standardized read count",
saveFile = FALSE)

names(ret)
grid.draw(ret[["S1_S2_4"]])
grid.draw(ret[["S1_S3_4"]])

Example 5: Run the same analysis, only now set the verbose parameter to
value TRUE. This will save images of each individual cluster, .rds files
that contain the IDs within each cluster, and images of the conglomerate
clusters to outDir (default tempdir()).

Not run:
plotClusters(data=soybean_cn_sub_st, dataMetrics = soybean_cn_sub_metrics,

nC=4, colList = c("#00A600FF", "#CC00FFFF", "red", "darkorange"),
lineSize = 0.5, lineAlpha = 1, clusterAllData = FALSE,
aggMethod = "average", yAxisLabel = "Standardized read count",
verbose = TRUE)

End(Not run)

Below are the same five examples, only now using the
SummarizedExperiment (i.e. dataSE) object as input.

Example 1: Perform hierarchical clustering of size four using the
default agglomeration method "ward.D". Cluster only on the genes that have
FDR < 1e-7 (n = 113) and overlay these genes.

Not run:
library(grid)
library(matrixStats)
library(ggplot2)
data(se_soybean_ir_sub)
assay(se_soybean_ir_sub) <- log(as.data.frame(assay(se_soybean_ir_sub))+1)
colList = c("#00A600FF", rainbow(5)[c(1,4,5)])
ret <- plotClusters(dataSE=se_soybean_ir_sub, nC=4, colList = colList,

clusterAllData = FALSE, threshVal = 1e-7, saveFile = FALSE)
grid.draw(ret[["N_P_4"]])

End(Not run)

Not run:
Example 2: Perform the same analysis, only now create the four groups by
clustering on all genes in the data (n = 5,604). Then, overlay the genes
that have FDR < 1e-7 (n = 113) into their corresponding clusters.

ret <- plotClusters(dataSE=se_soybean_ir_sub, nC=4, colList = colList,
clusterAllData = TRUE, threshVal = 1e-7, saveFile = FALSE)

plotClusters 9

grid.draw(ret[["N_P_4"]])

End(Not run)

Example 3: Perform the same analysis, only now overlay all genes in the
data by setting the rowData() to NULL.

Not run:
se_soybean_ir_sub_nm <- se_soybean_ir_sub
rowData(se_soybean_ir_sub_nm) <- NULL
ret <- plotClusters(dataSE=se_soybean_ir_sub_nm, nC=4, colList = colList,

clusterAllData = TRUE, saveFile = FALSE)
grid.draw(ret[["N_P_4"]])

End(Not run)

Example 4: Visualization of gene clusters is usually performed on
standardized data. Here, hierarchical clustering of size four is performed
using the agglomeration method "average" on standardized data. Only genes
with FDR < 0.05 are used for the clustering. Only two of the three
pairwise combinations of treatment groups (S1 and S2; S1 and S3) have any
genes with FDR < 0.05. The output plots for these two pairs are examined.

Not run:
data(se_soybean_cn_sub)
se_soybean_cn_sub_st = se_soybean_cn_sub
assay(se_soybean_cn_sub_st) <-as.data.frame(t(apply(as.matrix(as.data.frame(

assay(se_soybean_cn_sub))), 1, scale)))
nID <- which(is.nan(as.data.frame(assay(se_soybean_cn_sub_st))[,1]))
assay(se_soybean_cn_sub_st)[nID,] <- 0
ret <- plotClusters(dataSE=se_soybean_cn_sub_st, nC=4,

colList = c("#00A600FF", "#CC00FFFF", "red", "darkorange"),
lineSize = 0.5, lineAlpha = 1, clusterAllData = FALSE,
aggMethod = "average", yAxisLabel = "Standardized read count",
saveFile = FALSE)

names(ret)
grid.draw(ret[["S1_S2_4"]])
grid.draw(ret[["S1_S3_4"]])

End(Not run)

Example 5: Run the same analysis, only now set the verbose parameter to
value TRUE. This will save images of each individual cluster, .rds files
that contain the IDs within each cluster, and images of the conglomerate
clusters to outDir (default tempdir()).

Not run:
plotClusters(dataSE=se_soybean_cn_sub_st, nC=4,

colList = c("#00A600FF", "#CC00FFFF", "red", "darkorange"),
lineSize = 0.5, lineAlpha = 1, clusterAllData = FALSE,
aggMethod = "average", yAxisLabel = "Standardized read count",
verbose = TRUE)

10 plotLitre

End(Not run)

plotLitre Plot static litre plots

Description

Plot static litre plots.

Usage

plotLitre(
data = data,
dataMetrics = NULL,
dataSE = NULL,
geneList = NULL,
threshVar = "FDR",
threshVal = 0.05,
option = c("hexagon", "allPoints"),
pointSize = 2,
pointColor = "orange",
xbins = 10,
outDir = tempdir(),
saveFile = TRUE

)

Arguments

data DATA FRAME | Read counts

dataMetrics LIST | Differential expression metrics; default NULL

dataSE SUMMARIZEDEXPERIMENT | Summarized experiment format that can be
used in lieu of data and dataMetrics; default NULL

geneList CHARACTER ARRAY | List of ID values of genes to be drawn from data as
litre plots. Use this parameter if you have predetermined genes to be drawn. Oth-
erwise, use dataMetrics, threshVar, and threshVal to create genes to be drawn;
default NULL

threshVar CHARACTER STRING | Name of column in dataMetrics object that is used to
threshold significance; default "FDR"

threshVal INTEGER | Maximum value to threshold significance from threshVar object;
default 0.05

option CHARACTER STRING ["hexagon" | "allPoints"] | The background of plot; de-
fault "hexagon"

pointSize INTEGER | Size of plotted points; default 2

plotLitre 11

pointColor CHARACTER STRING | Color of gene superimposed on litre plot; default "or-
ange"

xbins INTEGER | Number of bins partitioning the range of the plot; default 10

outDir CHARACTER STRING | Output directory to save all plots; default tempdir()

saveFile BOOLEAN [TRUE | FALSE] | Save file to outDir; default TRUE

Value

List of n elements of litre plots, where n is the number of genes determined to be superimposed
through the dataMetrics or geneList parameter. If the saveFile parameter has a value of TRUE, then
each of these litre plots is saved to the location specified in the outDir parameter as a JPG file.

Examples

The first set of three examples use data and dataMetrics
objects as input. The last set of three examples create the same plots now
using the SummarizedExperiment (i.e. dataSE) object input.

Example 1: Create litre plots for each of the 61 genes with FDR < 1e-10.
Examine the first plot (gene "N_P_Glyma.19G168700.Wm82.a2.v1")

data(soybean_ir_sub)
soybean_ir_sub[,-1] <- log(soybean_ir_sub[,-1]+1)
data(soybean_ir_sub_metrics)
ret <- plotLitre(data = soybean_ir_sub,

dataMetrics = soybean_ir_sub_metrics, threshVal = 1e-10,
saveFile = FALSE)

length(ret)
names(ret)[1]
ret[[1]]

Example 2: Create litre plots for each of the five most significant genes
(low FDR values). View plot for gene "N_P_Glyma.19G168700.Wm82.a2.v1".

geneList = soybean_ir_sub_metrics[["N_P"]][1:5,]$ID
ret <- plotLitre(data = soybean_ir_sub, geneList = geneList,

pointColor = "deeppink")
names(ret)
ret[["N_P_Glyma.19G168700.Wm82.a2.v1"]]

Example 3: Create one litre plot for each of the five most significant
genes (low FDR values). View the plot for gene
"N_P_Glyma.19G168700.Wm82.a2.v1". Use points instead of the default
hexagons as the background.

ret <- plotLitre(data = soybean_ir_sub, geneList = geneList,
pointColor = "deeppink", option = "allPoints")

names(ret)
ret[["N_P_Glyma.19G168700.Wm82.a2.v1"]]

Below are the same three examples, only now using the

12 plotLitreApp

SummarizedExperiment (i.e. dataSE) object as input.

Example 1: Create litre plots for each of the 61 genes with FDR < 1e-10.
Examine the first plot (gene "N_P_Glyma.19G168700.Wm82.a2.v1")

Not run:
data(se_soybean_ir_sub)
assay(se_soybean_ir_sub) <- log(as.data.frame(assay(se_soybean_ir_sub))+1)
ret <- plotLitre(dataSE = se_soybean_ir_sub, threshVal = 1e-10,

saveFile = FALSE)
length(ret)
names(ret)[1]
ret[[1]]

End(Not run)

Example 2: Create litre plots for each of the five most significant genes
(low FDR values). View plot for gene "N_P_Glyma.19G168700.Wm82.a2.v1".

Not run:
geneList <- as.data.frame(rowData(se_soybean_ir_sub)) %>%

arrange(N_P.FDR) %>% filter(row_number() <= 5)
geneList <- geneList[,1]
ret <- plotLitre(dataSE = se_soybean_ir_sub, geneList = geneList,

pointColor = "deeppink")
names(ret)
ret[["N_P_Glyma.19G168700.Wm82.a2.v1"]]

End(Not run)

Example 3: Create one litre plot for each of the five most significant
genes (low FDR values). View the plot for gene
"N_P_Glyma.19G168700.Wm82.a2.v1". Use points instead of the default
hexagons as the background.

Not run:
ret <- plotLitre(dataSE = se_soybean_ir_sub, geneList = geneList,

pointColor = "deeppink", option = "allPoints")
names(ret)
ret[["N_P_Glyma.19G168700.Wm82.a2.v1"]]

End(Not run)

plotLitreApp Plot interactive litre plots

Description

Plot interactive litre plots.

plotLitreApp 13

Usage

plotLitreApp(
data = data,
dataMetrics = dataMetrics,
dataSE = NULL,
geneList = NULL,
pointColor = "orange",
option = c("hexagon", "allPoints")

)

Arguments

data DATA FRAME | Read counts

dataMetrics LIST | Differential expression metrics

dataSE SUMMARIZEDEXPERIMENT | Summarized experiment format that can be
used in lieu of data; default NULL

geneList CHARACTER ARRAY | List of gene IDs to be drawn onto the litre. Use this
parameter if you have predetermined subset of genes to be drawn. Otherwise,
all genes in the data object can be superimposed on the litre plot; default NULL

pointColor CHARACTER STRING | Color of overlaid points on scatterplot matrix; default
"orange"

option CHARACTER STRING ["hexagon" | "allPoints"] | The background of plot; de-
fault "hexagon"; "allPoints" may be too slow depending on data

Value

A Shiny application that shows a litre plot background and allows users to superimpose the subset of
genes determined to be superimposed through the dataMetrics or geneList parameter. The applica-
tion allows users to order how to sequentially superimpose the genes by columns in the dataMetrics
parameter.

Examples

The first pair of examples use data and dataMetrics
objects as input. The last pair of examples create the same plots now
using the SummarizedExperiment (i.e. dataSE) object input.

Example 1: Create an interactive litre plot for the logged data using
default background of hexagons.

data(soybean_ir_sub)
data(soybean_ir_sub_metrics)
soybean_ir_sub_log <- soybean_ir_sub
soybean_ir_sub_log[,-1] <- log(soybean_ir_sub[,-1]+1)
app <- plotLitreApp(data = soybean_ir_sub_log,

dataMetrics = soybean_ir_sub_metrics)
if (interactive()) {

shiny::runApp(app, port = 1234, launch.browser = TRUE)

14 plotPCP

}

Example 2: Repeat the same process, only now plot background data as
individual points. Note this may be too slow now that all points are drawn
in the background.

app <- plotLitreApp(data = soybean_ir_sub_log,
dataMetrics = soybean_ir_sub_metrics, option = "allPoints",
pointColor = "red")

if (interactive()) {
shiny::runApp(app)

}

Below are the same pair of examples, only now using the
SummarizedExperiment (i.e. dataSE) object as input.

Example 1: Create an interactive litre plot for the logged data using
default background of hexagons.

Not run:
data(se_soybean_ir_sub)
se_soybean_ir_sub_log <- se_soybean_ir_sub
assay(se_soybean_ir_sub_log) <-

log(as.data.frame(assay(se_soybean_ir_sub_log))+1)
app <- plotLitreApp(dataSE = se_soybean_ir_sub_log)
if (interactive()) {

shiny::runApp(app, port = 1234, launch.browser = TRUE)
}

End(Not run)

Example 2: Repeat the same process, only now plot background data as
individual points. Note this may be too slow now that all points are
drawn in the background.

Not run:
app <- plotLitreApp(dataSE = se_soybean_ir_sub_log, option = "allPoints",

pointColor = "red")
if (interactive()) {

shiny::runApp(app)
}

End(Not run)

plotPCP Plot static parallel coordinate plots

Description

Plot static parallel coordinate plots onto side-by-side boxplot of whole dataset.

plotPCP 15

Usage

plotPCP(
data,
dataMetrics = NULL,
dataSE = NULL,
geneList = NULL,
threshVar = "FDR",
threshVal = 0.05,
lineSize = 0.1,
lineColor = "orange",
vxAxis = FALSE,
outDir = tempdir(),
saveFile = TRUE,
hover = FALSE

)

Arguments

data DATA FRAME | Read counts
dataMetrics LIST | Differential expression metrics; If both geneList and dataMetrics are

NULL, then no genes will be overlaid onto the side-by-side boxplot; default
NULL

dataSE SUMMARIZEDEXPERIMENT | Summarized experiment format that can be
used in lieu of data and dataMetrics; default NULL

geneList CHARACTER ARRAY | List of gene IDs to be drawn onto the scatterplot matrix
of all data. If this parameter is defined, these will be the overlaid genes to be
drawn. After that, dataMetrics, threshVar, and threshVal will be considered for
overlaid genes. If both geneList and dataMetrics are NULL, then no genes will
be overlaid onto the side-by-side boxplot; default NULL

threshVar CHARACTER STRING | Name of column in dataMetrics object that is used to
threshold significance; default "FDR"

threshVal INTEGER | Maximum value to threshold significance from threshVar object;
default 0.05

lineSize INTEGER | Line width of parallel coordinate lines; default 0.1
lineColor CHARACTER STRING | Color of parallel coordinate lines; default "orange"
vxAxis BOOLEAN [TRUE | FALSE] | Flip x-axis text labels to vertical orientation;

default FALSE
outDir CHARACTER STRING | Output directory to save all plots; default tempdir()
saveFile BOOLEAN [TRUE | FALSE] | Save file to outDir; default TRUE
hover BOOLEAN [TRUE | FALSE] | Allow to hover over points to identify IDs; de-

fault FALSE

Value

List of n elements of parallel coordinate plots, where n is the number of treatment pair combinations
in the data object. The background of each plot is a side-by-side boxplot of the full data object, and

16 plotPCP

the parallel coordinate lines on each plot are the subset of genes determined to be superimposed
through the dataMetrics or geneList parameter. If the saveFile parameter has a value of TRUE, then
each parallel coordinate plot is saved to the location specified in the outDir parameter as a JPG file.

Examples

The first set of four examples use data and dataMetrics
objects as input. The last set of four examples create the same plots now
using the SummarizedExperiment (i.e. dataSE) object input.

Example 1: Plot the side-by-side boxplots of the whole dataset without
overlaying any metrics data by keeping the dataMetrics parameter its
default value of NULL.

data(soybean_ir_sub)
soybean_ir_sub[,-1] = log(soybean_ir_sub[,-1] + 1)
ret <- plotPCP(data = soybean_ir_sub, saveFile = FALSE)
ret[[1]]

Example 2: Overlay genes with FDR < 1e-4 as orange parallel coordinate
lines.

data(soybean_ir_sub_metrics)
ret <- plotPCP(data = soybean_ir_sub, dataMetrics = soybean_ir_sub_metrics,

threshVal = 1e-4, saveFile = FALSE)
ret[[1]]

Example 3: Overlay the ten most significant genes (lowest FDR values) as
blue parallel coordinate lines.

geneList = soybean_ir_sub_metrics[["N_P"]][1:10,]$ID
ret <- plotPCP(data = soybean_ir_sub, geneList = geneList, lineSize = 0.3,

lineColor = "blue", saveFile = FALSE)
ret[[1]]

Example 4: Repeat this same procedure, only now set the hover parameter to
TRUE to allow us to hover over blue parallel coordinate lines and
determine their individual IDs.

ret <- plotPCP(data = soybean_ir_sub, geneList = geneList, lineSize = 0.3,
lineColor = "blue", saveFile = FALSE, hover = TRUE)

ret[[1]]

Below are the same four examples, only now using the
SummarizedExperiment (i.e. dataSE) object as input.

Example 1: Plot the side-by-side boxplots of the whole dataset without
overlaying any metrics. We prevent overlaying metrics by setting the
rowData() to NULL.

Not run:
data(se_soybean_ir_sub)
se_soybean_ir_sub[,-1] <- log(se_soybean_ir_sub[,-1]+1)

plotPCPApp 17

se_soybean_ir_sub_nm <- se_soybean_ir_sub
rowData(se_soybean_ir_sub_nm) <- NULL
ret <- plotPCP(dataSE = se_soybean_ir_sub_nm, saveFile = FALSE)
ret[[1]]

End(Not run)

Not run:
Example 2: Overlay genes with FDR < 1e-4 as orange parallel coordinate
lines.

ret <- plotPCP(dataSE = se_soybean_ir_sub, threshVal = 1e-4,
saveFile = FALSE)

ret[[1]]

End(Not run)

Example 3: Overlay the ten most significant genes (lowest FDR values) as
blue parallel coordinate lines.

Not run:
geneList <- as.data.frame(rowData(se_soybean_ir_sub)) %>%

arrange(N_P.FDR) %>% filter(row_number() <= 10)
geneList <- geneList[,1]
ret <- plotPCP(dataSE = se_soybean_ir_sub, geneList = geneList,

lineSize = 0.3, lineColor = "blue", saveFile = FALSE)
ret[[1]]

End(Not run)

Example 4: Repeat this same procedure, only now set the hover parameter to
TRUE to allow us to hover over blue parallel coordinate lines and
determine their individual IDs.

Not run:
ret <- plotPCP(data = soybean_ir_sub, geneList = geneList, lineSize = 0.3,

lineColor = "blue", saveFile = FALSE, hover = TRUE)
ret[[1]]

End(Not run)

plotPCPApp Plot interactive parallel coordinate plots

Description

Plot interactive parallel coordinate plots.

18 plotPCPApp

Usage

plotPCPApp(data = data, dataSE = NULL, pointColor = "orange")

Arguments

data DATA FRAME | Read counts for parallel coordinate lines

dataSE SUMMARIZEDEXPERIMENT | Summarized experiment format that can be
used in lieu of data; default NULL

pointColor CHARACTER STRING | Color of overlaid points on scatterplot matrix; default
"orange"

Value

A Shiny application that shows a parallel coordinate plot and allows users to draw rectangular areas
across samples and remove genes that are not inside these areas. The user can download a file that
contains the gene IDs that remain.

Examples

The first example uses data and dataMetrics objects as
input. The last example creates the same plot now using the
SummarizedExperiment (i.e. dataSE) object input.

Example: Create interactive parallel coordinate plot for genes that have
FDR < 0.01 and logFC < -4. Standardize genes to have an average of zero
and a standard deviation of one.

data(soybean_ir_sub)
data(soybean_ir_sub_metrics)

Create standardized version of data
library(matrixStats)
soybean_ir_sub_st = as.data.frame(t(apply(as.matrix(soybean_ir_sub[,-1]), 1,

scale)))
soybean_ir_sub_st$ID = as.character(soybean_ir_sub$ID)
soybean_ir_sub_st = soybean_ir_sub_st[,c(length(soybean_ir_sub_st),

1:length(soybean_ir_sub_st)-1)]
colnames(soybean_ir_sub_st) = colnames(soybean_ir_sub)
nID = which(is.nan(soybean_ir_sub_st[,2]))
soybean_ir_sub_st[nID,2:length(soybean_ir_sub_st)] = 0

library(dplyr, warn.conflicts = FALSE)
plotGenes = filter(soybean_ir_sub_metrics[["N_P"]], FDR < 0.01,

logFC < -4) %>% select(ID)
pcpDat = filter(soybean_ir_sub_st, ID %in% plotGenes[,1])

app <- plotPCPApp(data = pcpDat, pointColor = "purple")
if (interactive()) {

shiny::runApp(app, display.mode = "normal")
}

plotSM 19

Below is the same example, only now using the
SummarizedExperiment (i.e. dataSE) object as input.

Example: Create interactive parallel coordinate plot for genes that have
FDR < 0.01 and logFC < -4. Standardize genes to have an average of zero
and a standard deviation of one.

Not run:
data(se_soybean_ir_sub)

Create standardized version of data
library(matrixStats)
se_soybean_ir_sub_st = se_soybean_ir_sub
assay(se_soybean_ir_sub_st) <-as.data.frame(t(apply(as.matrix(as.data.frame(

assay(se_soybean_ir_sub))), 1, scale)))
nID <- which(is.nan(as.data.frame(assay(se_soybean_ir_sub_st))[,1]))
assay(se_soybean_ir_sub_st)[nID,] <- 0

To subset our SummarizedExperiment data by a list of genes, we can
invoke the convertSESubsetGenes() method.

library(dplyr, warn.conflicts = FALSE)
geneList <- as.data.frame(rowData(se_soybean_ir_sub_st)) %>%

filter(N_P.FDR <= 0.01) %>% filter(N_P.logFC < -4)
geneList <- geneList[,1]
pcpDat <- convertSESubsetGenes(se_soybean_ir_sub_st, geneList)

app <- plotPCPApp(dataSE = pcpDat, pointColor = "purple")
if (interactive()) {

shiny::runApp(app, display.mode = "normal")
}

End(Not run)

plotSM Plot static scatterplot matrices

Description

Plot static scatterplot matrix. Optionally, superimpose differentially expressed genes (DEGs) onto
scatterplot matrix.

Usage

plotSM(
data = data,
dataMetrics = NULL,
dataSE = NULL,
geneList = NULL,

20 plotSM

threshVar = "FDR",
threshVal = 0.05,
option = c("allPoints", "foldChange", "orthogonal", "hexagon"),
xbins = 10,
threshFC = 3,
threshOrth = 3,
pointSize = 0.5,
pointColor = "orange",
outDir = tempdir(),
saveFile = TRUE

)

Arguments

data DATA FRAME | Read counts

dataMetrics LIST | Differential expression metrics; default NULL

dataSE SUMMARIZEDEXPERIMENT | Summarized experiment format that can be
used in lieu of data and dataMetrics; default NULL

geneList CHARACTER ARRAY | List of gene IDs to be drawn onto the scatterplot matrix
of all data. Use this parameter if you have predetermined genes to be drawn.
Otherwise, use dataMetrics, threshVar, and threshVal to create genes to be drawn
onto the scatterplot matrix; default NULL; used in "hexagon" and "allPoints"

threshVar CHARACTER STRING | Name of column in dataMetrics object that is used to
threshold significance; default "FDR"; used in all options

threshVal INTEGER | Maximum value to threshold significance from threshVar object;
default 0.05; used in all options

option CHARACTER STRING ["foldChange" | "orthogonal" | "hexagon" | "allPoints"]
| The type of plot; default "allPoints"

xbins INTEGER | Number of bins partitioning the range of the plot; default 10; used
in option "hexagon"

threshFC INTEGER | Threshold of fold change; default 3; used in option "foldChange"

threshOrth INTEGER | Threshold of orthogonal distance; default 3; used in option "orthog-
onal"

pointSize INTEGER | Size of plotted points; default 0.5; used for DEGs in "hexagon" and
"allPoints" and used for all points in "foldChange" and "orthogonal"

pointColor CHARACTER STRING | Color of overlaid points on scatterplot matrix; default
"orange"; used for DEGs in "hexagon" and "allPoints" and used for all points in
"foldChange" and "orthogonal"

outDir CHARACTER STRING | Output directory to save all plots; default tempdir();
used in all options

saveFile BOOLEAN [TRUE | FALSE] | Save file to outDir; default TRUE; used in all
options

plotSM 21

Details

There are seven options:

• "foldChange": Plots DEGs onto scatterplot matrix of fold changes

• "orthogonal": Plots DEGs onto scatterplot matrix of orthogonal distance

• "hexagon": Plot DEGs onto scatterplot matrix of hexagon binning

• "allPoints": Plot DEGs onto scatterplot matrix of all data points

Value

List of n elements of scatterplot matrices, where n is the number of treatment pair combinations in
the data object. The subset of genes that are superimposed are determined through the dataMetrics
or geneList parameter. If the saveFile parameter has a value of TRUE, then each of these scatterplot
matrices is saved to the location specified in the outDir parameter as a JPG file.

Examples

The first set of six examples use data and dataMetrics
objects as input. The last set of six examples create the same plots now
using the SummarizedExperiment (i.e. dataSE) object input.

Read in data and metrics (need for first set of six examples)
data(soybean_cn_sub)
data(soybean_cn_sub_metrics)
data(soybean_ir_sub)
data(soybean_ir_sub_metrics)

Create standardized version of data (need for first set of six examples)
library(matrixStats)
library(ggplot2)
soybean_cn_sub_st <- as.data.frame(t(apply(as.matrix(soybean_cn_sub[,-1]),

1, scale)))
soybean_cn_sub_st$ID <- as.character(soybean_cn_sub$ID)
soybean_cn_sub_st <- soybean_cn_sub_st[,c(length(soybean_cn_sub_st),

1:length(soybean_cn_sub_st)-1)]
colnames(soybean_cn_sub_st) <- colnames(soybean_cn_sub)
nID <- which(is.nan(soybean_cn_sub_st[,2]))
soybean_cn_sub_st[nID,2:length(soybean_cn_sub_st)] <- 0

Example 1: Plot scatterplot matrix of points. Saves three plots to outDir
because saveFile equals TRUE by default.

Not run:
plotSM(soybean_cn_sub, soybean_cn_sub_metrics)

End(Not run)

Example 2: Plot scatterplot matrix of points. Return list of plots so user
can tailor them (such as add title) and does not save to outDir because
saveFile equals FALSE.

22 plotSM

ret <- plotSM(soybean_cn_sub, soybean_cn_sub_metrics, pointColor = "pink",
saveFile = FALSE)

Determine names of plots in returned list
names(ret)
ret[["S1_S2"]] + ggtitle("S1 versus S2")
ret[["S1_S3"]] + ggtitle("S1 versus S3")
ret[["S2_S3"]] + ggtitle("S2 versus S3")

Example 3: Plot standardized data as scatterplot matrix of points.

ret <- plotSM(soybean_cn_sub_st, soybean_cn_sub_metrics,
pointColor = "#00C379", saveFile = FALSE)

ret[[1]] + xlab("Standardized read counts") +
ylab("Standardized read counts")

Example 4: Plot scatterplot matrix of hexagons.

ret <- plotSM(soybean_cn_sub, soybean_cn_sub_metrics, option = "hexagon",
xbins = 5, pointSize = 0.1, saveFile = FALSE)

ret[[2]]

Example 5: Plot scatterplot matrix of orthogonal distance on the logged
data, first without considering the metrics dataset and then considering
it.

soybean_ir_sub[,-1] <- log(soybean_ir_sub[,-1] + 1)
ret <- plotSM(soybean_ir_sub, option = "orthogonal", threshOrth = 2.5,

pointSize = 0.2, saveFile = FALSE)
ret[[1]]
ret <- plotSM(soybean_ir_sub, soybean_ir_sub_metrics, option = "orthogonal",

threshOrth = 2.5, pointSize = 0.2, saveFile = FALSE)
ret[[1]]

Example 6: Plot scatterplot matrix of fold change.

ret <- plotSM(soybean_cn_sub, soybean_cn_sub_metrics, option = "foldChange",
threshFC = 0.5, pointSize = 0.2, saveFile = FALSE)

ret[[1]]

Below are the same six examples, only now using the
SummarizedExperiment (i.e. dataSE) object as input.

Read in data and metrics (need for first set of six examples)
data(se_soybean_cn_sub)
data(se_soybean_ir_sub)

Create standardized version of data (need for first set of six examples)
library(matrixStats)
library(ggplot2)
library(SummarizedExperiment)
se_soybean_cn_sub_st = se_soybean_cn_sub
assay(se_soybean_cn_sub_st, withDimnames=FALSE) <-as.data.frame(t(

apply(as.matrix(as.data.frame(assay(se_soybean_cn_sub))), 1, scale)))

plotSM 23

nID <- which(is.nan(as.data.frame(assay(se_soybean_cn_sub_st))[,1]))
assay(se_soybean_cn_sub_st, withDimnames=FALSE)[nID,] <- 0

Example 1: Plot scatterplot matrix of points. Saves three plots to outDir
because saveFile equals TRUE by default.

Not run:
plotSM(dataSE = se_soybean_cn_sub)

End(Not run)

Example 2: Plot scatterplot matrix of points. Return list of plots so user
can tailor them (such as add title) and does not save to outDir because
saveFile equals FALSE.

Not run:
ret <- plotSM(dataSE = se_soybean_cn_sub, pointColor = "pink",

saveFile = FALSE)
Determine names of plots in returned list
names(ret)
ret[["S1_S2"]] + ggtitle("S1 versus S2")
ret[["S1_S3"]] + ggtitle("S1 versus S3")
ret[["S2_S3"]] + ggtitle("S2 versus S3")

End(Not run)

Example 3: Plot standardized data as scatterplot matrix of points.

Not run:
ret <- plotSM(dataSE = se_soybean_cn_sub_st, pointColor = "#00C379",

saveFile = FALSE)
ret[[1]] + xlab("Standardized read counts") +
ylab("Standardized read counts")

End(Not run)

Example 4: Plot scatterplot matrix of hexagons.

Not run:
ret <- plotSM(dataSE = se_soybean_cn_sub, option = "hexagon", xbins = 5,

pointSize = 0.1, saveFile = FALSE)
ret[[2]]

End(Not run)

Example 5: Plot scatterplot matrix of orthogonal distance on the logged
data, first without considering the metrics dataset and then considering
it.

Not run:
assay(se_soybean_ir_sub) <- log(as.data.frame(assay(se_soybean_ir_sub))+1)
ret <- plotSM(dataSE = se_soybean_ir_sub, option = "orthogonal",

threshOrth = 2.5, pointSize = 0.2, saveFile = FALSE)

24 plotSMApp

ret[[1]]

End(Not run)

Example 6: Plot scatterplot matrix of fold change.

Not run:
ret <- plotSM(dataSE = se_soybean_cn_sub, option = "foldChange",

threshFC = 0.5, pointSize = 0.2, saveFile = FALSE)
ret[[1]]

End(Not run)

plotSMApp Plot interactive scatterplot matrices

Description

Plot interactive scatterplot matrices.

Usage

plotSMApp(data = data, dataSE = NULL, xbins = 10)

Arguments

data DATA FRAME | Read counts

dataSE SUMMARIZEDEXPERIMENT | Summarized experiment format that can be
used in lieu of data; default NULL

xbins INTEGER | Number of bins partitioning the range of the plot; default 10

Value

A Shiny application that shows a scatterplot matrix with hexagon bins and allows users to click on
hexagon bins to determine how many genes they each contain. The user can download a file that
contains the gene IDs that are located in the clicked hexagon bin.

Examples

The first example uses data and dataMetrics objects as
input. The last example creates the same plots now using the
SummarizedExperiment (i.e. dataSE) object input.

Example: Create interactive scatterplot matrix for first two treatment
groups of data.

data(soybean_cn_sub)
soybean_cn_sub <- soybean_cn_sub[,1:7]

plotVolcano 25

app <- plotSMApp(data=soybean_cn_sub)
if (interactive()) {

shiny::runApp(app)
}

Below are the same example, only now using the
SummarizedExperiment (i.e. dataSE) object as input.

Example: Create interactive scatterplot matrix for first two treatment
groups of data. When working with the SummarizedExperiment data,
we can summon the method convertSEPair() to subset our input data
to only a pair of treatment groups.

Not run:
data(se_soybean_cn_sub)
se_soybean_cn_sub <- convertSEPair(se_soybean_cn_sub, "S1", "S2")
app <- plotSMApp(dataSE=se_soybean_cn_sub)
if (interactive()) {

shiny::runApp(app)
}

End(Not run)

plotVolcano Plot static volcano plot

Description

Plot static volcano plot.

Usage

plotVolcano(
data = data,
dataMetrics = dataMetrics,
dataSE = NULL,
geneList = NULL,
threshVar = "FDR",
threshVal = 0.05,
option = c("hexagon", "allPoints"),
logFC = "logFC",
PValue = "PValue",
xbins = 10,
pointSize = 0.5,
pointColor = "orange",
outDir = tempdir(),
saveFile = TRUE,
hover = FALSE

)

26 plotVolcano

Arguments

data DATA FRAME | Read counts

dataMetrics LIST | Differential expression metrics. This object must contain one column
with magnitude changes (for the logFC parameter) and one column with statis-
tical values (for the PValue parameter), unless geneList is not NULL

dataSE SUMMARIZEDEXPERIMENT | Summarized experiment format that can be
used in lieu of data and dataMetrics; default NULL

geneList CHARACTER ARRAY | List of gene IDs to be drawn onto the scatterplot matrix
of all data. Use this parameter if you have predetermined subset of genes to be
superimposed. Otherwise, dataMetrics, threshVar, and threshVal will be used to
create genes to be superimposed onto the volcano plot; default NULL

threshVar CHARACTER STRING | Name of column in dataMetrics object that is used to
determine genes to be overlaid; default "FDR"

threshVal INTEGER | Maximum value to threshold significance from threshVar object;
default 0.05

option CHARACTER STRING ["hexagon" | "allPoints"] | The background of plot; de-
fault "hexagon"

logFC CHARACTER STRING | Name of column in dataMetrics object that contains
log fold change values; default "logFC"

PValue CHARACTER STRING | Name of column in dataMetrics object that contains
p-values; default "PValue"

xbins INTEGER | Number of bins partitioning the range of the plot; default 10

pointSize INTEGER | Size of plotted points; default 0.5

pointColor CHARACTER STRING | Color of overlaid points on scatterplot matrix; default
"orange"

outDir CHARACTER STRING | Output directory to save all plots; default tempdir()

saveFile BOOLEAN [TRUE | FALSE] | Save file to outDir; default TRUE

hover BOOLEAN [TRUE | FALSE] | Allow to hover over points to identify IDs; de-
fault FALSE

Value

List of n elements of volcano plots, where n is the number of treatment pair combinations in the
data object. The subset of genes that are superimposed are determined through the dataMetrics or
geneList parameter. If the saveFile parameter has a value of TRUE, then each of these volcano plots
is saved to the location specified in the outDir parameter as a JPG file.

Examples

The first set of four examples use data and dataMetrics objects as
input. The last set of four examples create the same plots now
using the SummarizedExperiment (i.e. dataSE) object input.

Example 1: Plot volcano plot with default settings for overlaid points

plotVolcano 27

(FDR < 0.05).

data(soybean_ir_sub)
data(soybean_ir_sub_metrics)
ret <- plotVolcano(soybean_ir_sub, soybean_ir_sub_metrics, pointSize = 1,

saveFile = FALSE)
ret[[1]]

Example 2: Plot volcano plot and overlay points with PValue < 1e-15.

ret <- plotVolcano(soybean_ir_sub, soybean_ir_sub_metrics,
pointColor = "red", pointSize = 1, threshVar = "PValue",
threshVal = 1e-15, saveFile = FALSE)

ret[[1]]

Example 3: Plot volcano plot and overlay points with PValue < 1e-15. This
time, plot all points (instead of hexagons) for the background.

ret <- plotVolcano(soybean_ir_sub, soybean_ir_sub_metrics,
pointColor = "red", pointSize = 1, threshVar = "PValue",
threshVal = 1e-15, option = "allPoints", saveFile = FALSE)

ret[[1]]

Example 4: Plot volcano plot with points in background and overlay points
with PValue < 1e-15. This time, use a value of TRUE for the hover
parameter so that you can hover over overlaid points and determine their
IDs.

ret <- plotVolcano(soybean_ir_sub, soybean_ir_sub_metrics,
pointColor = "red", pointSize = 1, threshVar = "PValue",
threshVal = 1e-15, option = "allPoints", saveFile = FALSE,
hover = TRUE)

ret[[1]]

Below are the same four examples, only now using the
SummarizedExperiment (i.e. dataSE) object as input.

Example 1: Plot volcano plot with default settings for overlaid points
(FDR < 0.05).

Not run:
data(se_soybean_ir_sub)
ret <- plotVolcano(dataSE = se_soybean_ir_sub, pointSize = 1,

saveFile = FALSE)
ret[[1]]

End(Not run)

Example 2: Plot volcano plot and overlay points with PValue < 1e-15.

Not run:
ret <- plotVolcano(dataSE = se_soybean_ir_sub, pointColor = "red",

pointSize = 1, threshVar = "PValue", threshVal = 1e-15,

28 plotVolcanoApp

saveFile = FALSE)
ret[[1]]

End(Not run)

Example 3: Plot volcano plot and overlay points with PValue < 1e-15. This
time, plot all points (instead of hexagons) for the background.

Not run:
ret <- plotVolcano(dataSE = se_soybean_ir_sub, pointColor = "red",

pointSize = 1, threshVar = "PValue", threshVal = 1e-15,
option = "allPoints", saveFile = FALSE)

ret[[1]]

End(Not run)

Example 4: Plot volcano plot with points in background and overlay points
with PValue < 1e-15. This time, use a value of TRUE for the hover
parameter so that you can hover over overlaid points and determine their
IDs.

Not run:
ret <- plotVolcano(dataSE = se_soybean_ir_sub, pointColor = "red",

pointSize = 1, threshVar = "PValue", threshVal = 1e-15,
option = "allPoints", saveFile = FALSE, hover = TRUE)

ret[[1]]

End(Not run)

plotVolcanoApp Plot interactive volcano plots

Description

Plot interactive volcano plots.

Usage

plotVolcanoApp(
data = data,
dataMetrics = dataMetrics,
dataSE = NULL,
option = c("hexagon", "allPoints"),
pointColor = "orange"

)

plotVolcanoApp 29

Arguments

data DATA FRAME | Read counts

dataMetrics LIST | Differential expression metrics. This object must contain one column
named "logFC" and one column named "PValue".

dataSE SUMMARIZEDEXPERIMENT | Summarized experiment format that can be
used in lieu of data; default NULL

option CHARACTER STRING ["hexagon" | "allPoints"] | The background of plot; de-
fault "hexagon"

pointColor CHARACTER STRING | Color of overlaid points on scatterplot matrix; default
"orange"

Value

A Shiny application that shows a volcano plot and allows users to overlay genes depending on two
values, usually a statistical value (such as P-value) and a magnitude change value (such as log fold
change). The user can download a file that contains the gene IDs that pass these thresholds.

Examples

The first pair of examples use data and dataMetrics objects as input.
The last pair of examples create the same plots now using the
SummarizedExperiment (i.e. dataSE) object input.

Example 1: Create interactive volcano plot of logged data using hexagon
bins for the background.

data(soybean_cn_sub)
data(soybean_cn_sub_metrics)
app <- plotVolcanoApp(data = soybean_cn_sub,

dataMetrics = soybean_cn_sub_metrics)
if (interactive()) {

shiny::runApp(app)
}

Example 2: Create interactive volcano plot of logged data using points for
the background.

app <- plotVolcanoApp(data = soybean_cn_sub,
dataMetrics = soybean_cn_sub_metrics, option = "allPoints",
pointColor = "magenta")

if (interactive()) {
shiny::runApp(app)

}

Below is the same pair of examples, only now using the
SummarizedExperiment (i.e. dataSE) object as input.

Example 1: Create interactive volcano plot of logged data using hexagon
bins for the background.

30 se_soybean_cn_sub

Not run:
data(se_soybean_cn_sub)
app <- plotVolcanoApp(dataSE = se_soybean_cn_sub)
if (interactive()) {

shiny::runApp(app)
}

End(Not run)

Example 2: Create interactive volcano plot of logged data using points for
the background.

Not run:
app <- plotVolcanoApp(dataSE = se_soybean_cn_sub, option = "allPoints",

pointColor = "magenta")
if (interactive()) {

shiny::runApp(app)
}

End(Not run)

se_soybean_cn_sub Normalized and subsetted soybean cotyledon SummarizedExperiment

Description

This dataset contains normalized RNA-sequencing read counts from soybean cotyledon across three
time stages of development. Early stage cotyledons were collected four days after planting and were
green but closed. Middle stage cotyledons were collected while green and open, soon after the plant
generated its first set of unifoliate leaves. Late stage cotyledons were collected immediately after
the initiation of yellowing and shrinking. To save on size, this example dataset was generated by
obtaining a random subset of 1 out of 10 genes from the original resource.

Usage

data(se_soybean_cn_sub)

Format

(1) A DelayedMatrix with 7,332 rows and 10 variables and 1 row per gene. Accessible by assay(se_soybean_cn_sub).
(2) A List with 1 list element per treatment group combination and 1 row per gene. Accessible by
rowData(se_soybean_cn_sub).

Details

Normalized and subsetted soybean cotyledon SummarizedExperiment object

• assay(se_soybean_cn_sub) Structure:

se_soybean_ir_sub 31

• S1.1 early stage replicate 1 normalized read counts

• S1.2 early stage replicate 2 normalized read counts

• S1.3 early stage replicate 3 normalized read counts

• S2.1 middle stage replicate 1 normalized read counts

• S2.2 middle stage replicate 2 normalized read counts

• S2.3 middle stage replicate 3 normalized read counts

• S3.1 late stage replicate 1 normalized read counts

• S3.2 late stage replicate 2 normalized read counts

• S3.3 late stage replicate 3 normalized read counts

• rowData(se_soybean_cn_sub) list element Structure:

• ID gene name

• logFC log fold change

• logCPM log counts per million

• LR likelihood ratio

• PValue p-value

• FDR FDR value

References

Brown AV, Hudson KA (2015) Developmental profiling of gene expression in soybean trifoliate
leaves and cotyledons. BMC Plant Biol 15:169

See Also

soybean_cn_sub and soybean_cn_sub_metrics

se_soybean_ir_sub Raw and subsetted soybean leaves iron-metabolism SummarizedEx-
periment

Description

This dataset contains raw RNA-sequencing read counts from a soybean dataset that compared leaves
that were exposed to iron-rich (iron -postive) soil conditions versus leaves that were exposed to iron-
poor (iron-negative) soil conditions. The data was collected 120 minutes after iron conditions were
initiated. To save on size, this example dataset was generated by obtaining a random subset of 1 out
of 10 genes from the original resource.

Usage

data(se_soybean_ir_sub)

32 se_soybean_ir_sub

Format

(1) A DelayedMatrix with 5,604 rows and 7 variables and 1 row per gene. Accessible by assay(se_soybean_ir_sub).
(2) A List with 1 list element per treatment group combination and 1 row per gene. Accessible by
rowData(se_soybean_ir_sub).

A data frame with 5,604 rows and 7 variables

Details

Raw and subsetted soybean leaves data SummarizedExperiment object

• assay(se_soybean_ir_sub) Structure:

• N.1 iron-negative condition replicate 1 raw read counts

• N.2 iron-negative condition replicate 2 raw read counts

• N.3 iron-negative condition replicate 3 raw read counts

• P.1 iron-positive condition replicate 1 raw read counts

• P.2 iron-positive condition replicate 2 raw read counts

• P.3 iron-positive condition replicate 3 raw read counts

• rowData(se_soybean_ir_sub) list element Structure:

• ID gene name

• logFC log fold change

• logCPM log counts per million

• LR likelihood ratio

• PValue p-value

• FDR FDR value

References

Moran Lauter AN, Graham MA. NCBI SRA bioproject accession: PRJNA318409.

See Also

soybean_ir_sub and soybean_ir_sub_metrics

soybean_cn 33

soybean_cn Normalized soybean cotyledon data

Description

This dataset contains normalized RNA-sequencing read counts from soybean cotyledon across three
time stages of development. Early stage cotyledons were collected four days after planting and were
green but closed. Middle stage cotyledons were collected while green and open, soon after the plant
generated its first set of unifoliate leaves. Late stage cotyledons were collected immediately after
the initiation of yellowing and shrinking.

Format

a RData instance, 1 row per gene

A data frame with 73,320 rows and 10 variables

Details

Normalized soybean cotyledon data

• ID gene name

• S1.1 early stage replicate 1 normalized read counts

• S1.2 early stage replicate 2 normalized read counts

• S1.3 early stage replicate 3 normalized read counts

• S2.1 middle stage replicate 1 normalized read counts

• S2.2 middle stage replicate 2 normalized read counts

• S2.3 middle stage replicate 3 normalized read counts

• S3.1 late stage replicate 1 normalized read counts

• S3.2 late stage replicate 2 normalized read counts

• S3.3 late stage replicate 3 normalized read counts

References

Brown AV, Hudson KA (2015) Developmental profiling of gene expression in soybean trifoliate
leaves and cotyledons. BMC Plant Biol 15:169

34 soybean_cn_sub

soybean_cn_metrics Normalized soybean cotyledon metrics

Description

This data contains metrics for normalized RNA-sequencing read counts from soybean cotyledon
across three time stages of development. Early stage cotyledons were collected four days after
planting and were green but closed. Middle stage cotyledons were collected while green and open,
soon after the plant generated its first set of unifoliate leaves. Late stage cotyledons were collected
immediately after the initiation of yellowing and shrinking. The metrics include the log fold change,
log counts per million, likelihood ratio, p-values, and FDR values for all genes and all pairwise
combinations of treatment groups.

Format

a RData instance, 1 list per treatment group combination and 1 row per gene

A nested list of length 3. Each list contains the metrics for the 73,320 genes for one treatment group
combination.

Details

Normalized soybean cotyledon metrics

• ID gene name

• logFC log fold change

• logCPM log counts per million

• LR likelihood ratio

• PValue p-value

• FDR FDR value

See Also

soybean_cn for information about the treatment groups

soybean_cn_sub Normalized and subsetted soybean cotyledon data

Description

This dataset contains normalized RNA-sequencing read counts from soybean cotyledon across three
time stages of development. Early stage cotyledons were collected four days after planting and were
green but closed. Middle stage cotyledons were collected while green and open, soon after the plant
generated its first set of unifoliate leaves. Late stage cotyledons were collected immediately after
the initiation of yellowing and shrinking. To save on size, this example dataset was generated by
obtaining a random subset of 1 out of 10 genes from the original resource.

soybean_cn_sub_metrics 35

Usage

data(soybean_cn_sub)

Format

A data frame with 7,332 rows and 10 variables. 1 row per gene.

Details

Normalized and subsetted soybean cotyledon data

• ID gene name

• S1.1 early stage replicate 1 normalized read counts

• S1.2 early stage replicate 2 normalized read counts

• S1.3 early stage replicate 3 normalized read counts

• S2.1 middle stage replicate 1 normalized read counts

• S2.2 middle stage replicate 2 normalized read counts

• S2.3 middle stage replicate 3 normalized read counts

• S3.1 late stage replicate 1 normalized read counts

• S3.2 late stage replicate 2 normalized read counts

• S3.3 late stage replicate 3 normalized read counts

References

Brown AV, Hudson KA (2015) Developmental profiling of gene expression in soybean trifoliate
leaves and cotyledons. BMC Plant Biol 15:169

See Also

soybean_cn from which this dataset is subsetted

soybean_cn_sub_metrics

Normalized and subsetted soybean cotyledon metrics

Description

This data contains metrics for normalized RNA-sequencing read counts from soybean cotyledon
across three time stages of development. Early stage cotyledons were collected four days after
planting and were green but closed. Middle stage cotyledons were collected while green and open,
soon after the plant generated its first set of unifoliate leaves. Late stage cotyledons were collected
immediately after the initiation of yellowing and shrinking. The metrics include the log fold change,
log counts per million, likelihood ratio, p-values, and FDR values for all genes and all pairwise
combinations of treatment groups. To save on size, this example dataset was generated by obtaining
a random subset of 1 out of 10 genes from the original resource.

36 soybean_ir

Usage

data(soybean_cn_sub_metrics)

Format

a RData instance, List with one list element per treatment group combination and 1 row per gene

Details

Normalized and subsetted soybean cotyledon metrics

• ID gene name

• logFC log fold change

• logCPM log counts per million

• LR likelihood ratio

• PValue p-value

• FDR FDR value

See Also

soybean_cn_sub for information about the treatment groups

soybean_ir Raw soybean leaves iron-metabolism data

Description

This dataset contains raw RNA-sequencing read counts from a soybean dataset that compared leaves
that were exposed to iron-rich (iron -postive) soil conditions versus leaves that were exposed to iron-
poor (iron-negative) soil conditions. The data was collected 120 minutes after iron conditions were
initiated.

Format

a RData instance, 1 row per gene

A data frame with 56,044 rows and 7 variables

Details

Raw soybean leaves data

• ID gene name

• N.1 iron-negative condition replicate 1 raw read counts

• N.2 iron-negative condition replicate 2 raw read counts

• N.3 iron-negative condition replicate 3 raw read counts

soybean_ir_metrics 37

• P.1 iron-positive condition replicate 1 raw read counts

• P.2 iron-positive condition replicate 2 raw read counts

• P.3 iron-positive condition replicate 3 raw read counts

soybean_ir_metrics Raw soybean leaves iron-metabolism metrics

Description

This data contains metrics for raw RNA-sequencing read counts from a soybean dataset that com-
pared leaves that were exposed to iron-rich (iron-postive) soil conditions versus leaves that were
exposed to iron -poor (iron-negative) soil conditions. The data was collected 120 minutes after iron
conditions were initiated. The metrics include the log fold change and the p-values for all genes
and all pairwise combinations of treatment groups.

Format

a RData instance, 1 list per treatment group combination and 1 row per gene

A nested list of length 1. The list contains the metrics for the 56,044 genes for the one treatment
group combination.

Details

Raw soybean leaves metrics

• ID gene name

• logFC log fold change

• PValue p-value

See Also

soybean_ir for information about the treatment groups

soybean_ir_sub Raw and subsetted soybean leaves iron-metabolism data

Description

This dataset contains raw RNA-sequencing read counts from a soybean dataset that compared leaves
that were exposed to iron-rich (iron -postive) soil conditions versus leaves that were exposed to iron-
poor (iron-negative) soil conditions. The data was collected 120 minutes after iron conditions were
initiated. To save on size, this example dataset was generated by obtaining a random subset of 1 out
of 10 genes from the original resource.

38 soybean_ir_sub_metrics

Usage

data(soybean_ir_sub)

Format

a RData instance, 1 row per gene

A data frame with 5,604 rows and 7 variables

Details

Raw and subsetted soybean leaves data

• ID gene name

• N.1 iron-negative condition replicate 1 raw read counts

• N.2 iron-negative condition replicate 2 raw read counts

• N.3 iron-negative condition replicate 3 raw read counts

• P.1 iron-positive condition replicate 1 raw read counts

• P.2 iron-positive condition replicate 2 raw read counts

• P.3 iron-positive condition replicate 3 raw read counts

References

Moran Lauter AN, Graham MA. NCBI SRA bioproject accession: PRJNA318409.

See Also

soybean_ir from which this dataset is subsetted

soybean_ir_sub_metrics

Raw and subsetted soybean leaves iron-metabolism metrics

Description

This data contains metrics for raw RNA-sequencing read counts from a soybean dataset that com-
pared leaves that were exposed to iron-rich (iron-postive) soil conditions versus leaves that were
exposed to iron -poor (iron-negative) soil conditions. The data was collected 120 minutes after iron
conditions were initiated. The metrics include the log fold change and the p-values for all genes and
all pairwise combinations of treatment groups. To save on size, this example dataset was generated
by obtaining a random subset of 1 out of 10 genes from the original resource.

Usage

data(soybean_ir_sub_metrics)

soybean_ir_sub_metrics 39

Format

a RData instance, 1 list per treatment group combination and 1 row per gene

A nested list of length 1. The list contains the metrics for the 5,604 genes for the one treatment
group combination.

Details

Raw and subsetted soybean leaves iron-metabolism metrics

• ID gene name

• logFC log fold change

• PValue p-value

References

Moran Lauter AN, Graham MA. NCBI SRA bioproject accession: PRJNA318409.

See Also

soybean_ir_sub for information about the treatment groups

Index

∗ datasets
se_soybean_cn_sub, 30
se_soybean_ir_sub, 31
soybean_cn, 33
soybean_cn_metrics, 34
soybean_cn_sub, 34
soybean_cn_sub_metrics, 35
soybean_ir, 36
soybean_ir_metrics, 37
soybean_ir_sub, 37
soybean_ir_sub_metrics, 38

bigPint, 2

convertSEPair, 3
convertSESubsetGenes, 4

hclust, 6

plotClusters, 4
plotLitre, 10
plotLitreApp, 12
plotPCP, 14
plotPCPApp, 17
plotSM, 19
plotSMApp, 24
plotVolcano, 25
plotVolcanoApp, 28

se_soybean_cn_sub, 30
se_soybean_ir_sub, 31
soybean_cn, 33, 34, 35
soybean_cn_metrics, 34
soybean_cn_sub, 31, 34, 36
soybean_cn_sub_metrics, 31, 35
soybean_ir, 36, 37, 38
soybean_ir_metrics, 37
soybean_ir_sub, 32, 37, 39
soybean_ir_sub_metrics, 32, 38

40

	bigPint
	convertSEPair
	convertSESubsetGenes
	plotClusters
	plotLitre
	plotLitreApp
	plotPCP
	plotPCPApp
	plotSM
	plotSMApp
	plotVolcano
	plotVolcanoApp
	se_soybean_cn_sub
	se_soybean_ir_sub
	soybean_cn
	soybean_cn_metrics
	soybean_cn_sub
	soybean_cn_sub_metrics
	soybean_ir
	soybean_ir_metrics
	soybean_ir_sub
	soybean_ir_sub_metrics
	Index

