## Package 'GUIDEseq'

October 18, 2022

Type Package

Title GUIDE-seq and PEtag-seq analysis pipeline **Version** 1.26.0 Date 2022-03-26 **Encoding** UTF-8 Author Lihua Julie Zhu, Michael Lawrence, Ankit Gupta, Hervé Pagès, Alper Kucukural, Manuel Garber, Scot A. Wolfe Maintainer Lihua Julie Zhu <julie.zhu@umassmed.edu> Depends R (>= 3.5.0), GenomicRanges, BiocGenerics Imports BiocParallel, Biostrings, CRISPRseek, ChIPpeakAnno, data.table, matrixStats, BSgenome, parallel, IRanges (>= (2.5.5), S4Vectors (>= 0.9.6), GenomicAlignments (>= 1.7.3), GenomeInfoDb, Rsamtools, hash, limma,dplyr, GenomicFeatures biocViews ImmunoOncology, GeneRegulation, Sequencing, WorkflowStep, CRISPR Suggests knitr, RUnit, BiocStyle, BSgenome.Hsapiens.UCSC.hg19, TxDb.Hsapiens.UCSC.hg19.knownGene, org.Hs.eg.db, testthat (>=

#### VignetteBuilder knitr

3.0.0)

**Description** The package implements GUIDE-seq and PEtag-seq analysis workflow including functions for filtering UMI and reads with low coverage, obtaining unique insertion sites (proxy of cleavage sites), estimating the locations of the insertion sites, aka, peaks, merging estimated insertion sites from plus and minus strand, and performing off target search of the extended regions around insertion sites.

License GPL (>= 2)

LazyLoad yes

NeedsCompilation no

Config/testthat/edition 3

git\_url https://git.bioconductor.org/packages/GUIDEseq

git\_branch RELEASE\_3\_15
git\_last\_commit 46778e1
git\_last\_commit\_date 2022-04-26
Date/Publication 2022-10-18

## **R** topics documented:

| GUIDEseq-package               | 2 |
|--------------------------------|---|
| annotateOffTargets             | 3 |
| combineOfftargets              | 5 |
| createBarcodeFasta             | 6 |
| getPeaks                       | 7 |
| getUniqueCleavageEvents        | 8 |
| getUsedBarcodes                | 2 |
| GUIDEseqAnalysis               | 3 |
| mergePlusMinusPeaks            | 0 |
| offTargetAnalysisOfPeakRegions | 1 |
| peaks.gr                       | 5 |
| PEtagAnalysis                  | 5 |
| uniqueCleavageEvents           | 8 |
| 3                              | 0 |

## Index

GUIDEseq-package Analysis of GUIDE-seq

## Description

The package includes functions to retain one read per unique molecular identifier (UMI), filter reads lacking integration oligo sequence, identify peak locations (cleavage sites) and heights, merge peaks, perform off-target search using the input gRNA. This package leverages CRISPRseek and ChIPpeakAnno packages.

## Details

| seq  |
|------|
| e    |
|      |
| 9-04 |
| = 2) |
|      |

Function GUIDEseqAnalysis integrates all steps of GUIDE-seq analysis into one function call

#### Author(s)

Lihua Julie Zhu Maintainer:julie.zhu@umassmed.edu

#### References

Shengdar Q Tsai and J Keith Joung et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nature Biotechnology 33, 187 to 197 (2015)

#### See Also

**GUIDEseqAnalysis** 

#### Examples

```
if(interactive())
{
     library("BSgenome.Hsapiens.UCSC.hg19")
     umiFile <- system.file("extdata", "UMI-HEK293_site4_chr13.txt",</pre>
        package = "GUIDEseq")
     alignFile <- system.file("extdata","bowtie2.HEK293_site4_chr13.sort.bam" ,</pre>
         package = "GUIDEseq")
     gRNA.file <- system.file("extdata","gRNA.fa", package = "GUIDEseq")</pre>
     guideSeqRes <- GUIDEseqAnalysis(</pre>
         alignment.inputfile = alignFile,
         umi.inputfile = umiFile, gRNA.file = gRNA.file,
         orderOfftargetsBy = "peak_score",
         descending = TRUE,
         keepTopOfftargetsBy = "predicted_cleavage_score",
         scoring.method = "CFDscore",
         BSgenomeName = Hsapiens, min.reads = 80, n.cores.max = 1)
     guideSeqRes$offTargets
}
```

annotateOffTargets Annotate offtargets with gene name

#### Description

Annotate offtargets with gene name and whether it is inside an exon

#### Usage

```
annotateOffTargets(thePeaks, txdb, orgAnn)
```

#### Arguments

| thePeaks | Output from offTargetAnalysisOfPeakRegions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| txdb     | TxDb object, for creating and using TxDb object, please refer to GenomicFea-<br>tures package. For a list of existing TxDb object, please search for annotation<br>package starting with Txdb at http://www.bioconductor.org/packages/release/BiocViews.html#Annota<br>such as TxDb.Rnorvegicus.UCSC.rn5.refGene for rat, TxDb.Mmusculus.UCSC.mm10.knownGene<br>for mouse, TxDb.Hsapiens.UCSC.hg19.knownGene for human, TxDb.Dmelanogaster.UCSC.dm3.ensGene<br>for Drosophila and TxDb.Celegans.UCSC.ce6.ensGene for C.elegans |
| orgAnn   | organism annotation mapping such as org.Hs.egSYMBOL in org.Hs.eg.db pack-<br>age for human                                                                                                                                                                                                                                                                                                                                                                                                                                     |

#### Value

A data frame and a tab-delimited file offTargetsInPeakRegions.xls, containing all input offtargets with potential gRNA binding sites, mismatch number and positions, alignment to the input gRNA and predicted cleavage score, and whether the offtargets are inside an exon and associated gene name.

#### Author(s)

Lihua Julie Zhu

#### See Also

**GUIDEseqAnalysis** 

#### **Examples**

}

```
if (!interactive()) {
   library("BSgenome.Hsapiens.UCSC.hg19")
   library(TxDb.Hsapiens.UCSC.hg19.knownGene)
   library(org.Hs.eg.db)
   peaks <- system.file("extdata", "T2plus1000ffTargets.bed",</pre>
       package = "CRISPRseek")
   gRNAs <- system.file("extdata", "T2.fa",</pre>
       package = "CRISPRseek")
   outputDir = getwd()
   offTargets <- offTargetAnalysisOfPeakRegions(gRNA = gRNAs, peaks = peaks,
       format=c("fasta", "bed"),
       peaks.withHeader = TRUE, BSgenomeName = Hsapiens,
       upstream = 20L, downstream = 20L, PAM.size = 3L, gRNA.size = 20L,
       orderOfftargetsBy = "predicted_cleavage_score",
       PAM = "NGG", PAM.pattern = "(NGG|NAG|NGA)$", max.mismatch = 2L,
       outputDir = outputDir,
       allowed.mismatch.PAM = 3, overwrite = TRUE)
   annotatedOfftargets <- annotateOffTargets(offTargets,</pre>
      txdb = TxDb.Hsapiens.UCSC.hg19.knownGene,
      orgAnn = org.Hs.egSYMBOL)
```

combineOfftargets Combine Offtargets

#### Description

Merge offtargets from different samples

### Usage

```
combineOfftargets(offtarget.folder, sample.name,
    remove.common.offtargets = FALSE,control.sample.name,
    offtarget.filename = "offTargetsInPeakRegions.xls",
    common.col = c("offTarget", "predicted_cleavage_score",
        "gRNA.name", "gRNAPlusPAM", "offTarget_sequence",
        "guideAlignment2OffTarget", "offTargetStrand",
        "mismatch.distance2PAM", "n.PAM.mismatch",
        "n.guide.mismatch", "PAM.sequence", "offTarget_Start",
        "offTarget_End", "chromosome"),
    exclude.col,
    outputFileName)
```

#### Arguments

| offtarget.folde |                                                                                                                                                                                                                                                                                                                                          |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | offtarget summary output folders created in GUIDEseqAnalysis function                                                                                                                                                                                                                                                                    |
| sample.name     | Sample names to be used as part of the column names in the final output file                                                                                                                                                                                                                                                             |
| remove.common.c | offtargets                                                                                                                                                                                                                                                                                                                               |
|                 | Default to FALSE If set to TRUE, off-targets common to all samples will be removed.                                                                                                                                                                                                                                                      |
| control.sample. | name                                                                                                                                                                                                                                                                                                                                     |
|                 | The name of the control sample for filtering off-targets present in the control sample                                                                                                                                                                                                                                                   |
| offtarget.filer | name                                                                                                                                                                                                                                                                                                                                     |
|                 | Default to offTargetsInPeakRegions.xls, generated in GUIDEseqAnalysis func-<br>tion                                                                                                                                                                                                                                                      |
| common.col      | common column names used for merge files. Default to c("offTarget","predicted_cleavage_score"<br>"gRNA.name", "gRNAPlusPAM", "offTarget_sequence", "guideAlignment2OffTarget",<br>"offTargetStrand", "mismatch.distance2PAM", "n.PAM.mismatch", "n.guide.mismatch",<br>"PAM.sequence", "offTarget_Start", "offTarget_End", "chromosome") |
| exclude.col     | columns to be excluded before merging. Please check offTargetsInPeakRe-<br>gions.xls to choose the desired columns to exclude                                                                                                                                                                                                            |
| outputFileName  | The merged offtarget file                                                                                                                                                                                                                                                                                                                |
|                 |                                                                                                                                                                                                                                                                                                                                          |

#### Details

Please note that by default, merged file will only contain peaks with offtargets found in the genome in GUIDEseqAnalysis function.

#### Value

a tab-delimited file similar to offTargetsInPeakRegions.tsv, containing all peaks from all samples merged by potential gRNA binding sites, mismatch number and positions, alignment to the input gRNA and predicted cleavage score. Sample specific columns have sample.name concatenated to the original column name, e.g., peak\_score becomes sample1.peak\_score.

#### Author(s)

Lihua Julie Zhu

#### Examples

createBarcodeFasta Create barcode as fasta file format for building bowtie1 index

#### Description

Create barcode as fasta file format for building bowtie1 index to assign reads to each library with different barcodes. The bowtie1 index has been built for the standard GUIDE-seq protocol using the standard p5 and p7 index. It can be downloaded at http://mccb.umassmed.edu/GUIDE-seq/barcode.bowtie1.index.tar.gz

#### Usage

```
createBarcodeFasta(p5.index, p7.index, reverse.p7 = TRUE,
    reverse.p5 = FALSE, header = FALSE, outputFile = "barcodes.fa")
```

#### Arguments

| p5.index   | A text file with one p5 index sequence per line                                                                                          |
|------------|------------------------------------------------------------------------------------------------------------------------------------------|
| p7.index   | A text file with one p7 index sequence per line                                                                                          |
| header     | Indicate whether there is a header in the p5.index and p7.index files. Default to $\ensuremath{FALSE}$                                   |
| reverse.p7 | Indicate whether to reverse p7 index, default to TRUE for standard GUIDE-seq experiments                                                 |
| reverse.p5 | Indicate whether to reverse p5 index, default to FALSE for standard GUIDE-seq experiments                                                |
| outputFile | Give a name to the output file where the generated barcodes are written. This file can be used to build bowtie1 index for binning reads. |

#### getPeaks

## Note

Create barcode file to be used to bin the reads sequenced in a pooled lane

#### Author(s)

Lihua Julie Zhu

## Examples

```
p7 <- system.file("extdata", "p7.index",</pre>
       package = "GUIDEseq")
p5 <- system.file("extdata", "p5.index",</pre>
       package = "GUIDEseq")
outputFile <- "barcodes.fa"</pre>
createBarcodeFasta(p5.index = p5, p7.index = p7, reverse.p7 = TRUE,
    reverse.p5 = FALSE, outputFile = outputFile)
```

getPeaks

Obtain peaks from GUIDE-seq

#### Description

Obtain strand-specific peaks from GUIDE-seq

#### Usage

```
getPeaks(gr, window.size = 20L, step = 20L, bg.window.size = 5000L,
   min.reads = 10L, min.SNratio = 2, maxP = 0.05,
    stats = c("poisson", "nbinom"), p.adjust.methods =
    c("none", "BH", "holm", "hochberg", "hommel", "bonferroni", "BY", "fdr"))
```

#### Arguments

| gr              | GRanges with cleavage sites, output from getUniqueCleavageEvents                 |  |  |
|-----------------|----------------------------------------------------------------------------------|--|--|
| window.size     | window size to calculate coverage                                                |  |  |
| step            | step size to calculate coverage                                                  |  |  |
| bg.window.size  | window size to calculate local background                                        |  |  |
| min.reads       | minimum number of reads to be considered as a peak                               |  |  |
| min.SNratio     | minimum signal noise ratio, which is the coverage normalized by local background |  |  |
| maxP            | Maximum p-value to be considered as significant                                  |  |  |
| stats           | Statistical test, default poisson                                                |  |  |
| p.adjust.method | ls                                                                               |  |  |
|                 | Adjustment method for multiple comparisons, default none                         |  |  |

Adjustment method for multiple comparisons, default none

| peaks           | GRanges with co    | ount (peak heigh | nt), bg (lo | ocal backg | round), Sl | Nratio (signal | noise |
|-----------------|--------------------|------------------|-------------|------------|------------|----------------|-------|
|                 | ratio), p-value, a | nd option adjust | ted p-val   | ue         |            |                |       |
| summarized.cour | nt                 |                  |             |            |            |                |       |
|                 |                    |                  |             |            |            |                |       |

A data frame contains the same information as peaks except that it has all the sites without filtering.

#### Author(s)

Lihua Julie Zhu

#### Examples

```
if (interactive())
{
    data(uniqueCleavageEvents)
    peaks <- getPeaks(uniqueCleavageEvents$cleavage.gr,
        min.reads = 80)
    peaks$peaks
}</pre>
```

getUniqueCleavageEvents

Using UMI sequence to obtain the starting sequence library

#### Description

PCR amplification often leads to biased representation of the starting sequence population. To track the sequence tags present in the initial sequence library, a unique molecular identifier (UMI) is added to the 5 prime of each sequence in the staring library. This function uses the UMI sequence plus the first few sequence from R1 reads to obtain the starting sequence library.

#### Usage

```
getUniqueCleavageEvents(alignment.inputfile, umi.inputfile,
    alignment.format = c("auto", "bam", "bed"),
    umi.header = FALSE, read.ID.col = 1,
    umi.col = 2, umi.sep = "\t", keep.chrM = FALSE,
    keep.R1only = TRUE, keep.R2only = TRUE,
    concordant.strand = TRUE, max.paired.distance = 1000,
    min.mapping.quality = 30, max.R1.len = 130, max.R2.len = 130,
    apply.both.max.len = FALSE, same.chromosome = TRUE,
    distance.inter.chrom = -1, min.R1.mapped = 20, min.R2.mapped = 20,
    apply.both.min.mapped = FALSE, max.duplicate.distance = 0,
    umi.plus.R1start.unique = TRUE, umi.plus.R2start.unique = TRUE,
    min.umi.count = 5L,
    max.umi.count = 100000L,
    min.read.coverage = 1L,
    n.cores.max = 6)
```

## Arguments

alignment.inputfile

|                            | The alignment file. Currently supports bed output file with CIGAR information. Suggest run the workflow binReads.sh, which sequentially runs barcode binning, adaptor removal, alignment to genome, alignment quality filtering, and bed file conversion. Please download the workflow function and its helper scripts at http://mccb.umassmed.edu/GUIDE-seq/binReads/ |  |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| umi.inputfile              | A text file containing at least two columns, one is the read identifier and the other is the UMI or UMI plus the first few bases of R1 reads. Suggest use getUMI.sh to generate this file. Please download the script and its helper scripts at http://mccb.umassmed.edu/GUIDE-seq/getUMI/                                                                             |  |
| alignment.forma            | t                                                                                                                                                                                                                                                                                                                                                                      |  |
|                            | The format of the alignment input file. Currently only bam and bed file format is supported. BED format will be deprecated soon.                                                                                                                                                                                                                                       |  |
| umi.header                 | Indicates whether the umi input file contains a header line or not. Default to FALSE                                                                                                                                                                                                                                                                                   |  |
| read.ID.col                | The index of the column containing the read identifier in the umi input file, default to 1                                                                                                                                                                                                                                                                             |  |
| umi.col                    | The index of the column containing the umi or umi plus the first few bases of sequence from the R1 reads, default to 2                                                                                                                                                                                                                                                 |  |
| umi.sep                    | column separator in the umi input file, default to tab                                                                                                                                                                                                                                                                                                                 |  |
| keep.chrM                  | Specify whether to include alignment from chrM. Default FALSE                                                                                                                                                                                                                                                                                                          |  |
| keep.R1only                | Specify whether to include alignment with only R1 without paired R2. Default TRUE                                                                                                                                                                                                                                                                                      |  |
| keep.R2only                | Specify whether to include alignment with only R2 without paired R1. Default TRUE                                                                                                                                                                                                                                                                                      |  |
| concordant.stra            | nd                                                                                                                                                                                                                                                                                                                                                                     |  |
|                            | Specify whether the R1 and R2 should be aligned to the same strand or opposite strand. Default opposite.strand (TRUE)                                                                                                                                                                                                                                                  |  |
| <pre>max.paired.dist</pre> | ance                                                                                                                                                                                                                                                                                                                                                                   |  |
|                            | Specify the maximum distance allowed between paired R1 and R2 reads. Default 1000 bp                                                                                                                                                                                                                                                                                   |  |
| <pre>min.mapping.qua</pre> | lity                                                                                                                                                                                                                                                                                                                                                                   |  |
|                            | Specify min.mapping.quality of acceptable alignments                                                                                                                                                                                                                                                                                                                   |  |
| max.R1.len                 | The maximum retained R1 length to be considered for downstream analysis, default 130 bp. Please note that default of 130 works well when the read length 150 bp. Please also note that retained R1 length is not necessarily equal to the mapped R1 length                                                                                                             |  |
| max.R2.len                 | The maximum retained R2 length to be considered for downstream analysis, default 130 bp. Please note that default of 130 works well when the read length 150 bp. Please also note that retained R2 length is not necessarily equal to the mapped R2 length                                                                                                             |  |
| apply.both.max.len         |                                                                                                                                                                                                                                                                                                                                                                        |  |
|                            | Specify whether to apply maximum length requirement to both R1 and R2 reads, default FALSE $% \mathcal{A}_{\mathrm{A}}$                                                                                                                                                                                                                                                |  |

| same.chromosome            |                                                                                                                                                                                            |  |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                            | Specify whether the paired reads are required to align to the same chromosome, default TRUE                                                                                                |  |
| distance.inter.            | chrom                                                                                                                                                                                      |  |
|                            | Specify the distance value to assign to the paired reads that are aligned to differ-<br>ent chromosome, default -1                                                                         |  |
| <pre>min.R1.mapped</pre>   | The maximum mapped R1 length to be considered for downstream analysis, default 30 bp.                                                                                                      |  |
| <pre>min.R2.mapped</pre>   | The maximum mapped R2 length to be considered for downstream analysis, default 30 bp.                                                                                                      |  |
| apply.both.min.            | mapped                                                                                                                                                                                     |  |
|                            | Specify whether to apply minimum mapped length requirement to both R1 and R2 reads, default FALSE                                                                                          |  |
| <pre>max.duplicate.c</pre> | listance                                                                                                                                                                                   |  |
|                            | Specify the maximum distance apart for two reads to be considered as duplicates, default 0. Currently only 0 is supported                                                                  |  |
| umi.plus.R1star            | rt.unique                                                                                                                                                                                  |  |
|                            | To specify whether two mapped reads are considered as unique if both contain-<br>ing the same UMI and same alignment start for R1 read, default TRUE.                                      |  |
| umi.plus.R2start.unique    |                                                                                                                                                                                            |  |
|                            | To specify whether two mapped reads are considered as unique if both contain-<br>ing the same UMI and same alignment start for R2 read, default TRUE.                                      |  |
| min.umi.count              | To specify the minimum count for a umi to be included in the subsequent anal-<br>ysis. Please adjust it to a higher number for deeply sequenced library and vice<br>versa.                 |  |
| max.umi.count              | To specify the maximum count for a umi to be included in the subsequent anal-<br>ysis. Please adjust it to a higher number for deeply sequenced library and vice<br>versa.                 |  |
| min.read.coverage          |                                                                                                                                                                                            |  |
|                            | To specify the minimum coverage for a read UMI combination to be included<br>in the subsequent analysis. Please note that this is different from min.umi.count<br>which is less stringent. |  |
| n.cores.max                | Indicating maximum number of cores to use in multi core mode, i.e., parallel processing, default 6. Please set it to 1 to disable multicore processing for small dataset.                  |  |
|                            |                                                                                                                                                                                            |  |

#### Value

| cleavage.gr | Cleavage sites with one site per UMI as GRanges with metadata column total |
|-------------|----------------------------------------------------------------------------|
|             | set to 1 for each range                                                    |

unique.umi.plus.R2

a data frame containing unique cleavage site from R2 reads mapped to plus strand with the following columns seqnames (chromosome) start (cleavage site) strand UMI (unique molecular identifier (umi) or umi with the first few bases of R1 read) UMI read duplication level (min.read.coverage can be used to remove UMI-read with very low coverage)

unique.umi.minus.R2

a data frame containing unique cleavage site from R2 reads mapped to minus strand with the same columns as unique.umi.plus.R2

unique.umi.plus.R1

a data frame containing unique cleavage site from R1 reads mapped to minus strand without corresponding R2 reads mapped to the plus strand, with the same columns as unique.umi.plus.R2

unique.umi.minus.R1

a data frame containing unique cleavage site from R1 reads mapped to plus strand without corresponding R2 reads mapped to the minus strand, with the same columns as unique.umi.plus.R2

all.umi a data frame containing all the mapped reads with the following columns. read-Name (read ID), chr.x (chromosome of readSide.x/R1 read), start.x (start of eadSide.x/R1 read), end.x (end of eadSide.x/R1 read), mapping.qual.x (mapping quality of readSide.x/R1 read), strand.x (strand of readSide.x/R1 read), cigar.x (CIGAR of readSide.x/R1 read) , readSide.x (1/R1), chr.y (chromosome of readSide.y/R2 read) start.y (start of readSide.y/R2 read), end.y (end of readSide.y/R2 read), mapping.qual.y (mapping quality of readSide.y/R2 read), strand.y (strand of readSide.y/R2 read), cigar.y (CIGAR of readSide.y/R2 read), readSide.y (2/R2) R1.base.kept (retained R1 length), R2.base.kept (retained R2 length), distance (distance between mapped R1 and R2), UMI (unique molecular identifier (umi) or umi with the first few bases of R1 read)

#### Author(s)

Lihua Julie Zhu

#### References

Shengdar Q Tsai and J Keith Joung et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nature Biotechnology 33, 187 to 197 (2015)

#### See Also

getPeaks

#### Examples

```
if(interactive())
{
    umiFile <- system.file("extdata", "UMI-HEK293_site4_chr13.txt",
    package = "GUIDEseq")
    alignFile <- system.file("extdata","bowtie2.HEK293_site4_chr13.sort.bam",
    package = "GUIDEseq")
    cleavages <- getUniqueCleavageEvents(
        alignment.inputfile = alignFile , umi.inputfile = umiFile,
        n.cores.max = 1)
    names(cleavages)
    #output a summary of duplicate counts for sequencing saturation assessment
    table(cleavages$umi.count.summary$n)</pre>
```

}

getUsedBarcodes Create barcodes from the p5 and p7 index used for each sequencing lane

#### Description

Create barcodes from the p5 and p7 index for assigning reads to each barcode

#### Usage

```
getUsedBarcodes(p5.index, p7.index, header = FALSE, reverse.p7 = TRUE,
    reverse.p5 = FALSE, outputFile)
```

#### Arguments

| p5.index   | A text file with one p5 index sequence per line                                           |
|------------|-------------------------------------------------------------------------------------------|
| p7.index   | A text file with one p7 index sequence per line                                           |
| header     | Indicate whether there is a header in the p5.index and p7.index files. Default to FALSE   |
| reverse.p7 | Indicate whether to reverse p7 index, default to TRUE for standard GUIDE-seq experiments  |
| reverse.p5 | Indicate whether to reverse p5 index, default to FALSE for standard GUIDE-seq experiments |
| outputFile | Give a name to the output file where the generated barcodes are written                   |
|            |                                                                                           |

#### Value

DNAStringSet

## Note

Create barcode file to be used to bin the reads sequenced in a pooled lane

#### Author(s)

Lihua Julie Zhu

#### Examples

GUIDEseqAnalysis Analysis pipeline for GUIDE-seq dataset

#### Description

A wrapper function that uses the UMI sequence plus the first few bases of each sequence from R1 reads to estimate the starting sequence library, piles up reads with a user defined window and step size, identify the insertion sites (proxy of cleavage sites), merge insertion sites from plus strand and minus strand, followed by off target analysis of extended regions around the identified insertion sites.

#### Usage

```
GUIDEseqAnalysis(alignment.inputfile, umi.inputfile,
    alignment.format = c("auto", "bam", "bed"),
    umi.header = FALSE, read.ID.col = 1L,
    umi.col = 2L, umi.sep = "t",
    BSgenomeName,
    gRNA.file,
    outputDir,
    n.cores.max = 1L,
    keep.chrM = FALSE,
    keep.R1only = TRUE, keep.R2only = TRUE,
    concordant.strand = TRUE,
    max.paired.distance = 1000L, min.mapping.guality = 30L,
    max.R1.len = 130L, max.R2.len = 130L,
    min.umi.count = 5L,
    max.umi.count = 100000L,
    min.read.coverage = 1L,
    apply.both.max.len = FALSE, same.chromosome = TRUE,
    distance.inter.chrom = -1L, min.R1.mapped = 20L,
    min.R2.mapped = 20L, apply.both.min.mapped = FALSE,
    max.duplicate.distance = 0L,
    umi.plus.R1start.unique = TRUE, umi.plus.R2start.unique = TRUE,
    window.size = 20L, step = 20L, bg.window.size = 5000L,
    min.reads = 5L, min.reads.per.lib = 1L,
    min.peak.score.1strandOnly = 5L,
    min.SNratio = 2, maxP = 0.01,
    stats = c("poisson", "nbinom"),
    p.adjust.methods =
    c( "none", "BH", "holm", "hochberg", "hommel", "bonferroni", "BY", "fdr"),
    distance.threshold = 40L,
    max.overlap.plusSig.minusSig = 30L,
    plus.strand.start.gt.minus.strand.end = TRUE,
    keepPeaksInBothStrandsOnly = TRUE,
    gRNA.format = "fasta",
    overlap.gRNA.positions = c(17, 18),
```

```
upstream = 20L, downstream = 20L, PAM.size = 3L, gRNA.size = 20L,
 PAM = "NGG", PAM.pattern = "NNN$", max.mismatch = 6L,
 allowed.mismatch.PAM = 2L, overwrite = TRUE,
 weights = c(0, 0, 0.014, 0, 0, 0.395, 0.317, 0, 0.389, 0.079,
 0.445, 0.508, 0.613, 0.851, 0.732, 0.828, 0.615, 0.804, 0.685, 0.583),
orderOfftargetsBy = c("peak_score", "predicted_cleavage_score", "n.mismatch"),
 descending = TRUE,
 keepTopOfftargetsOnly = TRUE,
 keepTopOfftargetsBy = c("predicted_cleavage_score", "n.mismatch"),
 scoring.method = c("Hsu-Zhang", "CFDscore"),
     subPAM.activity = hash( AA =0,
       AC = 0,
       AG = 0.259259259,
       AT = 0,
       CA = 0,
       CC = 0,
       CG = 0.107142857,
       CT = 0,
       GA = 0.069444444,
       GC = 0.022222222,
       GG = 1,
       GT = 0.016129032,
       TA = 0,
       TC = 0,
       TG = 0.038961039,
       TT = 0),
  subPAM.position = c(22, 23),
  PAM.location = "3prime",
  mismatch.activity.file = system.file("extdata",
      "NatureBiot2016SuppTable19DoenchRoot.csv",
      package = "CRISPRseek"),
  txdb,
  orgAnn
```

#### Arguments

)

alignment.inputfile

The alignment file. Currently supports bam and bed output file with CIGAR information. Suggest run the workflow binReads.sh, which sequentially runs barcode binning, adaptor removal, alignment to genome, alignment quality filtering, and bed file conversion. Please download the workflow function and its helper scripts at http://mccb.umassmed.edu/GUIDE-seq/binReads/

umi.inputfile A text file containing at least two columns, one is the read identifier and the other is the UMI or UMI plus the first few bases of R1 reads. Suggest use getUMI.sh to generate this file. Please download the script and its helper scripts at http://mccb.umassmed.edu/GUIDE-seq/getUMI/

| alignment.form | at                                                                                                                                                                                                                                                                                                                                                            |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | The format of the alignment input file. Default bed file format. Currently only bed file format is supported, which is generated from binReads.sh                                                                                                                                                                                                             |
| umi.header     | Indicates whether the umi input file contains a header line or not. Default to FALSE                                                                                                                                                                                                                                                                          |
| read.ID.col    | The index of the column containing the read identifier in the umi input file, default to 1                                                                                                                                                                                                                                                                    |
| umi.col        | The index of the column containing the umi or umi plus the first few bases of sequence from the R1 reads, default to 2                                                                                                                                                                                                                                        |
| umi.sep        | column separator in the umi input file, default to tab                                                                                                                                                                                                                                                                                                        |
| BSgenomeName   | BSgenome object. Please refer to available.genomes in BSgenome package. For<br>example, BSgenome.Hsapiens.UCSC.hg19 for hg19, BSgenome.Mmusculus.UCSC.mm10<br>for mm10, BSgenome.Celegans.UCSC.ce6 for ce6, BSgenome.Rnorvegicus.UCSC.rn5<br>for rn5, BSgenome.Drerio.UCSC.danRer7 for Zv9, and BSgenome.Dmelanogaster.UCSC.dm3<br>for dm3                    |
| gRNA.file      | gRNA input file path or a DNAStringSet object that contains the target sequence (gRNA plus PAM)                                                                                                                                                                                                                                                               |
| outputDir      | the directory where the off target analysis and reports will be written to                                                                                                                                                                                                                                                                                    |
| n.cores.max    | Indicating maximum number of cores to use in multi core mode, i.e., parallel processing, default 1 to disable multicore processing for small dataset.                                                                                                                                                                                                         |
| keep.chrM      | Specify whether to include alignment from chrM. Default FALSE                                                                                                                                                                                                                                                                                                 |
| keep.R1only    | Specify whether to include alignment with only R1 without paired R2. Default TRUE                                                                                                                                                                                                                                                                             |
| keep.R2only    | Specify whether to include alignment with only R2 without paired R1. Default TRUE                                                                                                                                                                                                                                                                             |
| concordant.str | and                                                                                                                                                                                                                                                                                                                                                           |
|                | Specify whether the R1 and R2 should be aligned to the same strand or opposite strand. Default opposite.strand (TRUE)                                                                                                                                                                                                                                         |
| max.paired.dis | tance                                                                                                                                                                                                                                                                                                                                                         |
|                | fault 1000 bp                                                                                                                                                                                                                                                                                                                                                 |
| min.mapping.qu | diffy<br>Specify min mapping quality of acceptable alignments                                                                                                                                                                                                                                                                                                 |
| may R1 len     | The maximum retained R1 length to be considered for downstream analysis                                                                                                                                                                                                                                                                                       |
|                | default 130 bp. Please note that default of 130 works well when the read length<br>150 bp. Please also note that retained R1 length is not necessarily equal to the<br>mapped R1 length                                                                                                                                                                       |
| max.R2.len     | The maximum retained R2 length to be considered for downstream analysis, default 130 bp. Please note that default of 130 works well when the read length 150 bp. Please also note that retained R2 length is not necessarily equal to the mapped R2 length                                                                                                    |
| min.umi.count  | To specify the minimum total count for a umi at the genome level to be included<br>in the subsequent analysis. For example, with min.umi.count set to 2, if a umi<br>only has 1 read in the entire genome, then that umi will be excluded for the<br>subsequent analysis. Please adjust it to a higher number for deeply sequenced<br>library and vice versa. |

| max.umi.count              | To specify the maximum count for a umi to be included in the subsequent anal-<br>ysis. Please adjust it to a higher number for deeply sequenced library and vice<br>versa                  |  |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| min.read.covera            | age                                                                                                                                                                                        |  |
|                            | To specify the minimum coverage for a read UMI combination to be included<br>in the subsequent analysis. Please note that this is different from min.umi.count<br>which is less stringent. |  |
| apply.both.max.            | len                                                                                                                                                                                        |  |
|                            | Specify whether to apply maximum length requirement to both R1 and R2 reads, default FALSE                                                                                                 |  |
| same.chromosome            |                                                                                                                                                                                            |  |
| distance inter             | default TRUE                                                                                                                                                                               |  |
| uistance.inter.            | Specify the distance value to assign to the paired reads that are aligned to differ.                                                                                                       |  |
|                            | ent chromosome, default -1                                                                                                                                                                 |  |
| min.R1.mapped              | The minimum mapped R1 length to be considered for downstream analysis, default 30 bp.                                                                                                      |  |
| min.R2.mapped              | The minimum mapped R2 length to be considered for downstream analysis, default 30 bp.                                                                                                      |  |
| apply.both.min.            | mapped                                                                                                                                                                                     |  |
|                            | Specify whether to apply minimum mapped length requirement to both R1 and R2 reads, default FALSE                                                                                          |  |
| <pre>max.duplicate.d</pre> | listance                                                                                                                                                                                   |  |
|                            | Specify the maximum distance apart for two reads to be considered as dupli-<br>cates, default 0. Currently only 0 is supported                                                             |  |
| umi.plus.R1star            | t.unique                                                                                                                                                                                   |  |
|                            | To specify whether two mapped reads are considered as unique if both contain-<br>ing the same UMI and same alignment start for R1 read, default TRUE.                                      |  |
| umi.plus.R2star            | t.unique                                                                                                                                                                                   |  |
|                            | To specify whether two mapped reads are considered as unique if both contain-<br>ing the same UMI and same alignment start for R2 read, default TRUE.                                      |  |
| window.size                | window size to calculate coverage                                                                                                                                                          |  |
| step                       | step size to calculate coverage                                                                                                                                                            |  |
| bg.window.size             | window size to calculate local background                                                                                                                                                  |  |
| min.reads                  | minimum number of reads to be considered as a peak                                                                                                                                         |  |
| min.reads.per.lib          |                                                                                                                                                                                            |  |
|                            | minimum number of reads in each library (usually two libraries) to be consid-                                                                                                              |  |
|                            | ered as a peak                                                                                                                                                                             |  |
| min.peak.score.            | IstrandUnly                                                                                                                                                                                |  |
|                            | in the output. Applicable when set keepPeaksInBothStrandsOnly to FALSE and there is only one library per sample                                                                            |  |
| min.SNratio                | Specify the minimum signal noise ratio to be called as peaks, which is the cov-<br>erage normalized by local background.                                                                   |  |

| maxP                      | Specify the maximum p-value to be considered as significant                                                                                                                                                                                                                                                                                                                                         |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| stats                     | Statistical test, currently only poisson is implemented                                                                                                                                                                                                                                                                                                                                             |
| p.adjust.metho            | ods                                                                                                                                                                                                                                                                                                                                                                                                 |
|                           | Adjustment method for multiple comparisons, default none                                                                                                                                                                                                                                                                                                                                            |
| distance.three            | shold                                                                                                                                                                                                                                                                                                                                                                                               |
|                           | Specify the maximum gap allowed between the plus strand and the negative strand peak, default 40. Suggest set it to twice of window.size used for peak calling.                                                                                                                                                                                                                                     |
| <pre>max.overlap.pl</pre> | LusSig.minusSig                                                                                                                                                                                                                                                                                                                                                                                     |
|                           | Specify the cushion distance to allow sequence error and inprecise integration<br>Default to 30 to allow at most 10 (30-window.size 20) bp (half window) of<br>minus-strand peaks on the right side of plus-strand peaks. Only applicable if<br>plus.strand.start.gt.minus.strand.end is set to TRUE.                                                                                               |
| plus.strand.st            | cart.gt.minus.strand.end                                                                                                                                                                                                                                                                                                                                                                            |
|                           | Specify whether plus strand peak start greater than the paired negative strand peak end. Default to TRUE                                                                                                                                                                                                                                                                                            |
| keepPeaksInBot            | chStrandsOnly                                                                                                                                                                                                                                                                                                                                                                                       |
|                           | Indicate whether only keep peaks present in both strands as specified by plus.strand.start.gt.minus.strand.e max.overlap.plusSig.minusSig and distance.threshold.                                                                                                                                                                                                                                   |
| gRNA.format               | Format of the gRNA input file. Currently, fasta is supported                                                                                                                                                                                                                                                                                                                                        |
| PAM.size                  | PAM length, default 3                                                                                                                                                                                                                                                                                                                                                                               |
| gRNA.size                 | The size of the gRNA, default 20                                                                                                                                                                                                                                                                                                                                                                    |
| PAM                       | PAM sequence after the gRNA, default NGG                                                                                                                                                                                                                                                                                                                                                            |
| overlap.gRNA.p            | positions                                                                                                                                                                                                                                                                                                                                                                                           |
|                           | The required overlap positions of gRNA and restriction enzyme cut site, default 17 and 18 for SpCas9.                                                                                                                                                                                                                                                                                               |
| max.mismatch              | Maximum mismatch to the gRNA (not including mismatch to the PAM) allowed in off target search, default 6                                                                                                                                                                                                                                                                                            |
| PAM.pattern               | Regular expression of protospacer-adjacent motif (PAM), default NNN\$. Alter-<br>natively set it to (NAGINGGINGA)\$ for off target search                                                                                                                                                                                                                                                           |
| allowed.mismat            | cch.PAM                                                                                                                                                                                                                                                                                                                                                                                             |
|                           | Maximum number of mismatches allowed for the PAM sequence plus the num-<br>ber of degenerate sequence in the PAM sequence, default to 2 for NGG PAM                                                                                                                                                                                                                                                 |
| upstream                  | upstream offset from the peak start to search for off targets, default 20 suggest set it to window size                                                                                                                                                                                                                                                                                             |
| downstream                | downstream offset from the peak end to search for off targets, default 20 suggest set it to window size                                                                                                                                                                                                                                                                                             |
| overwrite                 | overwrite the existing files in the output directory or not, default FALSE                                                                                                                                                                                                                                                                                                                          |
| weights                   | a numeric vector size of gRNA length, default c(0, 0, 0.014, 0, 0, 0.395, 0.317, 0, 0.389, 0.079, 0.445, 0.508, 0.613, 0.851, 0.732, 0.828, 0.615, 0.804, 0.685, 0.583) for SPcas9 system, which is used in Hsu et al., 2013 cited in the reference section. Please make sure that the number of elements in this vector is the same as the gRNA.size, e.g., pad 0s at the beginning of the vector. |

|    | orderOfftarget    | sRv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | of deform targets | Criteria to order the offtargets, which works together with the descending pa-<br>rameter                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | descending        | Indicate the output order of the offtargets, i.e., in the descending or ascending order                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | keepTopOfftarge   | etsOnly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    |                   | Output all offtargets or the top offtarget using the keepOfftargetsBy criteria, default to the top offtarget                                                                                                                                                                                                                                                                                                                                                                                                                 |
|    | keepTopOfftarge   | etsBy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    |                   | Output the top offtarget for each called peak using the keepTopOfftargetsBy criteria, If set to predicted_cleavage_score, then the offtargets with the highest predicted cleavage score will be retained If set to n.mismatch, then the offtarget with the lowest number of mismatch to the target sequence will be retained                                                                                                                                                                                                 |
|    | scoring.method    | Indicates which method to use for offtarget cleavage rate estimation, currently two methods are supported, Hsu-Zhang and CFDscore                                                                                                                                                                                                                                                                                                                                                                                            |
|    | subPAM.activity   | <i>y</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    |                   | Applicable only when scoring.method is set to CFDscore A hash to represent<br>the cleavage rate for each alternative sub PAM sequence relative to preferred<br>PAM sequence                                                                                                                                                                                                                                                                                                                                                  |
|    | subPAM.position   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    |                   | Applicable only when scoring.method is set to CFDscore The start and end po-<br>sitions of the sub PAM. Default to 22 and 23 for SP with 20bp gRNA and NGG<br>as preferred PAM                                                                                                                                                                                                                                                                                                                                               |
|    | PAM.location      | PAM location relative to gRNA. For example, default to 3prime for spCas9<br>PAM. Please set to 5prime for cpf1 PAM since it's PAM is located on the 5<br>prime end                                                                                                                                                                                                                                                                                                                                                           |
|    | mismatch.activ    | ity.file                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    |                   | Applicable only when scoring.method is set to CFDscore A comma separated (csv) file containing the cleavage rates for all possible types of single nucleotide mismatche at each position of the gRNA. By default, using the supplemental Table 19 from Doench et al., Nature Biotechnology 2016                                                                                                                                                                                                                              |
|    | txdb              | TxDb object, for creating and using TxDb object, please refer to GenomicFea-<br>tures package. For a list of existing TxDb object, please search for annotation<br>package starting with Txdb at http://www.bioconductor.org/packages/release/BiocViews.html#Annota<br>such as TxDb.Rnorvegicus.UCSC.rn5.refGene for rat, TxDb.Mmusculus.UCSC.mm10.knownGene<br>for mouse, TxDb.Hsapiens.UCSC.hg19.knownGene for human, TxDb.Dmelanogaster.UCSC.dm3.ensGe<br>for Drosophila and TxDb.Celegans.UCSC.ce6.ensGene for C.elegans |
|    | orgAnn            | organism annotation mapping such as org.Hs.egSYMBOL in org.Hs.eg.db pack-<br>age for human                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Va | lue               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | offTargets        | a data frame, containing all input peaks with potential gRNA binding sites, mis-                                                                                                                                                                                                                                                                                                                                                                                                                                             |

age score. merged.peaks merged peaks as GRanges with count (peak height), bg (local background), SNratio (signal noise ratio), p-value, and option adjusted p-value

match number and positions, alignment to the input gRNA and predicted cleav-

| peaks           | GRanges with count (peak height), bg (local background), SNratio (signal noise ratio), p-value, and option adjusted p-value |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------|
| uniqueCleavages |                                                                                                                             |
|                 | Cleavage sites with one site per UMI as GRanges with metadata column total set to 1 for each range                          |
| read.summary    | One table per input mapping file that contains the number of reads for each chromosome location                             |

## Author(s)

Lihua Julie Zhu

#### References

Shengdar Q Tsai and J Keith Joung et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nature Biotechnology 33, 187 to 197 (2015)

#### See Also

getPeaks

#### Examples

```
if(!interactive())
   {
        library("BSgenome.Hsapiens.UCSC.hg19")
        umiFile <- system.file("extdata", "UMI-HEK293_site4_chr13.txt",</pre>
           package = "GUIDEseq")
        alignFile <- system.file("extdata","bowtie2.HEK293_site4_chr13.sort.bam" ,</pre>
            package = "GUIDEseq")
        gRNA.file <- system.file("extdata","gRNA.fa", package = "GUIDEseq")</pre>
        guideSeqRes <- GUIDEseqAnalysis(</pre>
            alignment.inputfile = alignFile,
            umi.inputfile = umiFile, gRNA.file = gRNA.file,
            orderOfftargetsBy = "peak_score",
            descending = TRUE,
            keepTopOfftargetsBy = "predicted_cleavage_score",
            scoring.method = "CFDscore",
            BSgenomeName = Hsapiens, min.reads = 80, n.cores.max = 1)
        guideSeqRes$offTargets
        names(guideSeqRes)
  }
```

mergePlusMinusPeaks Merge peaks from plus strand and minus strand

#### Description

Merge peaks from plus strand and minus strand with required orientation and within certain distance apart

#### Usage

```
mergePlusMinusPeaks(peaks.gr, peak.height.mcol = "count",
    bg.height.mcol = "bg", distance.threshold = 40L,
    max.overlap.plusSig.minusSig = 30L,
    plus.strand.start.gt.minus.strand.end = TRUE, output.bedfile)
```

## Arguments

| peaks.gr                                | Specify the peaks as GRanges object, which should contain peaks from both plus<br>and minus strand. In addition, it should contain peak height metadata column to<br>store peak height and optionally background height.                                                                     |  |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <pre>peak.height.mcc</pre>              | bl                                                                                                                                                                                                                                                                                           |  |
|                                         | Specify the metadata column containing the peak height, default to count                                                                                                                                                                                                                     |  |
| <pre>bg.height.mcol</pre>               | Specify the metadata column containing the background height, default to bg                                                                                                                                                                                                                  |  |
| distance.thresh                         | nold                                                                                                                                                                                                                                                                                         |  |
|                                         | Specify the maximum gap allowed between the plus stranded and the negative stranded peak, default 40. Suggest set it to twice of window.size used for peak calling.                                                                                                                          |  |
| <pre>max.overlap.plusSig.minusSig</pre> |                                                                                                                                                                                                                                                                                              |  |
|                                         | Specify the cushion distance to allow sequence error and inprecise integration Default to 30 to allow at most 10 (30-window.size 20) bp (half window) of minus-strand peaks on the right side of plus-strand peaks. Only applicable if plus.strand.start.gt.minus.strand.end is set to TRUE. |  |
| plus.strand.start.gt.minus.strand.end   |                                                                                                                                                                                                                                                                                              |  |
|                                         | Specify whether plus strand peak start greater than the paired negative strand peak end. Default to TRUE                                                                                                                                                                                     |  |
| output.bedfile                          | Specify the bed output file name, which is used for off target analysis subsequently.                                                                                                                                                                                                        |  |
|                                         |                                                                                                                                                                                                                                                                                              |  |

#### Value

output a list and a bed file containing the merged peaks a data frame of the bed format

mergedPeaks.gr merged peaks as GRanges

mergedPeaks.bed

merged peaks in bed format

#### Author(s)

Lihua Julie Zhu

#### References

Zhu L.J. et al. (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data. BMC Bioinformatics 2010, 11:237doi:10.1186/1471-2105-11-237. Zhu L.J. (2013) Integrative analysis of ChIP-chip and ChIP-seq dataset. Methods Mol Biol. 2013;1067:105-24. doi: 10.1007/978-1-62703-607-8\\_8.

#### Examples

```
if (interactive())
{
    data(peaks.gr)
    mergedPeaks <- mergePlusMinusPeaks(peaks.gr = peaks.gr,
        output.bedfile = "mergedPeaks.bed")
    mergedPeaks$mergedPeaks.gr
    head(mergedPeaks$mergedPeaks.bed)
}</pre>
```

offTargetAnalysisOfPeakRegions

```
Offtarget Analysis of GUIDE-seq peaks
```

#### Description

Finding offtargets around peaks from GUIDE-seq or around any given genomic regions

#### Usage

```
offTargetAnalysisOfPeakRegions(gRNA, peaks,
    format=c("fasta", "bed"),
   peaks.withHeader = FALSE, BSgenomeName, overlap.gRNA.positions = c(17,18),
   upstream = 20L, downstream = 20L, PAM.size = 3L, gRNA.size = 20L,
   PAM = "NGG", PAM.pattern = "NNN$", max.mismatch = 6L,
   outputDir, allowed.mismatch.PAM = 2L, overwrite = TRUE,
   weights = c(0, 0, 0.014, 0, 0, 0.395,
   0.317, 0, 0.389, 0.079, 0.445, 0.508, 0.613, 0.851, 0.732, 0.828, 0.615,
   0.804, 0.685, 0.583),
   orderOfftargetsBy = c("predicted_cleavage_score", "n.mismatch"),
    descending = TRUE,
   keepTopOfftargetsOnly = TRUE,
    scoring.method = c("Hsu-Zhang", "CFDscore"),
        subPAM.activity = hash( AA =0,
          AC =
                0,
          AG = 0.259259259,
```

```
AT = 0,
     CA = 0,
     CC = 0,
     CG = 0.107142857,
     CT = 0,
     GA = 0.069444444,
     GC = 0.022222222,
     GG = 1,
     GT = 0.016129032,
     TA = 0,
     TC = 0,
     TG = 0.038961039,
     TT = 0),
subPAM.position = c(22, 23),
PAM.location = "3prime",
mismatch.activity.file = system.file("extdata",
     "NatureBiot2016SuppTable19DoenchRoot.csv",
    package = "CRISPRseek"),
n.cores.max = 1
)
```

#### Arguments

| gRNA                   | gRNA input file path or a DNAStringSet object that contains gRNA plus PAM sequences used for genome editing                                                                                                                                                                                                                                |  |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| peaks                  | peak input file path or a GenomicRanges object that contains genomic regions to be searched for potential offtargets                                                                                                                                                                                                                       |  |
| format                 | Format of the gRNA and peak input file. Currently, fasta and bed are supported for gRNA and peak input file respectively                                                                                                                                                                                                                   |  |
| peaks.withHeade        | er                                                                                                                                                                                                                                                                                                                                         |  |
|                        | Indicate whether the peak input file contains header, default FALSE                                                                                                                                                                                                                                                                        |  |
| PAM.size               | PAM length, default 3                                                                                                                                                                                                                                                                                                                      |  |
| gRNA.size              | The size of the gRNA, default 20                                                                                                                                                                                                                                                                                                           |  |
| PAM                    | PAM sequence after the gRNA, default NGG                                                                                                                                                                                                                                                                                                   |  |
| BSgenomeName           | BSgenome object. Please refer to available.genomes in BSgenome package. For<br>example, BSgenome.Hsapiens.UCSC.hg19 for hg19, BSgenome.Mmusculus.UCSC.mm10<br>for mm10, BSgenome.Celegans.UCSC.ce6 for ce6, BSgenome.Rnorvegicus.UCSC.rn5<br>for rn5, BSgenome.Drerio.UCSC.danRer7 for Zv9, and BSgenome.Dmelanogaster.UCSC.dm3<br>for dm3 |  |
| overlap.gRNA.positions |                                                                                                                                                                                                                                                                                                                                            |  |
|                        | The required overlap positions of gRNA and restriction enzyme cut site, default 17 and 18 for SpCas9.                                                                                                                                                                                                                                      |  |
| max.mismatch           | Maximum mismatch allowed in off target search, default 6                                                                                                                                                                                                                                                                                   |  |
| PAM.pattern            | Regular expression of protospacer-adjacent motif (PAM), default to any NNN\$.<br>Set it to (NAGINGGINGA)\$ if only outputs offtargets with NAG, NGA or NGG<br>PAM                                                                                                                                                                          |  |

| allowed.mismatch.PAM       |                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                            | Number of degenerative bases in the PAM.pattern sequence, default to 2                                                                                                                                                                                                                                                                                                                                           |  |
| outputDir                  | the directory where the off target analysis and reports will be written to                                                                                                                                                                                                                                                                                                                                       |  |
| upstream                   | upstream offset from the peak start to search for off targets, default 20                                                                                                                                                                                                                                                                                                                                        |  |
| downstream                 | downstream offset from the peak end to search for off targets, default 20                                                                                                                                                                                                                                                                                                                                        |  |
| overwrite                  | overwrite the existing files in the output directory or not, default FALSE                                                                                                                                                                                                                                                                                                                                       |  |
| weights                    | a numeric vector size of gRNA length, default c(0, 0, 0.014, 0, 0, 0.395, 0.317, 0, 0.389, 0.079, 0.445, 0.508, 0.613, 0.851, 0.732, 0.828, 0.615, 0.804, 0.685, 0.583) for SPcas9 system, which is used in Hsu et al., 2013 cited in the reference section. Please make sure that the number of elements in this vector is the same as the gRNA.size, e.g., pad 0s at the beginning of the vector.              |  |
| orderOfftargets            | Ву                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                            | criteria to order the offtargets by and the top one will be kept if keepTopOfftar-<br>getsOnly is set to TRUE. If set to predicted_cleavage_score (descending order),<br>the offtarget with the highest predicted cleavage score for each peak will be kept.<br>If set to n.mismatch (ascending order), the offtarget with the smallest number of<br>mismatch to the target sequence for each peak will be kept. |  |
| descending                 | No longer used. In the descending or ascending order. Default to order by pre-<br>dicted cleavage score in descending order and number of mismatch in ascending<br>order When altering orderOfftargetsBy order, please also modify descending ac-<br>cordingly                                                                                                                                                   |  |
| keepTopOfftarge            | tsOnly                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                            | Output all offtargets or the top offtarget per peak using the orderOfftargetsBy criteria, default to the top offtarget                                                                                                                                                                                                                                                                                           |  |
| scoring.method             | Indicates which method to use for offtarget cleavage rate estimation, currently two methods are supported, Hsu-Zhang and CFDscore                                                                                                                                                                                                                                                                                |  |
| <pre>subPAM.activity</pre> |                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                            | Applicable only when scoring.method is set to CFDscore A hash to represent<br>the cleavage rate for each alternative sub PAM sequence relative to preferred<br>PAM sequence                                                                                                                                                                                                                                      |  |
| subPAM.position            |                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                            | Applicable only when scoring.method is set to CFDscore The start and end po-<br>sitions of the sub PAM. Default to 22 and 23 for SP with 20bp gRNA and NGG<br>as preferred PAM                                                                                                                                                                                                                                   |  |
| PAM.location               | PAM location relative to gRNA. For example, default to 3prime for spCas9 PAM. Please set to 5prime for cpf1 PAM since it's PAM is located on the 5 prime end                                                                                                                                                                                                                                                     |  |
| mismatch.activi            | ty.file                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                            | Applicable only when scoring.method is set to CFDscore A comma separated (csv) file containing the cleavage rates for all possible types of single nucleotide mismatche at each position of the gRNA. By default, using the supplemental Table 19 from Doench et al., Nature Biotechnology 2016                                                                                                                  |  |
| n.cores.max                | Indicating maximum number of cores to use in multi core mode, i.e., parallel processing, default 1 to disable multicore processing for small dataset.                                                                                                                                                                                                                                                            |  |

#### Value

a tab-delimited file offTargetsInPeakRegions.tsv, containing all input peaks with potential gRNA binding sites, mismatch number and positions, alignment to the input gRNA and predicted cleavage score.

#### Author(s)

Lihua Julie Zhu

#### References

Patrick D Hsu, David A Scott, Joshua A Weinstein, F Ann Ran, Silvana Konermann, Vineeta Agarwala, Yinqing Li, Eli J Fine, Xuebing Wu, Ophir Shalem, Thomas J Cradick, Luciano A Marraffini, Gang Bao & Feng Zhang (2013) DNA targeting specificity of rNA-guided Cas9 nucleases. Nature Biotechnology 31:827-834 Lihua Julie Zhu, Benjamin R. Holmes, Neil Aronin and Michael Brodsky. CRISPRseek: a Bioconductor package to identify target-specific guide RNAs for CRISPR-Cas9 genome-editing systems. Plos One Sept 23rd 2014 Lihua Julie Zhu (2015). Overview of guide RNA design tools for CRISPR-Cas9 genome editing technology. Frontiers in Biology August 2015, Volume 10, Issue 4, pp 289-296

#### See Also

GUIDEseq

#### Examples

```
#### the following example is also part of annotateOffTargets.Rd
if (interactive()) {
    library("BSgenome.Hsapiens.UCSC.hg19")
   peaks <- system.file("extdata", "T2plus1000ffTargets.bed",</pre>
        package = "CRISPRseek")
    gRNAs <- system.file("extdata", "T2.fa",
        package = "CRISPRseek")
   outputDir = getwd()
   offTargets <- offTargetAnalysisOfPeakRegions(gRNA = gRNAs, peaks = peaks,
        format=c("fasta", "bed"),
        peaks.withHeader = TRUE, BSgenomeName = Hsapiens,
        upstream = 20L, downstream = 20L, PAM.size = 3L, gRNA.size = 20L,
        orderOfftargetsBy = "predicted_cleavage_score",
        PAM = "NGG", PAM.pattern = "(NGG|NAG|NGA)$", max.mismatch = 2L,
        outputDir = outputDir,
        allowed.mismatch.PAM = 3, overwrite = TRUE
  )
}
```

peaks.gr

#### Description

An example data set containing cleavage sites (peaks) from getPeaks

#### Usage

```
data("peaks.gr")
```

#### Format

GRanges with count (peak height), bg (local background), SNratio (signal noise ratio), p-value, and option adjusted p-value

#### Value

| peaks.gr | GRanges with count (peak height), bg (local background), SNratio (signal noise |
|----------|--------------------------------------------------------------------------------|
|          | ratio), p-value, and option adjusted p-value                                   |

#### Source

http://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR1695644

#### Examples

```
data(peaks.gr)
names(peaks.gr)
peaks.gr
```

PEtagAnalysis

Analysis pipeline for PEtag-seq dataset

#### Description

A wrapper function that uses the UMI sequence plus the first few bases of each sequence from R1 reads to estimate the starting sequence library, piles up reads with a user defined window and step size, identify the insertion sites (proxy of cleavage sites), merge insertion sites from plus strand and minus strand, followed by off target analysis of extended regions around the identified insertion sites. Detailed information on additional parameters can be found in GUIDEseqAnalysis manual with help(GUIDEseqAnalysis).

## Usage

```
PEtagAnalysis(alignment.inputfile, umi.inputfile,
BSgenomeName,
gRNA.file,
outputDir,
keepPeaksInBothStrandsOnly = FALSE,
txdb,
orgAnn,
PAM.size = 3L,
gRNA.size = 20L,
overlap.gRNA.positions = c(17,18),
PAM.location = "3prime",
PBS.len = 10L,
HA.len = 7L,
...
```

## Arguments

alignment.inputfile

|                            | The alignment file. Currently supports bam and bed output file with CIGAR information. Suggest run the workflow binReads.sh, which sequentially runs barcode binning, adaptor removal, alignment to genome, alignment quality filtering, and bed file conversion. Please download the workflow function and its helper scripts at http://mccb.umassmed.edu/GUIDE-seq/binReads/ |  |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| umi.inputfile              | A text file containing at least two columns, one is the read identifier and the other is the UMI or UMI plus the first few bases of R1 reads. Suggest use getUMI.sh to generate this file. Please download the script and its helper scripts at http://mccb.umassmed.edu/GUIDE-seq/getUMI/                                                                                     |  |
| BSgenomeName               | BSgenome object. Please refer to available.genomes in BSgenome package. For<br>example, BSgenome.Hsapiens.UCSC.hg19 for hg19, BSgenome.Mmusculus.UCSC.mm10<br>for mm10, BSgenome.Celegans.UCSC.ce6 for ce6, BSgenome.Rnorvegicus.UCSC.rn5<br>for rn5, BSgenome.Drerio.UCSC.danRer7 for Zv9, and BSgenome.Dmelanogaster.UCSC.dm3<br>for dm3                                     |  |
| gRNA.file                  | gRNA input file path or a DNAStringSet object that contains the target sequence (gRNA plus PAM)                                                                                                                                                                                                                                                                                |  |
| outputDir                  | the directory where the off target analysis and reports will be written to                                                                                                                                                                                                                                                                                                     |  |
| keepPeaksInBothStrandsOnly |                                                                                                                                                                                                                                                                                                                                                                                |  |
|                            | Indicate whether only keep peaks present in both strands as specified by plus.strand.start.gt.minus.strand.e<br>max.overlap.plusSig.minusSig and distance.threshold. Please see GUIDEseq-<br>Analysis for details of additional parameters. Default to FALSE for any in vitro<br>system, which needs to be set to TRUE for any in vivo system.                                 |  |
| txdb                       | TxDb object, for creating and using TxDb object, please refer to GenomicFea-<br>tures package. For a list of existing TxDb object, please search for annotation<br>package starting with Txdb at http://www.bioconductor.org/packages/release/BiocViews.html#Annota<br>such as TxDb.Rnorvegicus.UCSC.rn5.refGene for rat, TxDb.Mmusculus.UCSC.mm10.knownGene                   |  |

## PEtagAnalysis

|                 | for mouse, TxDb.Hsapiens.UCSC.hg19.knownGene for human, TxDb.Dmelanogaster.UCSC.dm3.ensGe for Drosophila and TxDb.Celegans.UCSC.ce6.ensGene for C.elegans          |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| orgAnn          | organism annotation mapping such as org.Hs.egSYMBOL in org.Hs.eg.db pack-<br>age for human                                                                         |
| PAM.size        | PAM length, default 3                                                                                                                                              |
| gRNA.size       | The size of the gRNA, default 20                                                                                                                                   |
| overlap.gRNA.pc | ositions<br>The required overlap positions of gRNA and restriction enzyme cut site, default<br>17 and 18 for SpCas9.                                               |
| PAM.location    | PAM location relative to gRNA. For example, default to 3prime for spCas9<br>PAM. Please set to 5prime for cpf1 PAM since it's PAM is located on the 5<br>prime end |
| PBS.len         | Primer binding sequence length, default to 10.                                                                                                                     |
| HA.len          | Homology arm sequence length, default to 7.                                                                                                                        |
|                 | Any parameters in GUIDEseqAnalysis can be used for this function. Please type help(GUIDEseqAnalysis for detailed information.                                      |
|                 |                                                                                                                                                                    |

## Value

| offTargets      | a data frame, containing all input peaks with potential gRNA binding sites, mis-<br>match number and positions, alignment to the input gRNA, predicted cleavage<br>score, PBS (primer binding sequence), and HAseq (homology arm sequence). |  |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| merged.peaks    | merged peaks as GRanges with count (peak height), bg (local background), SNratio (signal noise ratio), p-value, and option adjusted p-value                                                                                                 |  |
| peaks           | GRanges with count (peak height), bg (local background), SNratio (signal noise ratio), p-value, and option adjusted p-value                                                                                                                 |  |
| uniqueCleavages |                                                                                                                                                                                                                                             |  |
|                 | Cleavage sites with one site per UMI as GRanges with metadata column total set to 1 for each range                                                                                                                                          |  |
| read.summary    | One table per input mapping file that contains the number of reads for each chromosome location                                                                                                                                             |  |

## Author(s)

Lihua Julie Zhu

## References

Shengdar Q Tsai and J Keith Joung et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nature Biotechnology 33, 187 to 197 (2015)

## See Also

GUIDEseqAnalysis

#### Examples

```
if(!interactive())
   {
        library("BSgenome.Hsapiens.UCSC.hg19")
        library(TxDb.Hsapiens.UCSC.hg19.knownGene)
        library(org.Hs.eg.db)
        umiFile <- system.file("extdata", "UMI-HEK293_site4_chr13.txt",</pre>
           package = "GUIDEseq")
        alignFile <- system.file("extdata","bowtie2.HEK293_site4_chr13.sort.bam" ,</pre>
            package = "GUIDEseq")
        gRNA.file <- system.file("extdata","gRNA.fa", package = "GUIDEseq")</pre>
        PET.res <- PEtagAnalysis(</pre>
            alignment.inputfile = alignFile,
            umi.inputfile = umiFile,
            gRNA.file = gRNA.file,
            orderOfftargetsBy = "peak_score",
            descending = TRUE,
            keepTopOfftargetsBy = "predicted_cleavage_score",
            scoring.method = "CFDscore",
            BSgenomeName = Hsapiens,
            txdb = TxDb.Hsapiens.UCSC.hg19.knownGene,
            orgAnn = org.Hs.egSYMBOL,
            outputDir = "PEtagTestResults",
            min.reads = 80, n.cores.max = 1,
            keepPeaksInBothStrandsOnly = FALSE,
            PBS.len = 10L,
            HA.len = 7L
            )
        PET.res$offTargets
        names(PET.res)
  }
```

uniqueCleavageEvents example unique cleavage sites

## Description

An example data set containing cleavage sites with unique UMI, generated from getUniqueCleavageEvents

#### Usage

```
data("uniqueCleavageEvents")
```

#### Value

**cleavage.gr** Cleavage sites with one site per UMI as GRanges with metadata column total set to 1 for each range

- unique.umi.plus.R2 a data frame containing unique cleavage site from R2 reads mapped to plus strand with the following columns chr.y (chromosome of readSide.y/R2 read) chr.x (chromosome of readSide.x/R1 read) strand.y (strand of readSide.y/R2 read) strand.x (strand of readSide.x/R1 read) start.y (start of readSide.y/R2 read) end.x (start of readSide.x/R1 read) UMI (unique molecular identifier (umi) or umi with the first few bases of R1 read)
- unique.umi.minus.R2 a data frame containing unique cleavage site from R2 reads mapped to minus strand with the following columns chr.y (chromosome of readSide.y/R2 read) chr.x (chromosome of readSide.x/R1 read) strand.y (strand of readSide.y/R2 read) strand.x (strand of readSide.x/R1 read) end.y (end of readSide.y/R2 read) start.x (start of readSide.x/R1 read) UMI (unique molecular identifier (umi) or umi with the first few bases of R1 read)
- unique.umi.plus.R1 a data frame containing unique cleavage site from R1 reads mapped to minus strand without corresponding R2 reads mapped to the plus strand, with the following columns chr.y (chromosome of readSide.y/R2 read) chr.x (chromosome of readSide.x/R1 read) strand.y (strand of readSide.y/R2 read) strand.x (strand of readSide.x/R1 read) start.x (start of read-Side.x/R1 read) start.y (start of readSide.y/R2 read) UMI (unique molecular identifier (umi) or umi with the first few bases of R1 read)
- unique.umi.minus.R1 a data frame containing unique cleavage site from R1 reads mapped to plus strand without corresponding R2 reads mapped to the minus strand, with the following columns chr.y (chromosome of readSide.y/R2 read) chr.x (chromosome of readSide.x/R1 read) strand.y (strand of readSide.y/R2 read) strand.x (strand of readSide.x/R1 read) end.x (end of readSide.x/R1 read) end.y (end of readSide.y/R2 read) UMI (unique molecular identifier (umi) or umi with the first few bases of R1 read)
- **all.umi** a data frame containing all the mapped reads with the following columns. readName (read ID), chr.x (chromosome of readSide.x/R1 read), start.x (start of eadSide.x/R1 read), end.x (end of eadSide.x/R1 read), mapping.qual.x (mapping quality of readSide.x/R1 read), strand.x (strand of readSide.x/R1 read), cigar.x (CIGAR of readSide.x/R1 read), readSide.x (1/R1), chr.y (chromosome of readSide.y/R2 read) start.y (start of readSide.y/R2 read), end.y (end of readSide.y/R2 read), mapping.qual.y (mapping quality of readSide.y/R2 read), strand.y (strand of readSide.y/R2 read), cigar.y (CIGAR of readSide.y/R2 read), readSide.y (2/R2) R1.base.kept (retained R1 length), R2.base.kept (retained R2 length), distance (distance between mapped R1 and R2), UMI (unique molecular identifier (umi) or umi with the first few bases of R1 read)

#### Source

http://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR1695644

#### Examples

```
data(uniqueCleavageEvents)
names(uniqueCleavageEvents)
sapply(uniqueCleavageEvents, class)
uniqueCleavageEvents[[1]] # GRanges object
lapply(uniqueCleavageEvents, dim)
```

# Index

```
* datasets
    peaks.gr, 25
    uniqueCleavageEvents, 28
* manip
    createBarcodeFasta, 6
    getUsedBarcodes, 12
* misc
    \texttt{combineOfftargets}, \texttt{5}
    getPeaks, 7
    getUniqueCleavageEvents, 8
    GUIDEseqAnalysis, 13
    mergePlusMinusPeaks, 20
    offTargetAnalysisOfPeakRegions, 21
    PEtagAnalysis, 25
* package
    GUIDEseq-package, 2
* utilities
    annotateOffTargets, 3
    createBarcodeFasta, 6
    getUsedBarcodes, 12
annotateOffTargets, 3
combineOfftargets, 5
createBarcodeFasta, 6
getPeaks, 7
getUniqueCleavageEvents, 8
getUsedBarcodes, 12
GUIDEseq (GUIDEseq-package), 2
GUIDEseq-package, 2
GUIDEseqAnalysis, 13
mergePlusMinusPeaks, 20
offTargetAnalysisOfPeakRegions, 21\\
peaks.gr, 25
PEtagAnalysis, 25
uniqueCleavageEvents, 28
```