Package 'ClassifyR'

October 18, 2022

Type Package

Title A framework for cross-validated classification problems, with applications to differential variability and differential distribution testing

Version 3.0.3

Date 2022-05-11

Author Dario Strbenac, Ellis Patrick, John Ormerod, Graham Mann, Jean Yang

Maintainer Dario Strbenac <dario.strbenac@sydney.edu.au>

VignetteBuilder knitr

Encoding UTF-8

biocViews Classification, Survival

Depends R (>= 4.1.0), methods, S4Vectors (>= 0.18.0), MultiAssayExperiment (>= 1.6.0), BiocParallel, survival

Imports grid, utils, dplyr, tidyr, rlang, randomForest

- **Suggests** limma, genefilter, edgeR, car, Rmixmod, ggplot2 (>= 3.0.0), gridExtra (>= 2.0.0), cowplot, BiocStyle, pamr, PoiClaClu, parathyroidSE, knitr, htmltools, gtable, scales, e1071, rmarkdown, IRanges, robustbase, glmnet, class
- Description The software formalises a framework for classification in R.
 There are four stages; Data transformation, feature selection, classifier training, and prediction. The requirements of variable types and names are fixed, but specialised variables for functions can also be provided.
 The classification framework is wrapped in a driver loop, that reproducibly carries out a number of cross-validation schemes.
 Functions for differential expression, differential variability, and differential distribution are included. Additional functions may be developed by the user, by creating an interface to the framework.

License GPL-3

RoxygenNote 7.1.2

Collate 'ROCplot.R' 'classes.R' 'calcPerformance.R' 'constants.R' 'crossValidate.R' 'data.R' 'distribution.R' 'edgesToHubNetworks.R' 'featureSetSummary.R' 'getLocationsAndScales.R' 'interactorDifferences.R' 'interfaceClassify.R' 'interfaceCoxPH.R' 'interfaceCoxnet.R' 'interfaceDLDA.R' 'interfaceElasticNetGLM.R' 'interfaceFisherDiscriminant.R' 'interfaceKNN.R' 'interfaceKTSPclassifier.R' 'interfaceMerge.R' 'interfaceMixModels.R' 'interfaceNSC.R' 'interfaceNaiveBayesKernel.R' 'interfacePCA.R' 'interfacePrevalidation.R' 'interfaceRandomForest.R' 'interfaceSVM.R' 'performancePlot.R' 'plotFeatureClasses.R' 'previousSelection.R' 'previousTrained.R' 'rankingBartlett.R' 'rankingCoxPH.R' 'rankingDMD.R' 'rankingDifferentMeans.R' 'rankingEdgeR.R' 'rankingKolmogorovSmirnov.R' 'rankingKullbackLeibler.R' 'rankingLevene.R' 'rankingLikelihoodRatio.R' 'rankingLimma.R' 'rankingPairsDifferences.R' 'rankingPlot.R' 'rankingSelectMulti.R' 'runTest.R' 'runTests.R' 'samplesMetricMap.R' 'selectionPlot.R' 'simpleParams.R' 'subtractFromLocation.R' 'utilities.R'

git_url https://git.bioconductor.org/packages/ClassifyR
git_branch RELEASE_3_15
git_last_commit 1d0f471
git_last_commit_date 2022-05-11
Date/Publication 2022-10-18

R topics documented:

asthma
bartlettRanking 4
calcExternalPerformance
characterOrDataFrame-class
classifyInterface
ClassifyResult
coxnetTrainInterface
coxph-class
coxphRanking
coxphTrainInterface
crossValidate
CrossValParams
DataFrameOrNULL-class
differentMeansRanking
distribution
DLDA Interface
dlda-class
DMDranking
edgeRranking

edgesToHubNetworks	. 32
elasticNetFeatures	
elasticNetGLMtrainInterface	. 34
FeatureSetCollection	
FeatureSetCollectionOrNULL-class	
featureSetSummary	. 39
fisherDiscriminant	. 41
forestFeatures	
functionOrList-class	
functionOrNULL-class	
generateCrossValParams	
generateModellingParams	
getLocationsAndScales	
HuRI	
interactorDifferences	
kNNinterface	
KolmogorovSmirnovRanking	
kTSPclassifier	
KullbackLeiblerRanking	
leveneRanking	
e	
likelihoodRatioRanking	
limmaRanking	
listOrNULL-class	
mixModelsTrain	
ModellingParams	
ModellingParamsOrNULL-class	
multnet-class	
naiveBayesKernel	
NSCtrainInterface	
numericOrNULL-class	
pairsDifferencesRanking	. 73
pamrtrained-class	
performancePlot	
plotFeatureClasses	
PredictParams	
PredictParamsOrNULL	
previousSelection	
previousTrained	. 85
randomForest-class	. 86
randomForestInterfaces	
rankingPlot	
ROCplot	. 92
runTest	. 94
runTests	. 96
samplesMetricMap	. 98
selectionPlot	. 101
SelectParams	. 104
SelectParamsOrNULL-class	. 105

bartlettRanking

StageParams-class
StageParamsOrMissing-class
subtractFromLocation
Surv-class
svm-class
SVMtrainInterface
FrainParams
FransformParams
FransformParamsOrNULL-class 113
114

Index

asthma

Asthma RNA Abundance and Patient Classes

Description

Data set consists of a matrix of abundances of 2000 most variable gene expression measurements for 190 samples and a factor vector of classes for those samples.

Format

measurements has a row for each sample and a column for each gene. classes is a factor vector with values No and Yes, indicating if a partial person has asthma or not.

Source

A Nasal Brush-based Classifier of Asthma Identified by Machine Learning Analysis of Nasal RNA Sequence Data, *Scientific Reports*, 2018. Webpage: http://www.nature.com/articles/s41598-018-27189-4

bartlettRanking Ranking of Differential Variability with Bartlett Statistic

Description

Ranks all features from largest Bartlett statistic to smallest.

```
## S4 method for signature 'matrix'
bartlettRanking(measurementsTrain, classesTrain, ...)
## S4 method for signature 'DataFrame'
bartlettRanking(measurementsTrain, classesTrain, verbose = 3)
## S4 method for signature 'MultiAssayExperiment'
```

bartlettRanking

```
bartlettRanking(
   measurementsTrain,
   targets = names(measurementsTrain),
   classesTrain,
   ...
)
```

Arguments

measurementsTrain

	Either a matrix, DataFrame or MultiAssayExperiment containing the training data. For a matrix or DataFrame, the rows are samples, and the columns are features. If of type DataFrame or MultiAssayExperiment, the data set is subset to only those features of type numeric.
	Variables not used by the matrix nor the MultiAssayExperiment method which are passed into and used by the DataFrame method.
classesTrain	A vector of class labels of class factor of the same length as the number of samples in measurementsTrain if it is a matrix or a DataFrame or a character vector of length 1 containing the column name in measurementsTrain if it is a DataFrame or the column name in colData(measurementsTrain) if measurementsTrain is a MultiAssayExperiment. If a column name, that column will be removed before training.
verbose	Default: 3. A number between 0 and 3 for the amount of progress messages to give. This function only prints progress messages if the value is 3.
targets	If measurementsTrain is a MultiAssayExperiment, the names of the data ta- bles to be used. "sampleInfo" is also a valid value and specifies that numeric variables from the sample information table will be used.

Details

The calculation of the test statistic is performed by the bartlett.test function from the stats package.

Data tables which consist entirely of non-numeric data cannot be ranked.

Value

A vector or data frame (if MultiAssayExperiment input) of features, from the most promising features in the first position to the least promising feature in the last position.

Author(s)

Dario Strbenac

Examples

```
# Samples in one class with differential variability to other class.
# First 20 genes are DV.
genesRNAmatrix <- sapply(1:20, function(sample) c(rnorm(25, 9, 1), rnorm(25, 9, 5)))</pre>
```

```
genesRNAmatrix <- cbind(genesRNAmatrix, sapply(1:80, function(sample) rnorm(50, 9, 1)))
rownames(genesRNAmatrix) <- paste("Sample", 1:50)
colnames(genesRNAmatrix) <- paste("Gene", 1:100)
genesSNPmatrix <- matrix(sample(c("None", "Missense"), 250, replace = TRUE), nrow = 50)
rownames(genesSNPmatrix) <- paste("Sample", 1:50)
colnames(genesSNPmatrix) <- paste("Gene", 1:5)
classes <- factor(rep(c("Poor", "Good"), each = 25))
names(classes) <- paste("Sample", 1:50)
genesDataset <- MultiAssayExperiment(list(RNA = t(genesRNAmatrix), SNP = t(genesSNPmatrix)),</pre>
```

```
colData = DataFrame(class = classes))
```

```
bartlettRanking(genesDataset, targets = "RNA", classesTrain = "class")
```

calcExternalPerformance

Add Performance Calculations to a ClassifyResult Object or Calculate for a Pair of Factor Vectors

Description

If calcExternalPerformance is used, such as when having a vector of known classes and a vector of predicted classes determined outside of the ClassifyR package, a single metric value is calculated. If calcCVperformance is used, annotates the results of calling runTests with one of the user-specified performance measures.

Usage

```
## S4 method for signature 'factor,factor'
calcExternalPerformance(
  actualOutcomes,
  predictedOutcomes,
 performanceType = c("Balanced Error", "Balanced Accuracy", "Error", "Accuracy",
   "Sample Error", "Sample Accuracy", "Micro Precision", "Micro Recall", "Micro F1"
  "Macro Precision", "Macro Recall", "Macro F1", "Matthews Correlation Coefficient")
)
## S4 method for signature 'Surv,numeric'
calcExternalPerformance(
  actualOutcomes,
  predictedOutcomes,
 performanceType = "C-index"
)
## S4 method for signature 'ClassifyResult'
calcCVperformance(
```

6

```
result,
performanceType = c("Balanced Error", "Balanced Accuracy", "Error", "Accuracy",
    "Sample Error", "Sample Accuracy", "Micro Precision", "Micro Recall", "Micro F1",
    "Macro Precision", "Macro Recall", "Macro F1", "Matthews Correlation Coefficient",
    "AUC", "C-index")
```

)

actualOutcomes A factor vector or survival information specifying each sample's known outcome.

predictedOutcomes

A factor vector or survival information of the same length as actualOutcomes specifying each sample's predicted outcome.

performanceType

A character vector of length 1. Default: "Balanced Error". Must be one of the following options:

- "Error": Ordinary error rate.
- "Accuracy": Ordinary accuracy.
- "Balanced Error": Balanced error rate.
- "Balanced Accuracy": Balanced accuracy.
- "Sample Error": Error rate for each sample in the data set.
- "Sample Accuracy": Accuracy for each sample in the data set.
- "Micro Precision": Sum of the number of correct predictions in each class, divided by the sum of number of samples in each class.
- "Micro Recall": Sum of the number of correct predictions in each class, divided by the sum of number of samples predicted as belonging to each class.
- "Micro F1": F1 score obtained by calculating the harmonic mean of micro precision and micro recall.
- "Macro Precision": Sum of the ratios of the number of correct predictions in each class to the number of samples in each class, divided by the number of classes.
- "Macro Recall": Sum of the ratios of the number of correct predictions in each class to the number of samples predicted to be in each class, divided by the number of classes.
- "Macro F1": F1 score obtained by calculating the harmonic mean of macro precision and macro recall.
- "Matthews Correlation Coefficient": Matthews Correlation Coefficient (MCC). A score between -1 and 1 indicating how concordant the predicted classes are to the actual classes. Only defined if there are two classes.
- "AUC": Area Under the Curve. An area ranging from 0 to 1, under the ROC.
- "C-index": For survival data, the concordance index, for models which produce risk scores. Ranges from 0 to 1.

An object of class ClassifyResult.

result

Details

All metrics except Matthews Correlation Coefficient are suitable for evaluating classification scenarios with more than two classes and are reimplementations of those available from Intel DAAL.

If runTests was run in resampling mode, one performance measure is produced for every resampling. If the leave-k-out mode was used, then the predictions are concatenated, and one performance measure is calculated for all classifications.

"Balanced Error" calculates the balanced error rate and is better suited to class-imbalanced data sets than the ordinary error rate specified by "Error". "Sample Error" calculates the error rate of each sample individually. This may help to identify which samples are contributing the most to the overall error rate and check them for confounding factors. Precision, recall and F1 score have micro and macro summary versions. The macro versions are preferable because the metric will not have a good score if there is substantial class imbalance and the classifier predicts all samples as belonging to the majority class.

Value

If calcCVperformance was run, an updated ClassifyResult object, with new metric values in the performance slot. If calcExternalPerformance was run, the performance metric value itself.

Author(s)

Dario Strbenac

Examples

characterOrDataFrame-class

Union of a Character and a DataFrame

Description

Allows a slot to be either a character or a DataFrame.

Enables different functionality to be executed depending on whether input data dependent variable is survival or categorical classes.

classifyInterface

Author(s)

Dario Strbenac

Dario Strbenac

Examples

classifyInterface An Interface for PoiClaClu Package's Classify Function

Description

More details of Poisson LDA are available in the documentation of Classify. Data tables which consist entirely of non-integer data cannot be analysed.

```
## S4 method for signature 'matrix'
classifyInterface(countsTrain, classesTrain, countsTest, ...)
## S4 method for signature 'DataFrame'
classifyInterface(
  countsTrain,
  classesTrain,
  countsTest,
  . . . ,
 returnType = c("both", "class", "score"),
  verbose = 3
)
## S4 method for signature 'MultiAssayExperiment'
classifyInterface(
  countsTrain,
  countsTest,
  targets = names(countsTrain),
 classesTrain,
  . . .
)
```

countsTrain	Either a matrix, DataFrame or MultiAssayExperiment containing the training data. For a matrix or DataFrame, the rows are samples, and the columns are features. If of type DataFrame or MultiAssayExperiment, the data set is subset to only those features of type numeric.
	Variables not used by the matrix nor the MultiAssayExperiment method which are passed into and used by the DataFrame method or parameters that Classify can accept.
classesTrain	A vector of class labels of class factor of the same length as the number of samples in countsTrain if it is a matrix or a DataFrame or a character vector of length 1 containing the column name in countsTrain if it is a DataFrame or the column name in colData(countsTrain) if countsTrain is a MultiAssayExperiment. If a column name, that column will be removed before training.
countsTest	An object of the same class as countsTrain with no samples in common with countsTrain and the same number of features as it.
returnType	Default: "both". Either "class", "score" or "both". Sets the return value from the prediction to either a vector of class labels, matrix of scores for each class, or both labels and scores in a data.frame.
verbose	Default: 3. A number between 0 and 3 for the amount of progress messages to give. This function only prints progress messages if the value is 3.
targets	If countsTrain is a MultiAssayExperiment, the names of the data tables to be used. "sampleInfo" is also a valid value and specifies that integer variables from the sample information table will be used.

Value

Either a factor vector of predicted classes, a matrix of scores for each class, or a table of both the class labels and class scores, depending on the setting of returnType.

Author(s)

Dario Strbenac

Examples

```
if(require(PoiClaClu))
{
    readCounts <- CountDataSet(n = 100, p = 1000, 2, 5, 0.1)
    # Rows are for features, columns are for samples.
    trainData <- readCounts[['x']]
    trainClasses <- factor(paste("Class", readCounts[['y']]))
    testData <- readCounts[['xte']]
    storage.mode(trainData) <- storage.mode(testData) <- "integer"
    classified <- classifyInterface(trainData, trainClasses, testData)
    setNames(table(paste("Class", readCounts[["yte"]]) == classified), c("Incorrect", "Correct"))
}</pre>
```

Description

Contains a list of models, table of actual sample classes and predicted classes, the identifiers of features selected for each fold of each permutation or each hold-out classification, and performance metrics such as error rates. This class is not intended to be created by the user. It is created by runTest or runTests.

Constructor

ClassifyResult(characteristics, originalNames, originalFeatures, rankedFeatures, chosenFeatures, models, tunedParameters, predictions, actualOutcomes, import

- characteristics A DataFrame describing the characteristics of classification done. First column must be named "charateristic" and second column must be named "value". If using wrapper functions for feature selection and classifiers in this package, the function names will automatically be generated and therefore it is not necessary to specify them.
- originalNames All sample names.
- originalFeatures All feature names. Character vector or DataFrame with one row for each feature if the data set has multiple kinds of measurements on the same set of samples.
- rankedFeatures All features, from most to least important. Character vector or a data frame if data set has multiple kinds of measurements on the same set of samples.
- chosenFeatures Features selected at each fold. Character vector or a data frame if data set has multiple kinds of measurements on the same set of samples.
- models All of the models fitted to the training data.
- tunedParameters Names of tuning parameters and the value chosen of each parameter.
- predictions A data frame containing sample IDs, predicted class or risk and information about the cross-validation iteration in which the prediction was made.
- actualOutcomes The known class or survival data of each sample.
- importance The changes in model performance for each selected variable when it is excluded.
- modellingParams Stores the object used for defining the model building to enable future reuse.
- finalModel A model built using all of the sample for future use. For any tuning parameters, the most popular value of the parameter in cross-validation is used.

Summary

result is a ClassifyResult object.

show(result): Prints a short summary of what result contains.

Accessors

result is a ClassifyResult object.

sampleNames(result) Returns a vector of sample names present in the data set.

allFeatureNames(result) Returns a vector of features present in the data set.

actualOutcomes(result) Returns the known outcomes of each sample.

models(result) A list of the models fitted for each training.

chosenFeatureNames(result) A list of the features selected for each training.

- predictions(result) Returns a DataFrame which has columns with test sample, cross-validation and prediction information.
- performance(result) Returns a list of performance measures. This is empty until calcCVperformance has been used.
- tunedParameters(result) Returns a list of tuned parameter values. If cross-validation is used, this list will be large, as it stores chosen values for every iteration.
- totalPredictions(result) A single number representing the total number. of predictions made during the cross-validation procedure.

Author(s)

Dario Strbenac

Examples

coxnetTrainInterface An Interface for glmnet Package's coxnet Function

Description

An elastic net GLM classifier uses a penalty which is a combination of a lasso penalty and a ridge penalty, scaled by a lambda value, to fit a sparse linear model to the data.

```
coxnetTrainInterface(measurementsTrain, ...)
## S4 method for signature 'matrix'
coxnetTrainInterface(measurementsTrain, survivalTrain, ...)
## S4 method for signature 'DataFrame'
coxnetTrainInterface(
 measurementsTrain,
  survivalTrain,
  lambda = NULL,
  verbose = 3
)
coxnetPredictInterface(model, measurementsTest, ...)
## S4 method for signature 'coxnet,matrix'
coxnetPredictInterface(model, measurementsTest, ...)
## S4 method for signature 'coxnet,DataFrame'
coxnetPredictInterface(
  model,
 measurementsTest,
  survivalTest = NULL,
  lambda,
  . . . ,
  returnType = c("both", "class", "score"),
  verbose = 3
)
## S4 method for signature 'coxnet,MultiAssayExperiment'
coxnetPredictInterface(
 model,
 measurementsTest,
  targets = names(measurementsTest),
  . . .
)
```

B		
measurementsTrain		
	Either a matrix, DataFrame or MultiAssayExperiment containing the training data. For a matrix or DataFrame, the rows are samples, and the columns are features.	
	Variables not used by the matrix nor the MultiAssayExperiment method which are passed into and used by the DataFrame method (e.g. verbose) or, for the training function, options that are used by the glmnet function. For the testing function, this variable simply contains any parameters passed from the classifi- cation framework to it which aren't used by glmnet's predict fuction.	
survivalTrai	A tabular data type of survival information of the same number of rows as the number of samples in measurementsTrain and 2 to 3 columns if it is a matrix or a DataFrame, or a character vector of length 2 to 3 containing the column names in measurementsTrain if it is a DataFrame or the column name in colData(measurementsTrain) if measurementsTrain is a MultiAssayExperiment. If a vector of column names, those columns will be removed before training.	
lambda	The lambda value passed directly to glmnet if the training function is used or passed as s to predict.glmnet if the prediction function is used.	
verbose	Default: 3. A number between 0 and 3 for the amount of progress messages to give. This function only prints progress messages if the value is 3.	
model	A trained coxnet, as created by the glmnet function.	
measurements	Test	
	An object of the same class as measurementsTrain with no samples in common with measurements and the same number of features as it.	
survivalTest	A Surv object or columns from the measurementsTest table which contains the follow-up time and status information.	
returnType	Default: "both". Either "class", "score" or "both". Sets the return value from the prediction to either a vector of class labels, matrix of scores for each class, or both labels and scores in a data.frame.	
targets	If measurements is a MultiAssayExperiment, the names of the data tables to be used. "clinical" is also a valid value and specifies that integer variables from the clinical data table will be used.	

Details

The value of the family parameter is fixed to "cox" so that classification with survival is possible. During classifier training, if more than one lambda value is considered by specifying a vector of them as input or leaving the default value of NULL, then the chosen value is determined based on classifier resubstitution error rate.

Value

For coxnetTrainInterface, an object of type glmnet. For coxnetPredictInterface, a matrix of containing the link and risk functions. returnType.

coxph-class

Examples

coxph-class Tra

Trained coxph Object

Description

Enables S4 method dispatching on it.

coxphRanking Ranking of Differential Variability with coxph Statistic

Description

Ranks all features from largest coxph statistic to smallest.

```
## S4 method for signature 'matrix'
coxphRanking(measurementsTrain, survivalTrain, ...)
## S4 method for signature 'DataFrame'
coxphRanking(measurementsTrain, survivalTrain, verbose = 3)
## S4 method for signature 'MultiAssayExperiment'
coxphRanking(
    measurementsTrain,
    targets = names(measurementsTrain),
    survivalTrain,
    ...
)
```

measurementsTrain		
	Either a matrix, DataFrame or MultiAssayExperiment containing the training data. For a matrix or DataFrame, the rows are samples, and the columns are features.	
	Variables not used by the matrix nor the MultiAssayExperiment method which are passed into and used by the DataFrame method.	
survivalTrain	A tabular data type of survival information of the same number of rows as the number of samples in measurementsTrain and 2 to 3 columns if it is a matrix or a DataFrame, or a character vector of length 2 to 3 containing the column names in measurementsTrain if it is a DataFrame or the column name in colData(measurementsTrain) if measurementsTrain is a MultiAssayExperiment. If a vector of column names, those columns will be removed before training.	
verbose	Default: 3. A number between 0 and 3 for the amount of progress messages to give. This function only prints progress messages if the value is 3.	
targets	If measurements is a MultiAssayExperiment, the names of the data tables to be used. "clinical" is also a valid value and specifies that numeric variables from the clinical data table will be used.	

Details

The calculation of the test statistic is performed by the coxph function from the survival package.

Data tables which consist entirely of non-numeric data cannot be ranked.

Value

A vector or data frame (if MultiAssayExperiment input) of features, from the most promising features in the first position to the least promising feature in the last position.

coxphTrainInterface An Interface for survival Package's coxph Function

Description

Cox proportional hazards.

```
## S4 method for signature 'matrix'
coxphTrainInterface(measurementsTrain, survivalTrain, ...)
## S4 method for signature 'DataFrame'
coxphTrainInterface(measurementsTrain, survivalTrain, ..., verbose = 3)
## S4 method for signature 'MultiAssayExperiment'
```

```
coxphTrainInterface(
 measurementsTrain,
 targets = names(measurementsTrain),
  survivalTrain,
  • • •
)
## S4 method for signature 'coxph,matrix'
coxphPredictInterface(model, measurementsTest, ...)
## S4 method for signature 'coxph,DataFrame'
coxphPredictInterface(model, measurementsTest, ..., verbose = 3)
## S4 method for signature 'coxph,MultiAssayExperiment'
coxphPredictInterface(
 model,
 measurementsTest,
  targets = names(measurementsTest),
  . . .
)
```

measurementsTrain		
	Either a matrix, DataFrame or MultiAssayExperiment containing the training data. For a matrix or DataFrame, the rows are samples, and the columns are features.	
	Variables not used by the matrix nor the MultiAssayExperiment method which are passed into and used by the DataFrame method (e.g. verbose) or options which are accepted by the coxph or predict.coxph functions.	
survivalTrain	A tabular data type of survival information of the same number of rows as the number of samples in measurementsTrain and 2 to 3 columns if it is a matrix or a DataFrame, or a character vector of length 2 to 3 containing the column names in measurementsTrain if it is a DataFrame or the column name in colData(measurementsTrain) if measurementsTrain is a MultiAssayExperiment. If a vector of column names, those columns will be removed before training.	
verbose	Default: 3. A number between 0 and 3 for the amount of progress messages to give. This function only prints progress messages if the value is 3.	
targets	If measurementsTrain is a MultiAssayExperiment, the names of the data ta- bles to be used. "sampleInfo" is also a valid value and specifies that integer variables from the clinical data table will be used.	
model	A trained coxph classifier, as created by coxphTrainInterface, which has the same form as the output of coxph.	
measurementsTest		
	An object of the same class as measurementsTrain with no samples in common with measurementsTrain and the same number of features as it.	

Value

For coxphTrainInterface, the trained Cox proportional hazards model. For coxphPredictInterface, a risk score prediction (natural log scale) for each sample.

Examples

```
#'
 # if(require(randomForest))
 # {
 #
     # Genes 76 to 100 have differential expression.
 #
      genesMatrix <- sapply(1:25, function(sample) c(rnorm(100, 9, 2)))</pre>
 #
      genesMatrix <- cbind(genesMatrix, sapply(1:25, function(sample)</pre>
 #
                                          c(rnorm(75, 9, 2), rnorm(25, 14, 2))))
      classes <- factor(rep(c("Poor", "Good"), each = 25))</pre>
 #
      colnames(genesMatrix) <- paste("Sample", 1:ncol(genesMatrix), sep = ' ')</pre>
 #
      rownames(genesMatrix) <- paste("Gene", 1:nrow(genesMatrix), sep = '-')</pre>
 #
 #
      trainingSamples <- c(1:20, 26:45)</pre>
 #
      testingSamples <- c(21:25, 46:50)
 #
 #
      trained <- randomForestTrainInterface(genesMatrix[, trainingSamples],</pre>
 #
                                               classes[trainingSamples])
 #
      predicted <- randomForestPredictInterface(trained, genesMatrix[, testingSamples])</pre>
 # }
```

crossValidate Cross-validation to evaluate classification performance.

Description

This function has been designed to facilitate the comparison of classification methods using crossvalidation. A selection of typical comparisons are implemented.

Usage

```
crossValidate(
  measurements,
  classes,
  nFeatures = 20,
  selectionMethod = "t-test",
  selectionOptimisation = "Resubstitution",
  classifier = "randomForest",
  multiViewMethod = "none",
  dataCombinations = NULL,
  nFolds = 5,
  nRepeats = 20,
  nCores = 1,
  characteristicsLabel = NULL
```

18

```
)
## S4 method for signature 'DataFrame'
crossValidate(
 measurements,
  classes,
  nFeatures = 20,
  selectionMethod = "t-test",
  selectionOptimisation = "Resubstitution",
  classifier = "randomForest",
 multiViewMethod = "none",
  dataCombinations = NULL,
  nFolds = 5,
  nRepeats = 20,
  nCores = 1,
  characteristicsLabel = NULL
)
## S4 method for signature 'MultiAssayExperiment'
crossValidate(
 measurements,
  classes,
  nFeatures = 20,
  selectionMethod = "t-test",
  selectionOptimisation = "Resubstitution",
  classifier = "randomForest",
 multiViewMethod = "none",
  dataCombinations = NULL,
  nFolds = 5,
  nRepeats = 20,
  nCores = 1,
  characteristicsLabel = NULL
)
## S4 method for signature 'data.frame'
crossValidate(
 measurements,
  classes,
  nFeatures = 20,
  selectionMethod = "t-test",
  selectionOptimisation = "Resubstitution",
  classifier = "randomForest",
  multiViewMethod = "none",
  dataCombinations = NULL,
  nFolds = 5,
  nRepeats = 20,
  nCores = 1,
  characteristicsLabel = NULL
```

```
## S4 method for signature 'matrix'
crossValidate(
 measurements,
  classes,
 nFeatures = 20,
  selectionMethod = "t-test",
  selectionOptimisation = "Resubstitution",
  classifier = "randomForest",
 multiViewMethod = "none",
  dataCombinations = NULL,
  nFolds = 5,
  nRepeats = 20,
  nCores = 1,
  characteristicsLabel = NULL
)
## S4 method for signature 'list'
crossValidate(
 measurements,
 classes,
  nFeatures = 20,
  selectionMethod = "t-test",
  selectionOptimisation = "Resubstitution",
  classifier = "randomForest",
 multiViewMethod = "none",
  dataCombinations = NULL,
  nFolds = 5,
  nRepeats = 20,
  nCores = 1,
  characteristicsLabel = NULL
)
## S4 method for signature 'ClassifyResult'
predict(object, newData)
```

measurements	Either a DataFrame, data.frame, matrix, MultiAssayExperiment or a list of these objects containing the training data. For a matrix and data.frame, the rows are samples and the columns are features. For a data.frame or MultiAssayExperiment assay the rows are features and the columns are samples, as is typical in Bioconductor.
classes	A vector of class labels of class factor of the same length as the number of samples in measurements or a character vector of length 1 containing the column name in measurements if it is a DataFrame or the column name in colData(measurements) if measurements is a MultiAssayExperiment. If a

20

)

nFeatures	column name, that column will be removed before training. The number of features to be used for classification. If this is a single number, the same number of features will be used for all comparisons or datasets. If a numeric vector these will be optimised over using selectionOptimisation. If a named vector with the same names of multiple datasets, a different number of features will be used for each dataset. If a named list of vectors, the respective
	number of features will be optimised over. Set to NULL or "all" if all features should be used.
selectionMethod	l
	A character vector of feature selection methods to compare. If a named charac- ter vector with names corresponding to different datasets, and performing mul- tiview classification, the respective classification methods will be used on each dataset.
selectionOptimi	
	A character of "Resubstitution", "Nested CV" or "none" specifying the approach used to optimise nFeatures.
classifier	A character vector of classification methods to compare. If a named character vector with names corresponding to different datasets, and performing multiview classification, the respective classification methods will be used on each dataset.
multiViewMethod	
	A character vector specifying the multiview method or data integration approach to use.
dataCombination	IS
	A character vector or list of character vectors proposing the datasets or, in the case of a list, combination of datasets to use with each element being a vector of datasets to combine.
nFolds	A numeric specifying the number of folds to use for cross-validation.
nRepeats	A numeric specifying the the number of repeats or permutations to use for cross-validation.
nCores	A numeric specifying the number of cores used if the user wants to use paral- lelisation.
characteristics	SLabel
	A character specifying an additional label for the cross-validation run.
object	A trained model to predict with.
newData	The data to use to make predictions with.

Details

classifier can be any of the following implemented approaches - randomForest, elasticNet, logistic, SVM, DLDA, kNN, naiveBayes, mixturesNormals.

selectionMethod can be any of the following implemented approaches - none, t-test, limma, edgeR, NSC, Bartlett, Levene, DMD, likelihoodRatio, KS or KL.

multiViewMethod can take a few different values. Using merge will merge or bind the datasets after feature selection. Using prevlidation will build prevalidated vectors on all the datasets except the clinical data. There must be a dataset called clinical. Using pca will perform pca on each dataset and then merge the top few components with the clinical data. There must be a dataset called clinical data.

Value

An object of class ClassifyResult

Examples

data(asthma)

```
# Compare randomForest and SVM classifiers.
result <- crossValidate(measurements, classes, classifier = c("randomForest", "SVM"))
# performancePlot(result)</pre>
```

```
# Compare performance of different datasets.
# First make a toy example dataset with multiple data types. We'll randomly assign different features to be clinical
# set.seed(51773)
# measurements <- DataFrame(measurements, check.names = FALSE)
# mcols(measurements)$dataset <- c(rep("clinical",20),sample(c("gene", "protein"), ncol(measurements)-20, replace
# mcols(measurements)$feature <- colnames(measurements)</pre>
```

```
# We'll use different nFeatures for each dataset. We'll also use repeated cross-validation with 5 repeats for speed
# set.seed(51773)
#result <- crossValidate(measurements, classes, nFeatures = c(clinical = 5, gene = 20, protein = 30), classifier = "
# performancePlot(result)
```

```
# Merge different datasets. But we will only do this for two combinations. If dataCombinations is not specified it we
# set.seed(51773)
```

```
# resultMerge <- crossValidate(measurements, classes, dataCombinations = list(c("clinical", "protein"), c("clinic
# performancePlot(resultMerge)
```

performancePlot(c(result, resultMerge))

CrossValParams Parameters for Cross-validation Specification

Description

Collects and checks necessary parameters required for cross-validation by runTests.

```
CrossValParams(
  samplesSplits = c("Permute k-Fold", "Permute Percentage Split", "Leave-k-Out",
        "k-Fold"),
   permutations = 100,
   percentTest = 25,
   folds = 5,
   leave = 2,
```

```
tuneMode = c("Resubstitution", "Nested CV", "none"),
parallelParams = bpparam()
)
```

samplesSplits	Default: "Permute k-Fold". A character value specifying what kind of sample splitting to do.
permutations	Default: 100. Number of times to permute the data set before it is split into train- ing and test sets. Only relevant if samplesSplits is either "Permute k-Fold" or "Permute Percentage Split".
percentTest	The percentage of the data set to assign to the test set, with the remainder of the samples belonging to the training set. Only relevant if samplesSplits is "Permute Percentage Split".
folds	The number of approximately equal-sized folds to partition the samples into. Only relevant if samplesSplits is "Permute k-Fold" or "k-Fold".
leave	The number of samples to generate all possible combination of and use as the test set. Only relevant if samplesSplits is "Leave-k-Out". If set to 1, it is the traditional leave-one-out cross-validation, sometimes written as LOOCV.
tuneMode	Default: Resubstitution. The scheme to use for selecting any tuning parameters.
parallelParams	An instance of BiocParallelParam specifying the kind of parallelisation to use. Default is to use two cores less than the total number of cores the computer has, if it has four or more cores, otherwise one core, as is the default of bpparam. To make results fully reproducible, please choose a specific back-end depending on your operating system and also set RNGseed to a number.

Author(s)

Dario Strbenac

Examples

```
CrossValParams() # Default is 100 permutations and 5 folds of each.
snow <- SnowParam(workers = 4, RNGseed = 999)
CrossValParams("Leave-k-Out", leave = 2, parallelParams = snow)
# Fully reproducible Leave-2-out cross-validation on 4 cores,
# even if feature selection or classifier use random sampling.
```

DataFrameOrNULL-class Union of NULL and DataFrame Class

Description

Allows cross-validation to accept data as either a DataFrame (for a single data set) or DataFrameList (for a list of tables of related measurements, such as different projects measuring the same outcome and the same kind of measurements). No constructor.

Author(s)

Dario Strbenac

differentMeansRanking Ranking of Differentially Abundant Features

Description

Uses an ordinary t-test if the data set has two classes or one-way ANOVA if the data set has three or more classes to select differentially expressed features.

Usage

```
## S4 method for signature 'matrix'
differentMeansRanking(measurementsTrain, classesTrain, ...)
## S4 method for signature 'DataFrame'
differentMeansRanking(measurementsTrain, classesTrain, verbose = 3)
```

```
## S4 method for signature 'MultiAssayExperiment'
```

differentMeansRanking(measurementsTrain, targets = NULL, classesTrain, ...)

Arguments

measurementsTrain

	Either a matrix, DataFrame or MultiAssayExperiment containing the training data. For a matrix or DataFrame, the rows are samples, and the columns are features. If of type DataFrame or MultiAssayExperiment, the data set is subset to only those features of type numeric.
	Variables not used by the matrix nor the MultiAssayExperiment method which are passed into and used by the DataFrame method.
classesTrain	A vector of class labels of class factor of the same length as the number of samples in measurementsTrain if it is a matrix or a DataFrame or a character vector of length 1 containing the column name in measurementsTrain if it is a DataFrame or the column name in colData(measurementsTrain) if measurementsTrain is a MultiAssayExperiment. If a column name, that column will be removed before training.
verbose	Default: 3. A number between 0 and 3 for the amount of progress messages to give. This function only prints progress messages if the value is 3.
targets	Names of data tables to be combined into a single table and used in the analysis.

Details

This ranking method looks for changes in means and uses rowttests to rank the features if there are two classes or rowFtests if there are three or more classes.

distribution

Value

A vector or data frame (if MultiAssayExperiment input) of features, from the most promising features in the first position to the least promising feature in the last position.

Author(s)

Dario Strbenac

Examples

```
distribution
```

Get Frequencies of Feature Selection and Sample-wise Classification Errors

Description

There are two modes. For aggregating feature selection results, the function counts the number of times each feature was selected in all cross-validations. For aggregating classification results, the error rate for each sample is calculated. This is useful in identifying outlier samples that are difficult to classify.

Arguments

result	An object of class ClassifyResult.
	Further parameters, such as colour and fill, passed to geom_histogram or stat_density, depending on the value of plotType.
dataType	Whether to calculate sample-wise error rate or the number of times a feature was selected.
plotType	Whether to draw a probability density curve or a histogram.
summaryType	Whether to summarise the feature selections as a percentage or count.
plot	Whether to draw a plot of the frequency of selection or error rate.
xMax	Maximum data value to show in plot.
fontSizes	A vector of length 3. The first number is the size of the title. The second number is the size of the axes titles. The third number is the size of the axes values.

Value

If dataType is "features", a vector as long as the number of features that were chosen at least once containing the number of times the feature was chosen in cross validations or the percentage of times chosen. If dataType is "samples", a vector as long as the number of samples, containing the cross-validation error rate of the sample. If plot is TRUE, then a plot is also made on the current graphics device.

Author(s)

Dario Strbenac

Examples

DLDA Interface An Interface for sparsediscrim Package's dlda Function

Description

DLDAtrainInterface generates a trained diagonal LDA classifier and DLDApredictInterface uses it to make predictions on a test data set.

Usage

```
## S4 method for signature 'matrix'
DLDAtrainInterface(measurementsTrain, classesTrain, ...)
## S4 method for signature 'DataFrame'
DLDAtrainInterface(measurementsTrain, classesTrain, verbose = 3)
## S4 method for signature 'MultiAssayExperiment'
DLDAtrainInterface(
    measurementsTrain,
    targets = names(measurementsTrain),
    classesTrain,
    ...
)
```

26

```
## S4 method for signature 'dlda,matrix'
DLDApredictInterface(model, measurementsTest, ...)
## S4 method for signature 'dlda,DataFrame'
DLDApredictInterface(
  model,
  measurementsTest,
  returnType = c("both", "class", "score"),
  verbose = 3
)
## S4 method for signature 'dlda,MultiAssayExperiment'
DLDApredictInterface(
  model,
  measurementsTest,
  targets = names(measurementsTest),
  . . .
)
```

measurementsTrain

	Either a matrix, DataFrame or MultiAssayExperiment containing the training data. For a matrix or DataFrame, the rows are samples, and the columns are features. If of type DataFrame or MultiAssayExperiment, the data set is subset to only those features of type numeric.
	Variables not used by the matrix nor the MultiAssayExperiment method which are passed into and used by the DataFrame method (e.g. verbose).
classesTrain	A vector of class labels of class factor of the same length as the number of samples in measurementsTrain if it is a matrix or a DataFrame or a character vector of length 1 containing the column name in measurementsTrain if it is a DataFrame or the column name in colData(measurementsTrain) if measurementsTrain is a MultiAssayExperiment. If a column name, that column will be removed before training.
verbose	Default: 3. A number between 0 and 3 for the amount of progress messages to give. This function only prints progress messages if the value is 3.
targets	If measurements is a MultiAssayExperiment, the names of the data tables to be used. "sampleInfo" is also a valid value and specifies that integer variables from the sample information data table will be used.
model	A fitted model as returned by DLDAtrainInterface.
measurementsTes	st
	An object of the same class as measurementsTrain with no samples in common with measurementsTrain and the same number of features as it. Also, if a DataFrame, the class column must be absent.
returnType	Default: "both". Either "class", "score" or "both". Sets the return value from the prediction to either a vector of class labels, matrix of scores for each class, or both labels and scores in a data.frame.

Value

For DLDAtrainInterface, a trained DLDA classifier. For DLDApredictInterface, either a factor vector of predicted classes, a matrix of scores for each class, or a table of both the class labels and class scores, depending on the setting of returnType.

Author(s)

Dario Strbenac

Examples

```
# if(require(sparsediscrim)) Package currently removed from CRAN.
#{
  # Genes 76 to 100 have differential expression.
 genesMatrix <- sapply(1:100, function(sample) rnorm(25, 9, 0.3))</pre>
  genesMatrix <- rbind(genesMatrix, t(sapply(1:25, function(sample)</pre>
                                      c(rnorm(75, 9, 0.3), rnorm(25, 14, 0.3)))))
 classes <- factor(rep(c("Poor", "Good"), each = 25))</pre>
  rownames(genesMatrix) <- paste("Sample", 1:nrow(genesMatrix))</pre>
  colnames(genesMatrix) <- paste("Gene", 1:ncol(genesMatrix))</pre>
  selected <- colnames(genesMatrix)[91:100]</pre>
  trainingSamples <- c(1:20, 26:45)</pre>
  testingSamples <- c(21:25, 46:50)
  classifier <- DLDAtrainInterface(genesMatrix[trainingSamples, selected],</pre>
                                     classes[trainingSamples])
 DLDApredictInterface(classifier, genesMatrix[testingSamples, selected])
#}
```

dlda-class

Trained dlda Object

Description

Enables S4 method dispatching on it.

Author(s)

Dario Strbenac

DMDranking

Ranking by Differential Distributions with Differences in Means or Medians and a Deviation Measure

Description

Ranks features by largest Differences in Means/Medians and Deviations.

Usage

```
## S4 method for signature 'matrix'
DMDranking(measurementsTrain, classesTrain, ...)
## S4 method for signature 'DataFrame'
DMDranking(
 measurementsTrain,
  classesTrain,
 differences = c("both", "location", "scale"),
  . . . ,
  verbose = 3
)
## S4 method for signature 'MultiAssayExperiment'
DMDranking(
 measurementsTrain,
 targets = names(measurementsTrain),
 classesTrain,
  . . .
)
```

Arguments

measurementsTrain		
	Either a matrix, DataFrame or MultiAssayExperiment containing the training data. For a matrix or DataFrame, the rows are samples, and the columns are features. If of type DataFrame or MultiAssayExperiment, the data set is subset to only those features of type numeric.	
	Variables not used by the matrix nor the MultiAssayExperiment method which are passed into and used by the DataFrame method or parameters for getLocationsAndScales, such as location, scale.	
classesTrain	A vector of class labels of class factor of the same length as the number of samples in measurementsTrain if it is a matrix or a DataFrame or a character vector of length 1 containing the column name in measurementsTrain if it is a DataFrame or the column name in colData(measurementsTrain) if measurementsTrain is a MultiAssayExperiment. If a column name, that column will be removed before training.	

differences	Default: "both". Either "both", "location", or "scale". The type of differences to consider. If both are considered then the absolute difference in location and the absolute difference in scale are summed.
verbose	Default: 3. A number between 0 and 3 for the amount of progress messages to give. This function only prints progress messages if the value is 3.
targets	If measurementsTrain is a MultiAssayExperiment, the names of the data ta- bles to be used. "sampleInfo" is also a valid value and specifies that numeric variables from the sample information data table will be used.

Details

DMD is defined as $\sum_{i=1} \sum_{j=i+1} |location_i - location_j| + |scale_i - scale_j|$. The subscripts denote the class for which the parameter is calculated for.

Value

A vector of feature indices, from the most promising features in the first position to the least promising feature in the last position.

Author(s)

Dario Strbenac

Examples

edgeRranking

Feature Ranking Based on Differential Expression for Count Data

Description

Performs a differential expression analysis between classes and ranks the features based on test statistics. The data may have overdispersion and this is modelled.

edgeRranking

Usage

```
## S4 method for signature 'matrix'
edgeRranking(countsTrain, classesTrain, ...)
## S4 method for signature 'DataFrame'
edgeRranking(
   countsTrain,
   classesTrain,
   normFactorsOptions = NULL,
   dispOptions = NULL,
   fitOptions = NULL,
   verbose = 3
)
```

S4 method for signature 'MultiAssayExperiment'
edgeRranking(countsTrain, targets = NULL, ...)

Arguments

countsTrain	Either a matrix, DataFrame or MultiAssayExperiment containing the unnor- malised counts. For a matrix or DataFrame, the rows are samples, and the columns are features, unlike the convention used in edgeR.	
	Variables not used by the matrix nor the MultiAssayExperiment method which are passed into and used by the DataFrame method.	
classesTrain	A vector of class labels of class factor of the same length as the number of samples in countsTrain if it is a matrix or a DataFrame or a character vector of length 1 containing the column name in countsTrain if it is a DataFrame or the column name in colData(counts) if countsTrain is a MultiAssayExperiment. If a column name, that column will be removed before training.	
normFactorsOptions		
	A named list of any options to be passed to calcNormFactors.	
dispOptions	A named list of any options to be passed to estimateDisp.	
fitOptions	A named list of any options to be passed to glmFit.	
verbose	Default: 3. A number between 0 and 3 for the amount of progress messages to give. This function only prints progress messages if the value is 3.	
targets	If countsTrain is a MultiAssayExperiment, the names of the data tables of counts to be used.	

Details

The differential expression analysis follows the standard edgeR steps of estimating library size normalisation factors, calculating dispersion, in this case robustly, and then fitting a generalised linear model followed by a likelihood ratio test.

Data tables which consist entirely of non-numeric data cannot be analysed.

A vector or data frame (if MultiAssayExperiment input) of features, from the most promising features in the first position to the least promising feature in the last position.

Author(s)

Dario Strbenac

References

edgeR: a Bioconductor package for differential expression analysis of digital gene expression data, Mark D. Robinson, Davis McCarthy, and Gordon Smyth, 2010, *Bioinformatics*, Volume 26 Issue 1, https://academic.oup.com/bioinformatics/article/26/1/139/182458.

Examples

```
if(require(parathyroidSE) && require(PoiClaClu))
{
  data(parathyroidGenesSE)
  expression <- assays(parathyroidGenesSE)[[1]] # Genes in rows, samples in columns.
  sampleNames <- paste("Sample", 1:ncol(parathyroidGenesSE))</pre>
  colnames(expression) <- sampleNames</pre>
  DPN <- which(colData(parathyroidGenesSE)[, "treatment"] == "DPN")</pre>
  control <- which(colData(parathyroidGenesSE)[, "treatment"] == "Control")</pre>
  expression <- expression[, c(control, DPN)]</pre>
  classes <- factor(rep(c("Contol", "DPN"), c(length(control), length(DPN))))</pre>
  expression <- expression[rowSums(expression > 1000) > 8, ] # Make small data set.
  # ClassifyR is using the convention of samples in rows and features in columns.
  ranked <- edgeRranking(t(expression), classes)</pre>
  head(ranked)
  plotFeatureClasses(t(expression), classes, "ENSG00000044574",
                      dotBinWidth = 500, xAxisLabel = "Unnormalised Counts")
}
```

edgesToHubNetworks Convert a Two-column Matrix or Data Frame into a Hub Node List

Description

Interactions between pairs of features (typically a protein-protein interaction, commonly abbreviated as PPI, database) are restructured into a named list. The name of the each element of the list is a feature and the element contains all features which have an interaction with it.

```
edgesToHubNetworks(edges, minCardinality = 5)
```

edges	A two-column matrix or data.frame for which each row specifies a known
	interaction betwen two interactors. If feature X appears in the first column and
	feature Y appears in the second, there is no need for feature Y to appear in the
	first column and feature X in the second.
minCardinality	An integer specifying the minimum number of features to be associated with a hub feature for it to be present in the result.

Value

An object of type FeatureSetCollection.

Author(s)

Dario Strbenac

References

VAN: an R package for identifying biologically perturbed networks via differential variability analysis, Vivek Jayaswal, Sarah-Jane Schramm, Graham J Mann, Marc R Wilkins and Yee Hwa Yang, 2010, *BMC Research Notes*, Volume 6 Article 430, https://bmcresnotes.biomedcentral.com/ articles/10.1186/1756-0500-6-430.

Examples

elasticNetFeatures Extract Vectors of Ranked and Selected Features From an Elastic Net GLM Object

Description

Provides a ranking of features based on the magnitude of fitted GLM coefficients. Also provides the selected features which are those with a non-zero coefficient.

```
## S4 method for signature 'multnet'
elasticNetFeatures(model)
```

model

A fitted multinomial GLM which was created by glmnet.

Value

An list object. The first element is a vector or data frame of ranked features, the second is a vector or data frame of selected features.

Author(s)

Dario Strbenac

Examples

```
if(require(glmnet))
{
  # Genes 76 to 100 have differential expression.
genesMatrix <- sapply(1:100, function(sample) rnorm(25, 9, 0.3))</pre>
genesMatrix <- rbind(genesMatrix, t(sapply(1:25, function(sample)</pre>
                                    c(rnorm(75, 9, 0.3), rnorm(25, 14, 0.3)))))
classes <- factor(rep(c("Poor", "Good"), each = 25))</pre>
rownames(genesMatrix) <- paste("Sample", 1:nrow(genesMatrix))</pre>
colnames(genesMatrix) <- paste("Gene", 1:ncol(genesMatrix))</pre>
  # alpha is a user-specified tuning parameter.
  # lambda is automatically tuned, based on glmnet defaults, if not user-specified.
  CVparams <- CrossValParams("k-Fold")</pre>
  trainParams <- TrainParams(elasticNetGLMtrainInterface, nlambda = 500)</pre>
  predictParams <- PredictParams(elasticNetGLMpredictInterface)</pre>
  modParams <- ModellingParams(selectParams = NULL, trainParams = trainParams,</pre>
                                 predictParams = predictParams)
  classified <- runTests(genesMatrix, classes, CVparams, modParams)</pre>
  elasticNetFeatures(models(classified)[[1]])
}
```

elasticNetGLMtrainInterface

An Interface for glmnet Package's glmnet Function

Description

An elastic net GLM classifier uses a penalty which is a combination of a lasso penalty and a ridge penalty, scaled by a lambda value, to fit a sparse linear model to the data.

```
elasticNetGLMtrainInterface(measurementsTrain, ...)
## S4 method for signature 'matrix'
elasticNetGLMtrainInterface(measurementsTrain, classesTrain, ...)
## S4 method for signature 'DataFrame'
elasticNetGLMtrainInterface(
 measurementsTrain,
  classesTrain,
 lambda = NULL,
  . . . ,
  verbose = 3
)
## S4 method for signature 'MultiAssayExperiment'
elasticNetGLMtrainInterface(
 measurementsTrain,
  targets = names(measurementsTrain),
  classesTrain,
  . . .
)
elasticNetGLMpredictInterface(model, measurementsTest, ...)
## S4 method for signature 'multnet,matrix'
elasticNetGLMpredictInterface(model, measurementsTest, ...)
## S4 method for signature 'multnet,DataFrame'
elasticNetGLMpredictInterface(
 model,
 measurementsTest,
 lambda,
  . . . ,
 returnType = c("both", "class", "score"),
  verbose = 3
)
## S4 method for signature 'multnet,MultiAssayExperiment'
elasticNetGLMpredictInterface(
 model,
 measurementsTest,
 targets = names(measurementsTest),
  . . .
)
```

measurementsTrain Either a matrix, DataFrame or MultiAssayExperiment containing the training data. For a matrix or DataFrame, the rows are samples, and the columns are features. If of type DataFrame or MultiAssayExperiment, the data set is subset to only those features of type numeric. Variables not used by the matrix nor the MultiAssayExperiment method which are passed into and used by the DataFrame method (e.g. verbose) or, for the training function, options that are used by the glmnet function. For the testing function, this variable simply contains any parameters passed from the classification framework to it which aren't used by glmnet's predict fuction. classesTrain A vector of class labels of class factor of the same length as the number of samples in measurementsTrain if it is a matrix or a DataFrame or a character vector of length 1 containing the column name in measurementsTrain if it is a DataFrame or the column name in colData(measurementsTrain) if measurementsTrain is a MultiAssayExperiment. If a column name, that column will be removed before training. lambda The lambda value passed directly to glmnet if the training function is used or passed as s to predict.glmnet if the prediction function is used. Default: 3. A number between 0 and 3 for the amount of progress messages to verbose give. This function only prints progress messages if the value is 3. If measurementsTrain is a MultiAssayExperiment, the names of the data tatargets bles to be used. "sampleInfo" is also a valid value and specifies that integer variables from the sample information data table will be used. model A trained elastic net GLM, as created by the glmnet function. measurementsTest An object of the same class as measurementsTrain with no samples in common with measurementsTrain and the same number of features as it. Default: "both". Either "class", "score" or "both". Sets the return value returnType from the prediction to either a vector of class labels, matrix of scores for each class, or both labels and scores in a data.frame.

Details

The value of the family parameter is fixed to "multinomial" so that classification with more than 2 classes is possible and type.multinomial is fixed to "grouped" so that a grouped lasso penalty is used. During classifier training, if more than one lambda value is considered by specifying a vector of them as input or leaving the default value of NULL, then the chosen value is determined based on classifier resubstitution error rate.

Value

For elasticNetGLMtrainInterface, an object of type glmnet. For elasticNetGLMpredictInterface, either a factor vector of predicted classes, a matrix of scores for each class, or a table of both the class labels and class scores, depending on the setting of returnType.

FeatureSetCollection

Author(s)

Dario Strbenac

See Also

elasticNetFeatures for a function used to extract the features with non-zero coefficients from the model.

Examples

```
if(require(glmnet))
{
  # Genes 76 to 100 have differential expression.
  genesMatrix <- sapply(1:100, function(sample) rnorm(25, 9, 0.3))</pre>
  genesMatrix <- rbind(genesMatrix, t(sapply(1:25, function(sample))</pre>
                                       c(rnorm(75, 9, 0.3), rnorm(25, 14, 0.3)))))
  classes <- factor(rep(c("Poor", "Good"), each = 25))</pre>
  rownames(genesMatrix) <- paste("Sample", 1:nrow(genesMatrix))</pre>
  colnames(genesMatrix) <- paste("Gene", 1:ncol(genesMatrix))</pre>
  CVparams <- CrossValParams("k-Fold")</pre>
  trainParams <- TrainParams(elasticNetGLMtrainInterface, nlambda = 500)</pre>
  predictParams <- PredictParams(elasticNetGLMpredictInterface)</pre>
  modParams <- ModellingParams(selectParams = NULL, trainParams = trainParams,</pre>
                                   predictParams = predictParams)
  classified <- runTests(genesMatrix, classes, CVparams, modParams)</pre>
  classified <- calcCVperformance(classified, "Balanced Error")</pre>
  head(tunedParameters(classified))
  performance(classified)
}
```

FeatureSetCollection Container for Storing A Collection of Sets

Description

This container is the required storage format for a collection of sets. Typically, the elements of a set will either be a set of proteins (i.e. character vector) which perform a particular biological process or a set of binary interactions (i.e. Two-column matrix of feature identifiers).

Constructor

FeatureSetCollection(sets)

sets A named list. The names of the list describe the sets and the elements of the list specify the features which comprise the sets.

Summary

featureSets is a FeatureSetCollection object.

show(featureSets): Prints a short summary of what featureSets contains.

length(featureSets): Prints how many sets of features there are.

Subsetting

The FeatureSetCollection may be subsetted to a smaller set of elements or a single set may be extracted as a vector. featureSets is a FeatureSetCollection object.

- featureSets[i:j]: Reduces the object to a subset of the feature sets between elements i and j
 of the collection.
- featureSets[[i]]: Extract the feature set identified by i. i may be a numeric index or the character name of a feature set.

Author(s)

Dario Strbenac

Examples

```
ontology <- list(c("SESN1", "PRDX1", "PRDX2", "PRDX3", "PRDX4", "PRDX5", "PRDX6",</pre>
                    "LRRK2", "PARK7"),
                  c("ATP7A", "CCS", "NQ01", "PARK7", "SOD1", "SOD2", "SOD3",
                    "SZT2", "TNF"),
                  c("AARS", "AIMP2", "CARS", "GARS", "KARS", "NARS", "NARS2",
                    "LARS2", "NARS", "NARS2", "RGN", "UBA7"),
                  c("CRY1", "CRY2", "ONP1SW", "OPN4", "RGR"),
                  c("ESRRG", "RARA", "RARB", "RARG", "RXRA", "RXRB", "RXRG"),
                  c("CD36", "CD47", "F2", "SDC4"),
                  c("BUD31", "PARK7", "RWDD1", "TAF1")
                  )
names(ontology) <- c("Peroxiredoxin Activity", "Superoxide Dismutase Activity",</pre>
                      "Ligase Activity", "Photoreceptor Activity",
                      "Retinoic Acid Receptor Activity",
                      "Thrombospondin Receptor Activity",
                      "Regulation of Androgen Receptor Activity")
featureSets <- FeatureSetCollection(ontology)</pre>
featureSets
featureSets[3:5]
featureSets[["Photoreceptor Activity"]]
subNetworks <- list(MAPK = matrix(c("NRAS", "NRAS", "NRAS", "BRAF", "MEK",</pre>
                                     "ARAF", "BRAF", "CRAF", "MEK", "ERK"), ncol = 2),
                     P53 = matrix(c("ATM", "ATR", "ATR", "P53",
"CHK2", "CHK1", "P53", "MDM2"), ncol = 2)
                     )
networkSets <- FeatureSetCollection(subNetworks)</pre>
networkSets
```

FeatureSetCollectionOrNULL-class

Union of a FeatureSetCollection and NULL

Description

Allows a slot to be either a FeatureSetCollectionOrNULL object or empty.

Author(s)

Dario Strbenac

Examples

```
TrainParams(DLDAtrainInterface, transform = NULL) # Use the input data as-is.
```

featureSetSummary	Transform a Table of Feature Abundances into a Table of Feature Set
	Abundances.

Description

Represents a feature set by the mean or median feature measurement of a feature set for all features belonging to a feature set.

Usage

```
## S4 method for signature 'matrix'
featureSetSummary(
 measurements,
 location = c("median", "mean"),
  featureSets,
 minimumOverlapPercent = 80,
  verbose = 3
)
## S4 method for signature 'DataFrame'
featureSetSummary(
  measurements,
  location = c("median", "mean"),
  featureSets,
 minimumOverlapPercent = 80,
  verbose = 3
)
```

```
## S4 method for signature 'MultiAssayExperiment'
featureSetSummary(
    measurements,
    target = NULL,
    location = c("median", "mean"),
    featureSets,
    minimumOverlapPercent = 80,
    verbose = 3
)
```

Arguments

measurements	Either a matrix, DataFrame or MultiAssayExperiment containing the training data. For a matrix, the rows are samples, and the columns are features. If of type DataFrame or MultiAssayExperiment, the data set is subset to only those features of type numeric.	
location	Default: The median. The type of location to summarise a set of features be- longing to a feature set by.	
featureSets	An object of type FeatureSetCollection which defines the feature sets.	
minimumOverlapPercent		
	The minimum percentage of overlapping features between the data set and a feature set defined in featureSets for that feature set to not be discarded from the anaylsis.	
verbose	Default: 3. A number between 0 and 3 for the amount of progress messages to give. This function only prints progress messages if the value is 3.	
target	If the input is a MultiAssayExperiment, this specifies which data set will be transformed. Can either be an integer index or a character string specifying the name of the table. Must have length 1.	

Details

This feature transformation method is unusual because the mean or median feature of a feature set for one sample may be different to another sample, whereas most other feature transformation methods do not result in different features being compared between samples during classification.

Value

The same class of variable as the input variable measurements is, with the individual features summarised to feature sets. The number of samples remains unchanged, so only one dimension of measurements is altered.

Author(s)

Dario Strbenac

40

fisherDiscriminant

References

Network-based biomarkers enhance classical approaches to prognostic gene expression signatures, Rebecca L Barter, Sarah-Jane Schramm, Graham J Mann and Yee Hwa Yang, 2014, *BMC Systems Biology*, Volume 8 Supplement 4 Article S5, https://bmcsystbiol.biomedcentral.com/ articles/10.1186/1752-0509-8-S4-S5.

Examples

fisherDiscriminant Classification Using Fisher's LDA

Description

Finds the decision boundary using the training set, and gives predictions for the test set. Unlike ordinary LDA, Fisher's version does not have assumptions about the normality of the features. Data tables which consist entirely of non-numeric data cannot be analysed.

Usage

```
## S4 method for signature 'matrix'
fisherDiscriminant(measurementsTrain, classesTrain, measurementsTest, ...)
## S4 method for signature 'DataFrame'
fisherDiscriminant(
    measurementsTrain,
    classesTrain,
    measurementsTest,
    returnType = c("both", "class", "score"),
    verbose = 3
)
## S4 method for signature 'MultiAssayExperiment'
fisherDiscriminant(
```

```
measurementsTrain,
measurementsTest,
targets = names(measurementsTrain),
classesTrain,
...
```

Arguments

measurementsTr	ain
	Either a matrix, DataFrame or MultiAssayExperiment containing the training data. For a matrix or DataFrame, the rows are samples, and the columns are features. If of type DataFrame or MultiAssayExperiment, the data set is subset to only those features of type numeric.
	Variables not used by the matrix nor the MultiAssayExperiment method which are passed into and used by the DataFrame method.
classesTrain	A vector of class labels of class factor of the same length as the number of samples in measurementsTrain if it is a matrix or a DataFrame or a character vector of length 1 containing the column name in measurementsTrain if it is a DataFrame or the column name in colData(measurementsTrain) if measurementsTrain is a MultiAssayExperiment. If a column name, that column will be removed before training.
measurementsTe	st
	An object of the same class as measurementsTrain with no samples in common with measurementsTrain and the same number of features as it.
returnType	Default: "both". Either "class", "score", or "both". Sets the return value from the prediction to either a vector of class labels, score for a sample belonging to the second class, as determined by the factor levels, or both labels and scores in a data.frame.
verbose	Default: 3. A number between 0 and 3 for the amount of progress messages to give. This function only prints progress messages if the value is 3.
targets	If measurementsTrain is a MultiAssayExperiment, the names of the data ta- bles to be used. "sampleInfo" is also a valid value and specifies that numeric variables from the sample information data table will be used.

Value

A vector or data.frame of class prediction information, as long as the number of samples in the test data.

Author(s)

Dario Strbenac

Examples

```
trainMatrix <- matrix(rnorm(1000, 8, 2), nrow = 10)
classes <- factor(rep(c("Poor", "Good"), each = 5))</pre>
```

42

```
# Make first 30 genes increased in value for poor samples.
trainMatrix[1:5, 1:30] <- trainMatrix[1:5, 1:30] + 5
testMatrix <- matrix(rnorm(1000, 8, 2), nrow = 10)
# Make first 30 genes increased in value for sixth to tenth samples.
testMatrix[6:10, 1:30] <- testMatrix[6:10, 1:30] + 5
fisherDiscriminant(trainMatrix, classes, testMatrix)
```

forestFeatures Extract Vectors of Ranked and Selected Features From a Random Forest Object

Description

Provides a ranking of features based on the total decrease in node impurities from splitting on the variable, averaged over all trees. Also provides the selected features which are those that were used in at least one tree of the forest.

Arguments

forest A trained random forest which was created by randomForest.

Value

An list object. The first element is a vector or data frame of features, ranked from best to worst using the Gini index. The second element is a vector or data frame of features used in at least one tree.

Author(s)

Dario Strbenac

Examples

functionOrList-class Union of Functions and List of Functions

Description

}

Allows a slot to be either a function or a list of functions.

Author(s)

Dario Strbenac

Examples

```
SelectParams(limmaRanking)
SelectParams(list(limmaRanking, differentMeansRanking)) # Ensemble selection.
```

functionOrNULL-class Union of A Function and NULL

Description

Allows a slot to be either a function or empty.

Author(s)

Dario Strbenac

Examples

```
PredictParams(NULL) # Training function does both tasks.
PredictParams(DLDApredictInterface)
```

generateCrossValParams

A function to generate a CrossValParams object

Description

A function to generate a CrossValParams object

Usage

```
generateCrossValParams(nRepeats, nFolds, nCores, selectionOptimisation)
```

Arguments

nRepeats	A numeric specifying the the number of repeats or permutations to use for cross-validation.
nFolds	A numeric specifying the number of folds to use for cross-validation.
nCores	A numeric specifying the number of cores used if the user wants to use paral- lelisation.
selectionOptim	isation A character of "Resubstitution", "Nested CV" or "none" specifying the approach used to optimise nFeatures.

Value

CrossValParams object

Examples

CVparams <- generateCrossValParams(nRepeats = 20, nFolds = 5, nCores = 8, selectionOptimisation = "none")

generateModellingParams

A function to generate a ModellingParams object

Description

A function to generate a ModellingParams object

Usage

```
generateModellingParams(
   datasetIDs,
   measurements,
   nFeatures,
   selectionMethod,
   selectionOptimisation,
   classifier,
   multiViewMethod = "none"
)
```

Arguments

datasetIDs	A vector of data set identifiers as long at the number of data sets.	
measurements	Either a DataFrame, data.frame, matrix, MultiAssayExperiment or a list of these objects containing the training data. For a matrix and data.frame, the rows are samples and the columns are features. For a data.frame or MultiAssayExperiment assay the rows are features and the columns are samples, as is typical in Bioconductor.	
nFeatures	The number of features to be used for classification. If this is a single number, the same number of features will be used for all comparisons or datasets. If a numeric vector these will be optimised over using selectionOptimisation. If a named vector with the same names of multiple datasets, a different number of features will be used for each dataset. If a named list of vectors, the respective number of features will be optimised over. Set to NULL or "all" if all features should be used.	
selectionMethod		
	A character vector of feature selection methods to compare. If a named charac- ter vector with names corresponding to different datasets, and performing mul- tiview classification, the respective classification methods will be used on each dataset.	
selectionOptimisation		
	A character of "Resubstitution", "Nested CV" or "none" specifying the approach used to optimise nFeatures.	
classifier	A character vector of classification methods to compare. If a named character vector with names corresponding to different datasets, and performing multiview classification, the respective classification methods will be used on each dataset.	
multiViewMethod		
	A character vector specifying the multiview method or data integration approach to use.	

Value

ModellingParams object

46

getLocationsAndScales

Examples

getLocationsAndScales Calculate Location and Scale

Description

Calculates the location and scale for each feature.

Usage

```
## S4 method for signature 'matrix'
getLocationsAndScales(measurements, ...)
## S4 method for signature 'DataFrame'
getLocationsAndScales(
   measurements,
```

```
location = c("mean", "median"),
scale = c("SD", "MAD", "Qn")
```

```
## S4 method for signature 'MultiAssayExperiment'
getLocationsAndScales(measurements, targets = names(measurements), ...)
```

Arguments

)

measurements	Either a matrix, DataFrame or MultiAssayExperiment containing the training data. For a matrix, the rows are samples, and the columns are features. If of type DataFrame or MultiAssayExperiment, the data set is subset to only those features of type numeric.
	Variables not used by the matrix nor the MultiAssayExperiment method which are passed into and used by the DataFrame method.
location	The type of location to be calculated.
scale	The type of scale to be calculated.

targets	If measurements is a MultiAssayExperiment, the names of the data tables to
	be used. "sampleInfo" is also a valid value and specifies that numeric variables
	from the sample information data table will be used.

Details

"SD" is used to represent standard deviation and "MAD" is used to represent median absolute deviation.

Value

A list of length 2. The first element contains the location for every feature. The second element contains the scale for every feature.

Author(s)

Dario Strbenac

References

Qn: http://www.tandfonline.com/doi/pdf/10.1080/01621459.1993.10476408

Examples

```
genesMatrix <- matrix(rnorm(1000, 8, 4), nrow = 10)
distributionInfo <- getLocationsAndScales(genesMatrix, "median", "MAD")</pre>
```

mean(distributionInfo[["median"]]) # Typical median. mean(distributionInfo[["MAD"]]) # Typical MAD.

HuRI

Human Reference Interactome

Description

A collection of 45783 pairs of protein gene symbols, as determined by the The Human Reference Protein Interactome Mapping Project. Self-interactions have been removed.

Format

interactors is a Pairs object containing each pair of interacting proteins.

Source

A Reference Map of the Human Binary Protein Interactome, *Nature*, 2020. Webpage: http://www.interactome-atlas.org/download

interactorDifferences Convert Individual Features into Differences Between Binary Interactors Based on Known Sub-networks

Description

This conversion is useful for creating a meta-feature table for classifier training and prediction based on sub-networks that were selected based on their differential correlation between classes.

Usage

```
## S4 method for signature 'matrix'
interactorDifferences(measurements, ...)
## S4 method for signature 'DataFrame'
interactorDifferences(
    measurements,
    featurePairs = NULL,
    absolute = FALSE,
    verbose = 3
)
## S4 method for signature 'MultiAssayExperiment'
interactorDifferences(measurements, target = NULL, classesColumn, ...)
```

Arguments

measurements	Either a matrix, DataFrame or MultiAssayExperiment containing the training data. For a matrix, the rows are samples, and the columns are features.
	Variables not used by the matrix nor the MultiAssayExperiment method which are passed into and used by the DataFrame method.
featurePairs	A object of type Pairs.
absolute	If TRUE, then the absolute values of the differences are returned.
verbose	Default: 3. A number between 0 and 3 for the amount of progress messages to give. This function only prints progress messages if the value is 3.
target	If measurements is a MultiAssayExperiment, the name of the data table to be used.
classesColumn	If measurementsTrain is a MultiAssayExperiment, the names of the class col- umn in the table extracted by colData(multiAssayExperiment) that contains the samples' outcomes to use for prediction.

Details

The pairs of features known to interact with each other are specified by networkSets.

Value

An object of class DataFrame with one column for each interactor pair difference and one row for each sample. Additionally, mcols(resultTable) prodvides a DataFrame with a column named "original" containing the name of the sub-network each meta-feature belongs to.

Author(s)

Dario Strbenac

References

Dynamic modularity in protein interaction networks predicts breast cancer outcome, Ian W Taylor, Rune Linding, David Warde-Farley, Yongmei Liu, Catia Pesquita, Daniel Faria, Shelley Bull, Tony Pawson, Quaid Morris and Jeffrey L Wrana, 2009, *Nature Biotechnology*, Volume 27 Issue 2, https://www.nature.com/articles/nbt.1522.

Examples

kNNinterface

An Interface for class Package's knn Function

Description

More details of k Nearest Neighbours are available in the documentation of knn.

Usage

```
## S4 method for signature 'matrix'
kNNinterface(measurementsTrain, classesTrain, measurementsTest, ...)
## S4 method for signature 'DataFrame'
kNNinterface(
    measurementsTrain,
```

50

kNNinterface

```
classesTrain,
measurementsTest,
...,
classifierName = "k Nearest Neighbours",
verbose = 3
)
## S4 method for signature 'MultiAssayExperiment'
kNNinterface(
measurementsTrain,
measurementsTrain,
targets = names(measurementsTrain),
classesTrain,
...
)
```

Arguments

```
measurementsTrain
```

	Either a matrix, DataFrame or MultiAssayExperiment containing the training data. For a matrix or DataFrame, the rows are samples, and the columns are features. If of type DataFrame or MultiAssayExperiment, the data set is subset to only those features of type numeric.
	Variables not used by the matrix nor the MultiAssayExperiment method which are passed into and used by the DataFrame method or parameters that knn can accept.
classesTrain	A vector of class labels of class factor of the same length as the number of samples in measurementsTrain if it is a matrix or a DataFrame or a character vector of length 1 containing the column name in measurementsTrain if it is a DataFrame or the column name in colData(measurementsTrain) if measurementsTrain is a MultiAssayExperiment. If a column name, that column will be removed before training.
measurementsTes	-
	An object of the same class as measurementsTrain with no samples in common with measurementsTrain and the same number of features as it.
classifierName	Default: k Nearest Neighbours. Useful for automated plot annotation by plotting functions within this package.
verbose	Default: 3. A number between 0 and 3 for the amount of progress messages to give. This function only prints progress messages if the value is 3.
targets	If measurementsTrain is a MultiAssayExperiment, the names of the data tables to be used. "sampleInfo" is also a valid value and specifies that integer variables from the sample information data table will be used.

Details

Data tables which consist entirely of non-numeric data cannot be analysed. If measurements is an object of class MultiAssayExperiment, the factor of sample classes must be stored in the DataFrame accessible by the colData function with column name "class".

Value

A factor vector, the same as is returned by knn.

Author(s)

Dario Strbenac

Examples

```
if(require(class))
{
    classes <- factor(rep(c("Healthy", "Disease"), each = 5), levels = c("Healthy", "Disease"))
    measurements <- matrix(c(rnorm(50, 10), rnorm(50, 5)), nrow = 10, byrow = TRUE)
    rownames(measurements) <- paste("Sample", 1:10)
    colnames(measurements) <- paste("mRNA", 1:10)

    # Train with 9 samples, test with one.
    kNNinterface(measurements[1:9, ], classes[1:9], measurements[10, , drop = FALSE])
}</pre>
```

KolmogorovSmirnovRanking

Ranking of Differential Distributions with Kolmogorov-Smirnov Distance

Description

Ranks features from largest Kolmogorov-Smirnov distance to smallest.

Usage

```
## S4 method for signature 'matrix'
KolmogorovSmirnovRanking(measurementsTrain, classesTrain, ...)
## S4 method for signature 'DataFrame'
KolmogorovSmirnovRanking(measurementsTrain, classesTrain, ..., verbose = 3)
## S4 method for signature 'MultiAssayExperiment'
KolmogorovSmirnovRanking(
    measurementsTrain,
    targets = names(measurementsTrain),
    classesTrain,
    ...
)
```

Arguments

measurementsTrain		
	Either a matrix, DataFrame or MultiAssayExperiment containing the training data. For a matrix or DataFrame, the rows are samples, and the columns are features. If of type DataFrame or MultiAssayExperiment, the data set is subset to only those features of type numeric.	
	Variables not used by the matrix nor the MultiAssayExperiment method which are passed into and used by the DataFrame method or options which are accepted by the function ks.test.	
classesTrain	Either a vector of class labels of class factor of the same length as the num- ber of samples in measurementsTrain or if the measurements are of class DataFrame a character vector of length 1 containing the column name in measurement is also permitted.	
verbose	Default: 3. A number between 0 and 3 for the amount of progress messages to give. This function only prints progress messages if the value is 3.	
targets	If measurementsTrain is a MultiAssayExperiment, the names of the data ta- bles to be used. "sampleInfo" is also a valid value and specifies that numeric variables from the sample information data table will be used.	

Value

A vector or data frame (if MultiAssayExperiment input) of features, from the most promising features in the first position to the least promising feature in the last position.

Author(s)

Dario Strbenac

head(ranked)

Examples

kTSPclassifier

Description

Each pair of features votes for a class based on whether the value of one feature is less than the other feature. If the voting is tied, the the class with the most samples in the training set is voted for.

Usage

```
## S4 method for signature 'matrix'
kTSPclassifier(
  measurementsTrain,
  classesTrain,
 measurementsTest,
  featurePairs = NULL,
)
## S4 method for signature 'DataFrame'
kTSPclassifier(
  measurementsTrain,
  classesTrain,
  measurementsTest,
  featurePairs = NULL,
  difference = c("unweighted", "weighted"),
  minDifference = 0,
  returnType = c("both", "class", "score"),
  verbose = 3
)
## S4 method for signature 'MultiAssayExperiment'
kTSPclassifier(
  measurementsTrain,
  classesTrain,
  target = names(measurementsTrain)[1],
  featurePairs = NULL,
  . . .
)
```

Arguments

measurementsTrain

Either a matrix, DataFrame or MultiAssayExperiment containing the training data. For a matrix or DataFrame, the rows are samples, and the columns are features. If of type DataFrame or MultiAssayExperiment, the data set is subset to only those features of type numeric.

	Unused variables by the methods for a matrix or a MultiAssayExperiment passed to the DataFrame method which does the classification.
classesTrain	A vector of class labels of class factor of the same length as the number of samples in measurementsTrain if it is a matrix or a DataFrame or a character vector of length 1 containing the column name in measurementsTrain if it is a DataFrame or the column name in colData(measurementsTrain) if measurementsTrain is a MultiAssayExperiment. If a column name, that column will be removed before training.
measurementsTe	st
	An object of the same class as measurementsTrain with no samples in common with measurementsTrain and the same number of features as it.
featurePairs	An object of class as Pairs containing the pairs of features to determine whether the inequality of the first feature being less than the second feature holds, indi- cating evidence for the second level of the classesTrain factor.
difference	Default: "unweighted". Either "unweighted" or "weighted". In weighted mode, the difference in densities is summed over all features. If unweighted mode, each feature's vote is worth the same.
minDifference	Default: 0. The minimum difference in densities for a feature to be allowed to vote. Can be a vector of cutoffs. If no features for a particular sample have a difference large enough, the class predicted is simply the largest class.
returnType	Default: "both". Either "class", "score" or "both". Sets the return value from the prediction to either a vector of class labels, score for a sample belonging to the second class, as determined by the factor levels, or both labels and scores in a data.frame.
verbose	Default: 3. A number between 0 and 3 for the amount of progress messages to give. This function only prints progress messages if the value is 3.
target	If measurementsTrain is a MultiAssayExperiment, the name of the data ta- ble to be used. "sampleInfo" is also a valid value and specifies that integer variables from the sample information data table will be used.

Details

Because this method compares different features, they need to have comparable measurements. For example, RNA-seq counts would be unsuitable since these depend on the length of a feature, whereas F.P.K.M. values would be suitable.

The featurePairs to use is recommended to be determined in conjunction with pairsDifferencesRanking.

Value

A vector or data frame of class prediction information, as long as the number of samples in the test data.

Author(s)

Dario Strbenac

See Also

pairsDifferencesRanking for a function which could be used to do feature ranking before the k-TSP classifier is run.

Examples

```
KullbackLeiblerRanking
```

Ranking of Differential Distributions with Kullback-Leibler Distance

Description

Ranks features from largest Kullback-Leibler distance between classes to smallest.

Usage

```
## S4 method for signature 'matrix'
KullbackLeiblerRanking(measurementsTrain, classesTrain, ...)
## S4 method for signature 'DataFrame'
KullbackLeiblerRanking(measurementsTrain, classesTrain, ..., verbose = 3)
## S4 method for signature 'MultiAssayExperiment'
KullbackLeiblerRanking(
    measurementsTrain,
    targets = names(measurementsTrain),
    classesTrain,
    ...
)
```

Arguments

measurementsTrain		
	Either a matrix, DataFrame or MultiAssayExperiment containing the training data. For a matrix or DataFrame, the rows are samples, and the columns are features. If of type DataFrame or MultiAssayExperiment, the data set is subset to only those features of type numeric.	
	Variables not used by the matrix nor the MultiAssayExperiment method which are passed into and used by the DataFrame method or options which are accepted by the function getLocationsAndScales.	
classesTrain	Either a vector of class labels of class factor of the same length as the num- ber of samples in measurementsTrain or if the measurements are of class DataFrame a character vector of length 1 containing the column name in measurement is also permitted.	
verbose	Default: 3. A number between 0 and 3 for the amount of progress messages to give. This function only prints progress messages if the value is 3.	
targets	If measurementsTrain is a MultiAssayExperiment, the names of the data ta- bles to be used. "sampleInfo" is also a valid value and specifies that numeric variables from the sample information data table will be used.	

Details

The distance is defined as $\frac{1}{2} \times \left(\frac{(location_1 - location_2)^2}{scale_1^2} + \frac{(location_1 - location_2)^2}{scale_2^2} + \frac{scale_2^2}{scale_1^2} + \frac{scale_1^2}{scale_2^2}\right)$ The subscripts denote the group which the parameter is calculated for.

Value

A vector or data frame (if MultiAssayExperiment input) of features, from the most promising features in the first position to the least promising feature in the last position.

Author(s)

Dario Strbenac

Examples

leveneRanking

Description

Ranks features by largest Levene statistic.

Usage

```
## S4 method for signature 'matrix'
leveneRanking(measurementsTrain, classesTrain, ...)
## S4 method for signature 'DataFrame'
leveneRanking(measurementsTrain, classesTrain, verbose = 3)
## S4 method for signature 'MultiAssayExperiment'
leveneRanking(
    measurementsTrain,
    targets = names(measurementsTrain),
    classesTrain,
    ...
)
```

Arguments

```
measurementsTrain
```

	Either a matrix, DataFrame or MultiAssayExperiment containing the training data. For a matrix or DataFrame, the rows are samples, and the columns are features. If of type DataFrame or MultiAssayExperiment, the data set is subset to only those features of type numeric.
	Variables not used by the matrix nor the MultiAssayExperiment method which are passed into and used by the DataFrame method.
classesTrain	Either a vector of class labels of class factor of the same length as the num- ber of samples in measurementsTrain or if the measurements are of class DataFrame a character vector of length 1 containing the column name in measurement is also permitted.
verbose	Default: 3. A number between 0 and 3 for the amount of progress messages to give. This function only prints progress messages if the value is 3.
targets	If measurementsTrain is a MultiAssayExperiment, the names of the data ta- bles to be used. "sampleInfo" is also a valid value and specifies that numeric variables from the sample information table will be used.

Details

Levene's statistic for unequal variance between groups is a robust version of Bartlett's statistic.

Value

A vector or data frame (if MultiAssayExperiment input) of features, from the most promising features in the first position to the least promising feature in the last position.

Author(s)

Dario Strbenac

Examples

likelihoodRatioRanking

Ranking of Differential Distributions with Likelihood Ratio Statistic

Description

Ranks features from largest difference of log likelihoods (null hypothesis - alternate hypothesis) to smallest.

Usage

```
## S4 method for signature 'matrix'
likelihoodRatioRanking(measurementsTrain, classesTrain, ...)
## S4 method for signature 'DataFrame'
likelihoodRatioRanking(
   measurementsTrain,
   classesTrain,
   alternative = c(location = "different", scale = "different"),
   ...,
   verbose = 3
)
```

```
## S4 method for signature 'MultiAssayExperiment'
likelihoodRatioRanking(
    measurementsTrain,
    targets = names(measurementsTrain),
    classesTrain,
    ...
)
```

Arguments

measurementsTra	ίn

measurements fram		
	Either a matrix, DataFrame or MultiAssayExperiment containing the training data. For a matrix or DataFrame, the rows are samples, and the columns are features. If of type DataFrame or MultiAssayExperiment, the data set is subset to only those features of type numeric.	
	Variables not used by the matrix nor the MultiAssayExperiment method which are passed into and used by the DataFrame method or options which are accepted by the function getLocationsAndScales.	
classesTrain	Either a vector of class labels of class factor of the same length as the number of samples in measurementsTrain or if the measurements are of class DataFrame a character vector of length 1 containing the column name in measurement is also permitted. Not used if measurementsTrain is a MultiAssayExperiment object.	
alternative	Default: c("different", "different"). A vector of length 2. The first el- ement specifies the location of the alternate hypothesis. The second element specifies the scale of the alternate hypothesis. Valid values in each element are "same" or "different".	
verbose	Default: 3. A number between 0 and 3 for the amount of progress messages to give. This function only prints progress messages if the value is 3.	
targets	If measurementsTrain is a MultiAssayExperiment, the names of the data ta- bles to be used. "sampleInfo" is also a valid value and specifies that numeric variables from the sample information data table will be used.	

Details

Likelihood ratio test of null hypothesis that the location and scale are the same for both groups, and an alternate hypothesis that is specified by parameters. The location and scale of features is calculated by getLocationsAndScales. The distribution fitted to the data is the normal distribution.

Value

A vector or data frame (if MultiAssayExperiment input) of features, from the most promising features in the first position to the least promising feature in the last position.

Author(s)

Dario Strbenac

60

limmaRanking

Examples

```
# First 20 features have bimodal distribution for Poor class.
# Other 80 features have normal distribution for both classes.
genesMatrix <- sapply(1:20, function(feature)
{
randomMeans <- sample(c(8, 12), 25, replace = TRUE)
c(rnorm(25, randomMeans, 1), rnorm(25, 10, 1))
}
genesMatrix <- cbind(genesMatrix, sapply(1:80, function(feature) rnorm(50, 10, 1)))
classes <- factor(rep(c("Poor", "Good"), each = 25))
ranked <- likelihoodRatioRanking(genesMatrix, classes)
head(ranked)
```

limmaRanking

Ranking of Differentially Abundant Features

Description

Uses a moderated F-test with empirical Bayes shrinkage to rank differentially expressed features based on differences of means. This means it works when there are three or more classes.

Usage

```
## S4 method for signature 'matrix'
limmaRanking(measurementsTrain, classesTrain, ...)
## S4 method for signature 'DataFrame'
```

```
limmaRanking(measurementsTrain, classesTrain, ..., verbose = 3)
```

```
## S4 method for signature 'MultiAssayExperiment'
limmaRanking(measurementsTrain, targets = NULL, classesTrain, ...)
```

Arguments

. . .

measurementsTrain

Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix or DataFrame, the rows are samples, and the columns are
features. If of type DataFrame or MultiAssayExperiment, the data set is subset
to only those features of type numeric.
Variables not used by the matrix nor the MultiAssayExperiment method which are passed into and used by the DataFrame method or optional settings that are passed to lmFit.

classesTrain A vector of class labels of class factor of the same length as the number of samples in measurements.

verbose	Default: 3. A number between 0 and 3 for the amount of progress messages to
	give. This function only prints progress messages if the value is 3.
targets	Names of data tables to be combined into a single table and used in the analysis.

Details

This ranking method looks for changes in means and uses a moderated F-test to do so.

Value

A vector or data frame (if MultiAssayExperiment input) of features, from the most promising features in the first position to the least promising feature in the last position.

Author(s)

Dario Strbenac

References

Limma: linear models for microarray data, Gordon Smyth, 2005, In: Bioinformatics and Computational Biology Solutions using R and Bioconductor, Springer, New York, pages 397-420.

Examples

listOrNULL-class Union of a List and NULL

Description

Allows a slot to be either a list or a NULL.

Author(s)

Dario Strbenac

mixModelsTrain

Examples

```
setClass("EasyClassifier", representation(model = "listOrNULL"))
classifier <- new("EasyClassifier", model = NULL) # Optimistic classifier.</pre>
```

mixModelsTrain	Classification based on Differential Distribution utilising Mixtures of
	Normals

Description

Fits mixtures of normals for every feature, separately for each class.

Usage

```
## S4 method for signature 'matrix'
mixModelsTrain(measurementsTrain, ...)
## S4 method for signature 'DataFrame'
mixModelsTrain(measurementsTrain, classesTrain, ..., verbose = 3)
## S4 method for signature 'MultiAssayExperiment'
mixModelsTrain(
 measurementsTrain,
  targets = names(measurementsTrain),
 classesTrain,
)
## S4 method for signature 'MixModelsListsSet,matrix'
mixModelsPredict(models, measurementsTest, ...)
## S4 method for signature 'MixModelsListsSet,DataFrame'
mixModelsPredict(
 models,
 measurementsTest,
 difference = c("unweighted", "weighted"),
 weighting = c("height difference", "crossover distance"),
  densityXvalues = 1024,
 minDifference = 0,
  returnType = c("both", "class", "score"),
  verbose = 3
)
## S4 method for signature 'MixModelsListsSet,MultiAssayExperiment'
mixModelsPredict(
 models,
```

```
measurementsTest,
targets = names(measurementsTest),
...
```

Arguments

```
measurementsTrain
```

	Either a matrix, DataFrame or MultiAssayExperiment containing the training data. For a matrix or DataFrame, the rows are samples, and the columns are features. If of type DataFrame or MultiAssayExperiment, the data set is subset to only those features of type numeric.
	Variables not used by the matrix nor the MultiAssayExperiment method which are passed into and used by the DataFrame method or extra arguments for training passed to mixmodCluster. The argument nbCluster is mandatory.
classesTrain	A vector of class labels of class factor of the same length as the number of samples in measurementsTrain if it is a matrix or a DataFrame or a character vector of length 1 containing the column name in measurementsTrain if it is a DataFrame or the column name in colData(measurementsTrain) if measurementsTrain is a MultiAssayExperiment. If a column name, that column will be removed before training.
verbose	Default: 3. A number between 0 and 3 for the amount of progress messages to give. This function only prints progress messages if the value is 3.
targets	If measurements is a MultiAssayExperiment, the names of the data tables to be used. "sampleInfo" is also a valid value and specifies that numeric variables from the clinical data table will be used.
models	A MixModelsListsSet of models generated by the training function and train- ing class information. There is one element for each class. Another element at the end of the list has the class sizes of the classes in the training data.
measurementsTes	st
	An object of the same class as measurementsTrain with no samples in common with measurementsTrain and the same number of features as it.
difference	Default: "unweighted". Either "unweighted" or "weighted". In weighted mode, the difference in densities is summed over all features. If unweighted mode, each feature's vote is worth the same. Both can be calculated simultaneously.
weighting	Default: "height difference". Either "height difference", or "crossover distance". The type of weight to calculate. For "height difference", the weight of each prediction is equal to the sum of the vertical distances for all of the mixture components within one class subtracted from the sum of the components of the other class, summed for each value of x. For "crossover distance", the x positions where the mixture density of the class being considered crosses another class' density is firstly calculated. The predicted class is the class with the highest mixture sum at the particular value of x and the weight is the distance of x from the nearest density crossover point.

densityXvalues	Default: 1024. Only relevant when weight is "crossover distance". The number of equally-spaced locations at which to calculate y values for each mixture density.
minDifference	Default: 0. The minimum difference in sums of mixture densities between the class with the highest sum and the class with the second highest sum for a feature to be allowed to vote. If no features for a particular sample have a difference large enough, the class predicted is simply the largest class.
returnType	Default: "both". Either "class", "score" or "both". Sets the return value from the prediction to either a vector of predicted classes, a matrix of scores with columns corresponding to classes, as determined by the factor levels of classesTrain, or both a column of predicted classes and columns of class scores in a data, frame.

Details

If weighted is TRUE, then a sample's predicted class is the class with the largest sum of weights, each scaled for the number of samples in the training data of each class. Otherwise, when weighted is FALSE, each feature has an equal vote, and votes for the class with the largest weight, scaled for class sizes in the training set.

If weight is "crossover distance", the crossover points are computed by considering the distance between y values of the two densities at every x value. x values for which the sign of the difference changes compared to the difference of the closest lower value of x are used as the crossover points.

Value

For mixModelsTrain, a list of trained models of class MixmodCluster. For mixModelsPredict, a vector of class prediction information (i.e. classes and/or scores), as long as the number of samples in the test data.

Author(s)

Dario Strbenac

Examples

First 25 samples and first 5 genes are mixtures of two normals. Last 25 samples are # one normal.

```
genesMatrix <- t(sapply(1:25, function(geneColumn) c(rnorm(5, sample(c(5, 15), replace = TRUE, 5)))))
genesMatrix <- rbind(genesMatrix, sapply(1:5, function(geneColumn) c(rnorm(25, 9, 1))))
genesMatrix <- cbind(genesMatrix, sapply(1:5, function(geneColumn) rnorm(50, 9, 1)))
rownames(genesMatrix) <- paste("Sample", 1:50)
colnames(genesMatrix) <- paste("Gene", 1:10)
classes <- factor(rep(c("Poor", "Good"), each = 25), levels = c("Good", "Poor"))
trainSamples <- c(1:15, 26:40)
testSamples <- c(16:25, 41:50)
selected <- 1:5</pre>
```

trained <- mixModelsTrain(genesMatrix[trainSamples, selected], classes[trainSamples],</pre>

```
nbCluster = 1:3)
mixModelsPredict(trained, genesMatrix[testSamples, selected])
```

ModellingParams Parameters for Data Modelling Specification

Description

Collects and checks necessary parameters required for data modelling. Apart from data transfomation that needs to be done within cross-validation (e.g. subtractFromLocation), feature selection, model training and prediction, this container also stores a setting for class imbalance rebalancing.

Usage

```
ModellingParams(
    balancing = c("downsample", "upsample", "none"),
    transformParams = NULL,
    selectParams = SelectParams(),
    trainParams = TrainParams(),
    predictParams = PredictParams(),
    doImportance = FALSE
)
```

Arguments

balancing	Default: "downsample". A character value specifying what kind of class bal- ancing to do, if any.
transformParam	S
	Parameters used for feature transformation inside of C.V. specified by a TransformParams instance. Optional, can be NULL.
selectParams	Parameters used during feature selection specified by a SelectParams instance. By default, parameters for selection based on differences in means of numeric data. Optional, can be NULL.
trainParams	Parameters for model training specified by a TrainParams instance. By default, uses diagonal LDA.
predictParams	Parameters for model training specified by a PredictParams instance. By de- fault, uses diagonal LDA.
doImportance	Default: FALSE. Whether or not to carry out removal of each feature, one at a time, which was chosen and then retrain and model and predict the test set, to measure the change in performance metric. Can also be set to TRUE, if required. Modelling run time will be noticeably longer.

Author(s)

Dario Strbenac

Examples

```
#if(require(sparsediscrim))
#{
    ModellingParams() # Default is differences in means selection and DLDA.
    ModellingParams(selectParams = NULL, # No feature selection before training.
        trainParams = TrainParams(randomForestTrainInterface),
        predictParams = PredictParams(randomForestPredictInterface))
#}
```

ModellingParamsOrNULL-class

Union of A ModellingParams Object and NULL

Description

Allows a slot to be either a ModellingParams class object or empty. No constructor.

multnet-class Trained multnet Object

Description

Enables S4 method dispatching on it.

Author(s)

Dario Strbenac

naiveBayesKernel Classification Using A Bayes Classifier with Kernel Density Estimates

Description

Kernel density estimates are fitted to the training data and a naive Bayes classifier is used to classify samples in the test data.

Usage

```
## S4 method for signature 'matrix'
naiveBayesKernel(measurementsTrain, classesTrain, measurementsTest, ...)
## S4 method for signature 'DataFrame'
naiveBayesKernel(
 measurementsTrain,
  classesTrain,
 measurementsTest,
  densityFunction = density,
  densityParameters = list(bw = "nrd0", n = 1024, from =
    expression(min(featureValues)), to = expression(max(featureValues))),
  difference = c("unweighted", "weighted"),
 weighting = c("height difference", "crossover distance"),
 minDifference = 0,
  returnType = c("both", "class", "score"),
  verbose = 3
)
## S4 method for signature 'MultiAssayExperiment'
naiveBayesKernel(
 measurementsTrain,
 measurementsTest,
  targets = names(measurements),
  classesTrain,
  . . .
)
```

Arguments

measurementsTra	ain
	Either a matrix, DataFrame or MultiAssayExperiment containing the training data. For a matrix or DataFrame, the rows are samples, and the columns are features. If of type DataFrame or MultiAssayExperiment, the data set is subset to only those features of type numeric.
	Unused variables by the three top-level methods passed to the internal method which does the classification.
classesTrain	A vector of class labels of class factor of the same length as the number of samples in measurementsTrain if it is a matrix or a DataFrame or a character vector of length 1 containing the column name in measurementsTrain if it is a DataFrame or the column name in colData(measurementsTrain) if measurementsTrain is a MultiAssayExperiment. If a column name, that column will be removed before training.
measurementsTes	st

An object of the same class as measurementsTrain with no samples in common with measurementsTrain and the same number of features as it.

68

densityFunction		
	Default: density. A function which will return a probability density, which is essentially a list with x and y coordinates.	
densityParamet	ers	
	A list of options for densityFunction. Default: list(bw = "nrd0", n = 1024, from = expression(min(featureValues)), to = expression(max(featureValues)).	
difference	Default: "unweighted". Either "unweighted", "weighted". In weighted mode, the difference in densities is summed over all features. If unweighted mode, each feature's vote is worth the same.	
weighting	Default: "height difference". Either "height difference" or "height difference". The type of weight to calculate. For "height difference", the weight of each prediction is equal to the vertical distance between the highest density and the second-highest, for a particular value of x. For "crossover distance", the x positions where two densities cross is firstly calculated. The predicted class is the class with the highest density at the particular value of x and the weight is the distance of x from the nearest density crossover point.	
minDifference	Default: 0. The minimum difference in density height between the highest den- sity and second-highest for a feature to be allowed to vote. If no features for a particular sample have a difference large enough, the class predicted is simply the largest class.	
returnType	Default: "both". Either "class", "score" or "both". Sets the return value from the prediction to either a vector of predicted classes, a matrix of scores with columns corresponding to classes, as determined by the factor levels of classes, or both a column of predicted classes and columns of class scores in a data.frame.	
verbose	Default: 3. A number between 0 and 3 for the amount of progress messages to give. This function only prints progress messages if the value is 3.	
targets	If measurementsTrain is a MultiAssayExperiment, the names of the data ta- bles to be used. "sampleInfo" is also a valid value and specifies that numeric variables from the sample information data table will be used.	

Details

If difference is "weighted", then a sample's predicted class is the class with the largest sum of weights, each scaled for the number of samples in the training data of each class. Otherwise, when difference is "unweighted", each feature has an equal vote, and votes for the class with the largest weight, scaled for class sizes in the training set.

The variable name of each feature's measurements in the iteration over all features is featureValues. This is important to know if each feature's measurements need to be referred to in the specification of densityParameters, such as for specifying the range of x values of the density function to be computed. For example, see the default value of densityParameters above.

If weight is "crossover distance", the crossover points are computed by considering the distance between y values of all of the densities at every x value. x values for which a class density crosses any other class' density are used as the crossover points for that class.

A vector or data frame of class prediction information (i.e. classes and/or scores), as long as the number of samples in the test data.

Author(s)

Dario Strbenac, John Ormerod

Examples

```
trainMatrix <- matrix(rnorm(1000, 8, 2), nrow = 10)
classesTrain <- factor(rep(c("Poor", "Good"), each = 5))
rownames(trainMatrix) <- paste("Sample", 1:10)
# Make first 30 genes increased in value for poor samples.
trainMatrix[1:5, 1:30] <- trainMatrix[1:5, 1:30] + 5
testMatrix <- matrix(rnorm(1000, 8, 2), nrow = 10)
rownames(testMatrix) <- paste("Sample", 11:20)
# Make first 30 genes increased in value for sixth to tenth samples.
testMatrix[6:10, 1:30] <- testMatrix[6:10, 1:30] + 5
naiveBayesKernel(trainMatrix, classesTrain, testMatrix)</pre>
```

NSCtrainInterface Interface for pamr.train Function from pamr CRAN Package

Description

Restructures variables from ClassifyR framework to be compatible with pamr.train definition.

Restructures variables from ClassifyR framework to be compatible with pamr.predict definition.

Extracts the threshold for the minimum training error and then extracts the corresponding gene IDs of the genes that were not eliminated by the thresold.

Usage

```
## S4 method for signature 'matrix'
NSCtrainInterface(measurementsTrain, classesTrain, ...)
## S4 method for signature 'DataFrame'
NSCtrainInterface(measurementsTrain, classesTrain, ..., verbose = 3)
## S4 method for signature 'MultiAssayExperiment'
NSCtrainInterface(
    measurementsTrain,
```

```
targets = names(measurementsTrain),
  classesTrain,
  . . .
)
## S4 method for signature 'pamrtrained,DataFrame'
NSCpredictInterface(
 model,
 measurementsTest,
 classesColumnTest = NULL,
  ...,
 returnType = c("both", "class", "score"),
 verbose = 3
)
## S4 method for signature 'pamrtrained,MultiAssayExperiment'
NSCpredictInterface(
 model,
 measurementsTest,
  targets = names(measurementsTest),
  . . .
)
## S4 method for signature 'pamrtrained'
```

```
NSCfeatures(model, measurementsTrain, classesTrain)
```

Arguments

-		
measurementsTrain		
	A DataFrame containing the training data.	
	Variables not used by the matrix nor the MultiAssayExperiment method which are passed into and used by the DataFrame method or optional settings that are passed to pamr.predict.	
classesTrain	A vector of class labels of class factor of the same length as the number of samples in measurementsTrain.	
verbose	Default: 3. A number between 0 and 3 for the amount of progress messages to give. This function only prints progress messages if the value is 3.	
targets	If measurementsTest is a MultiAssayExperiment, the names of the data ta- bles to be used. "sampleInfo" is also a valid value and specifies that numeric variables from the sample information table will be used.	
model	The output of NSCtrainInterface, which is identical to the output of pamr.listgenes.	
measurementsTest		
	An object of the same class as measurementsTrain with no samples in common with measurementsTrain used in the training stage and the same number of features as it. Also, if a DataFrame, the classesTrain column must be absent.	
classesColumnTest		
	Either NULL or a character vector of length 1, specifying the column name to remove from the test set.	

returnType Default: "both". Either "class", "score" or "both". Sets the return value from the prediction to either a vector of class labels, score for a sample belonging to the second class, as determined by the factor levels, or both labels and scores in a data.frame.

Details

This function is an interface between the ClassifyR framework and pamr.train.

This function is an interface between the ClassifyR framework and pamr.predict. It selects the highest threshold that gives the minimum error rate in the training data.

When used within ClassifyR cross-validation, the trained model, measurements and classes will automatically be passed to this function in each iteration.

Value

A list with elements as described in pamr.train.

Either a factor vector of predicted classes, a matrix of scores for each class, or a table of both the class labels and class scores, depending on the setting of returnType.

A list with the first element being empty (no feature ranking is provided) and second element being the selected features.

Author(s)

Dario Strbenac

Dario Strbenac

Dario Strbenac

See Also

pamr.train for the function that was interfaced to.

pamr.predict for the function that was interfaced to.

pamr.listgenes for the function that is interfaced to.

Examples

if(require(pamr))

```
{
 # Samples in one class with differential expression to other class for last 25 features.
 genesMatrix <- sapply(1:100, function(sampleColumn) c(rnorm(25, 9, 1)))</pre>
genesMatrix <- rbind(genesMatrix, cbind(sapply(1:50, function(sampleColumn) rnorm(25, 9, 1)),</pre>
                                  sapply(1:50, function(sampleColumn) rnorm(25, 14, 1))))
  classes <- factor(rep(c("Poor", "Good"), each = 25))</pre>
  fit <- NSCtrainInterface(genesMatrix[c(1:20, 26:45), ], classes[c(1:20, 26:45)])</pre>
 NSCpredictInterface(fit, genesMatrix[c(21:25, 46:50), ])
}
if(require(pamr))
{
  # Genes 76 to 100 have differential expression.
  genesMatrix <- sapply(1:100, function(sample) rnorm(25, 9, 0.3))</pre>
  genesMatrix <- rbind(genesMatrix, t(sapply(1:25, function(sample)</pre>
                                      c(rnorm(75, 9, 0.3), rnorm(25, 14, 0.3)))))
  classes <- factor(rep(c("Poor", "Good"), each = 25))</pre>
  rownames(genesMatrix) <- paste("Sample", 1:nrow(genesMatrix))</pre>
  colnames(genesMatrix) <- paste("Gene", 1:ncol(genesMatrix))</pre>
  model <- NSCtrainInterface(genesMatrix, classes)</pre>
  selected <- NSCfeatures(model, genesMatrix, classes)</pre>
  selected[[2]]
}
```

numericOrNULL-class Union of A Numeric Value and NULL

Description

Allows a slot to be either a numeric value or empty. No constructor.

Author(s)

Dario Strbenac

pairsDifferencesRanking

Ranking of Pairs of Features that are Different Between Classes

Description

Ranks pre-specified pairs of features by the largest difference of the sum of measurement differences over all samples within a class.

Usage

```
## S4 method for signature 'matrix'
pairsDifferencesRanking(
 measurementsTrain,
 classesTrain,
  featurePairs = NULL,
)
## S4 method for signature 'DataFrame'
pairsDifferencesRanking(
 measurementsTrain,
  classesTrain,
  featurePairs = NULL,
 verbose = 3
)
## S4 method for signature 'MultiAssayExperiment'
pairsDifferencesRanking(
 measurementsTrain,
  target = names(measurementsTrain)[1],
  classesTrain,
  featurePairs = NULL,
)
```

Arguments

```
measurementsTrain
                  Either a matrix, DataFrame or MultiAssayExperiment containing the training
                  data. For a matrix or DataFrame, the rows are samples, and the columns are
                  features. If of type DataFrame or MultiAssayExperiment, the data set is subset
                  to only those features of type numeric.
                  Variables not used by the matrix nor the MultiAssayExperiment method which
. . .
                  are passed into and used by the DataFrame method.
classesTrain
                  Either a vector of class labels of class factor of the same length as the num-
                  ber of samples in measurementsTrain or if the measurements are of class
                  DataFrame a character vector of length 1 containing the column name in measurement
                  is also permitted.
featurePairs
                  An S4 object of type Pairs containing feature identifiers to calculate the sum of
                  differences within each class for.
                  Default: 3. A number between 0 and 3 for the amount of progress messages to
verbose
                  give. This function only prints progress messages if the value is 3.
target
                  If measurementsTrain is a MultiAssayExperiment, the name of the data table
                  to be used.
```

74

Details

Instead of considering whether one feature in a pair of features is consistently lower or higher than the other in the pair, this method takes the sum of differences across all samples within a class, to prevent ties in the ranking of pairs of features.

Value

A Pairs object, from the most promising feature pair in the first position to the least promising feature pair in the last position.

Author(s)

Dario Strbenac

References

Simple decision rules for classifying human cancers from gene expression profiles, Aik C Tan, Daniel Q Naiman, Lei Xu, Raimond L. Winslow and Donald Geman, 2005, *Bioinformatics*, Volume 21 Issue 20, https://academic.oup.com/bioinformatics/article/21/20/3896/203010.

See Also

kTSPclassifier for a classifier which makes use of the pairs of selected features in classification.

Examples

pamrtrained-class Trained pamr Object

Description

Enables S4 method dispatching on it.

Author(s)

Dario Strbenac

performancePlot Plot Performance Measures for Various Classifications

Description

Draws a graphical summary of a particular performance measure for a list of classifications

Usage

```
## S4 method for signature 'list'
performancePlot(
  results,
  performanceName = "Balanced Accuracy",
  characteristicsList = list(x = "Classifier Name"),
  aggregate = character(),
  coloursList = list(),
  orderingList = list(),
  densityStyle = c("box", "violin"),
  yLimits = NULL,
  fontSizes = c(24, 16, 12, 12),
  title = NULL,
 margin = grid::unit(c(1, 1, 1, 1), "lines"),
  rotate90 = FALSE,
  showLegend = TRUE,
 plot = TRUE
)
```

Arguments

results A list of ClassifyResult objects.

```
performanceName
```

Default: "Balanced Accuracy". The name of the performance measure to make comparisons of. This is one of the names printed in the Performance Measures field when a ClassifyResult object is printed, or if none are stored, the performance metric will be calculated.

characteristicsList

A named list of characteristics. Each element's name must be one of "x", "row", "column", fillColour, or fillLine. The value of each element must be a characteristic name, as stored in the "characteristic" column of the results' characteristics table. Only "x" is mandatory.

aggregate A character vector of the levels of characteristicsList['x'] to aggregate to a single number by taking the mean. This is particularly meaningful when the cross-validation is leave-k-out, when k is small.

coloursList	A named list of plot aspects and colours for the aspects. No elements are manda- tory. If specified, each list element's name must be either "fillColours" or "lineColours". If a characteristic is associated to fill or line by characteristicsList but this list is empty, a palette of colours will be automatically chosen.
orderingList	An optional named list. Any of the variables specified to characteristicsList can be the name of an element of this list and the value of the element is the order in which the factors should be presented in, in case alphabetical sorting is undesirable.
densityStyle	Default: "box". Either "violin" for violin plot or "box" for box plot.
yLimits	The minimum and maximum value of the performance metric to plot.
fontSizes	A vector of length 4. The first number is the size of the title. The second number is the size of the axes titles. The third number is the size of the axes values. The fourth number is the font size of the titles of grouped plots, if any are produced. In other words, when rowVariable or columnVariable are not NULL.
title	An overall title for the plot.
margin	The margin to have around the plot.
rotate90	Logical. IF TRUE, the plot is horizontal.
showLegend	If TRUE, a legend is plotted next to the plot. If FALSE, it is hidden.
plot	Logical. IF TRUE, a plot is produced on the current graphics device.

Details

If there are multiple values for a performance measure in a single result object, it is plotted as a violin plot, unless aggregate is TRUE, in which case the all predictions in a single result object are considered simultaneously, so that only one performance number is calculated, and a barchart is plotted.

Value

An object of class ggplot and a plot on the current graphics device, if plot is TRUE.

Author(s)

Dario Strbenac

plotFeatureClasses	Plot Density, Scatterplot, Parallel Plot or Bar Chart for Features By
	Class

Description

Allows the visualisation of measurements in the data set. If targets is of type Pairs, then a parallel plot is automatically drawn. If it's a single categorical variable, then a bar chart is automatically drawn.

```
## S4 method for signature 'matrix'
plotFeatureClasses(measurements, classes, targets, ...)
## S4 method for signature 'DataFrame'
plotFeatureClasses(
 measurements,
  classes,
  targets,
  groupBy = NULL,
  groupingName = NULL,
  whichNumericFeaturePlots = c("both", "density", "stripchart"),
 measurementLimits = NULL,
  lineWidth = 1,
  dotBinWidth = 1,
  xAxisLabel = NULL,
  yAxisLabels = c("Density", "Classes"),
  showXtickLabels = TRUE,
  showYtickLabels = TRUE,
```

plotFeatureClasses

```
xLabelPositions = "auto",
 yLabelPositions = "auto",
  fontSizes = c(24, 16, 12, 12, 12),
  colours = c("#3F48CC", "#880015"),
  showDatasetName = TRUE,
 plot = TRUE
)
## S4 method for signature 'MultiAssayExperiment'
plotFeatureClasses(
 measurements,
  targets,
 classesColumn,
  groupBy = NULL,
 groupingName = NULL,
  showDatasetName = TRUE,
  . . .
)
```

Arguments

measurements	A matrix, DataFrame or a MultiAssayExperiment object containing the data. For a matrix, the rows are for features and the columns are for samples. A column with name "class" must be present in the DataFrame stored in the colData slot.
	Unused variables by the three top-level methods passed to the internal method which generates the plot(s).
classes	Either a vector of class labels of class factor or if the measurements are of class DataFrame a character vector of length 1 containing the column name in measurement is also permitted. Not used if measurements is a MultiAssayExperiment object.
targets	If measurements is a matrix or DataFrame, then a vector of numeric or charac- ter indices or the feature identifiers corresponding to the feature(s) to be plotted. If measurements is a MultiAssayExperiment, then a DataFrame of 2 columns must be specified. The first column contains the names of the tables and the sec- ond contains the names of the variables, thus each row unambiguously specifies a variable to be plotted.
groupBy	If measurements is a DataFrame, then a character vector of length 1, which contains the name of a categorical feature, may be specified. If measurements is a MultiAssayExperiment, then a character vector of length 2, which contains the name of a data table as the first element and the name of a categorical feature as the second element, may be specified. Additionally, the value "sampleInfo" may be used to refer to the column annotation stored in the colData slot of the of the MultiAssayExperiment object. A density plot will have additional lines of different line types for each category. A strip chart plot will have a separate strip chart created for each category and the charts will be drawn in a single column on the graphics device. A parallel plot and bar chart plot will similarly be laid out.

groupingName	A label for the grouping variable to be used in plots.
whichNumericFe	aturePlots
	If the feature is a single feature and has numeric measurements, this option specifies which types of plot(s) to draw. The default value is "both", which draws a density plot and also a stip chart below the density plot. Other options are "density" for drawing only a density plot and "stripchart" for drawing only a strip chart.
measurementLim	its
	The minimum and maximum expression values to plot. Default: NULL. By de- fault, the limits are automatically computed from the data values.
lineWidth	Numeric value that alters the line thickness for density plots. Default: 1.
dotBinWidth	Numeric value that alters the diameter of dots in the strip chart. Default: 1.
xAxisLabel	The axis label for the plot's horizontal axis. Default: NULL.
yAxisLabels	A character vector of length 1 or 2. If the feature's measurements are numeric an whichNumericFeaturePlots has the value "both", the first value is the y-axis label for the density plot and the second value is the y-axis label for the strip chart. Otherwise, if the feature's measurements are numeric and only one plot is drawn, then a character vector of length 1 specifies the y-axis label for that particular plot. Ignored if the feature's measurements are categorical.
showXtickLabel	S
	Logical. Default: TRUE. If set to FALSE, the x-axis labels are hidden.
showYtickLabel	S
	Logical. Default: TRUE. If set to FALSE, the y-axis labels are hidden.
xLabelPosition	
	Either "auto" or a vector of values. The positions of labels on the x-axis. If "auto", the placement of labels is automatically calculated.
yLabelPosition	
	Either "auto" or a vector of values. The positions of labels on the y-axis. If "auto", the placement of labels is automatically calculated.
fontSizes	A vector of length 5. The first number is the size of the title. The second number is the size of the axes titles. The third number is the size of the axes values. The fourth number is the size of the legends' titles. The fifth number is the font size of the legend labels.
colours	The colours to plot data of each class in. The length of this vector must be as long as the distinct number of classes in the data set.
showDatasetNam	e
	Logical. Default: TRUE. If TRUE and the data is in a MultiAssayExperiment object, the the name of the table in which the feature is stored in is added to the plot title.
plot	Logical. Default: TRUE. If TRUE, a plot is produced on the current graphics device.
classesColumn	If measurementsTrain is a MultiAssayExperiment, the names of the class col- umn in the table extracted by colData(multiAssayExperiment) that contains the samples' outcomes to use for prediction.

Value

Plots are created on the current graphics device and a list of plot objects is invisibly returned. The classes of the plot object are determined based on the type of data plotted and the number of plots per feature generated. If the plotted variable is discrete or if the variable is numeric and one plot type was specified, the list element is an object of class ggplot. Otherwise, if the variable is numeric and both the density and stripchart plot types were made, the list element is an object of class TableGrob.

Settling lineWidth and dotBinWidth to the same value doesn't result in the density plot and the strip chart having elements of the same size. Some manual experimentation is required to get similarly sized plot elements.

Author(s)

Dario Strbenac

```
# First 25 samples and first 5 genes are mixtures of two normals. Last 25 samples are
# one normal.
genesMatrix <- sapply(1:15, function(geneColumn) c(rnorm(5, 5, 1)))</pre>
genesMatrix <- cbind(genesMatrix, sapply(1:10, function(geneColumn) c(rnorm(5, 15, 1))))</pre>
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(geneColumn) c(rnorm(5, 9, 2))))</pre>
genesMatrix <- rbind(genesMatrix, sapply(1:50, function(geneColumn) rnorm(95, 9, 3)))</pre>
genesMatrix <- t(genesMatrix)</pre>
rownames(genesMatrix) <- paste("Sample", 1:50)</pre>
colnames(genesMatrix) <- paste("Gene", 1:100)</pre>
classes <- factor(rep(c("Poor", "Good"), each = 25), levels = c("Good", "Poor"))</pre>
plotFeatureClasses(genesMatrix, classes, targets = "Gene 4",
                    xAxisLabel = bquote(log[2]*'(expression)'), dotBinWidth = 0.5)
infectionResults <- c(rep(c("No", "Yes"), c(20, 5)), rep(c("No", "Yes"), c(5, 20)))
genders <- factor(rep(c("Male", "Female"), each = 10, length.out = 50))</pre>
clinicalData <- DataFrame(Gender = genders, Sugar = runif(50, 4, 10),</pre>
                          Infection = factor(infectionResults, levels = c("No", "Yes")),
                           row.names = rownames(genesMatrix))
plotFeatureClasses(clinicalData, classes, targets = "Infection")
plotFeatureClasses(clinicalData, classes, targets = "Infection", groupBy = "Gender")
genesMatrix <- t(genesMatrix) # MultiAssayExperiment needs features in rows.
dataContainer <- MultiAssayExperiment(list(RNA = genesMatrix),</pre>
                                        colData = cbind(clinicalData, class = classes))
targetFeatures <- DataFrame(dataset = "RNA", feature = "Gene 50")</pre>
plotFeatureClasses(dataContainer, targets = targetFeatures, classesColumn = "class",
                    groupBy = c("sampleInfo", "Gender"),
                    xAxisLabel = bquote(log[2]*'(expression)'), dotBinWidth = 0.5)
```

PredictParams

Description

Collects the function to be used for making predictions and any associated parameters.

Details

The function specified must return either a factor vector of class predictions, or a numeric vector of scores for the second class, according to the levels of the class vector of the input data set, or a data frame which has two columns named class and score.

Constructor

- PredictParams() Creates a default PredictParams object. This assumes that the object returned by the classifier has a list element named "class".
- PredictParams(predictor, characteristics = DataFrame(), intermediate = character(0), ...) Creates a PredictParams object which stores the function which will do the class prediction, if required, and parameters that the function will use. If the training function also makes predictions, this must be set to NULL.
 - predictor Either NULL or a function to make predictions with. If it is a function, then the first argument must accept the classifier made in the training step. The second argument must accept a DataFrame of new data.
 - characteristics A DataFrame describing the characteristics of the predictor function used. First column must be named "charateristic" and second column must be named "value".
 - intermediate Character vector. Names of any variables created in prior stages in runTest that need to be passed to the prediction function.
 - ... Other arguments that predictor may use.

Summary

predictParams is a PredictParams object.

show(predictParams): Prints a short summary of what predictParams contains.

Author(s)

Dario Strbenac

Examples

```
predictParams <- PredictParams(predictor = DLDApredictInterface)
# For prediction by trained object created by DLDA training function.
PredictParams(predictor = NULL)
# For when the training function also does prediction and directly returns.</pre>
```

For when the training function also does prediction and directly returns the

predictions.

PredictParamsOrNULL Union of A PredictParams Object and NULL

Description

Allows a slot to be either a PredictParams class object or empty. No constructor. In other words, the training function specified also makes predictions with the test set.

Author(s)

Dario Strbenac

Examples

```
ModellingParams(trainParams = TrainParams(kNNinterface, k = 5), predictParams = NULL)
```

previousSelection Automated Selection of Previously Selected Features

Description

Uses the feature selection of the same cross-validation iteration of a previous classification for the current classification task.

```
## S4 method for signature 'matrix'
previousSelection(measurementsTrain, ...)
## S4 method for signature 'DataFrame'
previousSelection(
    measurementsTrain,
    classesTrain,
    classifyResult,
    minimumOverlapPercent = 80,
    .iteration,
    verbose = 3
)
## S4 method for signature 'MultiAssayExperiment'
previousSelection(measurementsTrain, ...)
```

Arguments

measurementsTrain		
	Either a matrix, DataFrame or MultiAssayExperiment containing the training data. For a matrix, the rows are features, and the columns are samples.	
	Variables not used by the matrix nor the MultiAssayExperiment method which are passed into and used by the DataFrame method.	
classesTrain	Do not specify this variable. It is ignored and only used to create consistency of formal parameters with other feature selection methods.	
classifyResult	An existing classification result from which to take the feature selections from.	
minimumOverlapPercent		
	If at least this many selected features can't be identified in the current data set, then the selection stops with an error.	
.iteration	Do not specify this variable. It is set by runTests if this function is being repeatedly called by runTests.	
verbose	Default: 3. A number between 0 and 3 for the amount of progress messages to give. This function only prints progress messages if the value is 3.	

Value

A vector of feature indices, from the most promising features in the first position to the least promising feature in the last position.

Author(s)

Dario Strbenac

Examples

```
#if(require(sparsediscrim))
#{
  # Genes 76 to 100 have differential expression.
  genesMatrix <- sapply(1:100, function(sample) rnorm(25, 9, 0.3))</pre>
  genesMatrix <- rbind(genesMatrix, t(sapply(1:25, function(sample)</pre>
                                      c(rnorm(75, 9, 0.3), rnorm(25, 14, 0.3)))))
  classes <- factor(rep(c("Poor", "Good"), each = 25))</pre>
  rownames(genesMatrix) <- paste("Sample", 1:50)</pre>
  colnames(genesMatrix) <- paste("Gene", 1:100)</pre>
  classes <- factor(rep(c("Poor", "Good"), each = 25))</pre>
  CVparams <- CrossValParams(permutations = 2, folds = 2)</pre>
  result <- runTests(genesMatrix, classes, CVparams, ModellingParams())</pre>
  chosenFeatureNames(result)
  # Genes 50 to 74 have differential expression in new data set.
  newDataset <- sapply(1:100, function(sample) c(rnorm(25, 9, 0.3)))</pre>
 newDataset <- rbind(newDataset, cbind(sapply(1:49, function(sample) rnorm(25, 9, 0.3)),</pre>
                                       sapply(1:25, function(sample) rnorm(25, 14, 0.3)),
                                       sapply(1:26, function(sample) rnorm(25, 9, 0.3))))
```

84

```
rownames(newDataset) <- rownames(genesMatrix)
colnames(newDataset) <- colnames(genesMatrix)
selPars <- SelectParams(previousSelection, intermediate = ".iteration", classifyResult = result)
previousParams <- ModellingParams(selectParams = selPars)
newerResult <- runTests(newDataset, classes, CVparams, previousParams)
# However, only genes 76 to 100 are chosen, because the feature selections are
# carried over from the first cross-validated classification.
chosenFeatureNames(newerResult)
#}</pre>
```

previousTrained

Automated Usage of Previously Created Classifiers

Description

Uses the trained classifier of the same cross-validation iteration of a previous classification for the current classification task.

Usage

```
## S4 method for signature 'ClassifyResult'
previousTrained(classifyResult, .iteration, verbose = 3)
```

Arguments

classifyResult	A ClassifyResult object which stores the models fitted previously.
.iteration	Do not specify this variable. It is set by runTests if this function is being repeatedly called by runTests.
verbose	Default: 3. A number between 0 and 3 for the amount of progress messages to give. This function only prints progress messages if the value is 3.

Value

A trained classifier from a previously completed classification task.

Author(s)

Dario Strbenac

Examples

```
#if(require(sparsediscrim))
#{
  # Genes 76 to 100 have differential expression.
  genesMatrix <- sapply(1:100, function(sample) rnorm(25, 9, 0.3))</pre>
  genesMatrix <- rbind(genesMatrix, t(sapply(1:25, function(sample)</pre>
                                      c(rnorm(75, 9, 0.3), rnorm(25, 14, 0.3)))))
  classes <- factor(rep(c("Poor", "Good"), each = 25))</pre>
  rownames(genesMatrix) <- paste("Sample", 1:50)</pre>
  colnames(genesMatrix) <- paste("Gene", 1:100)</pre>
  classes <- factor(rep(c("Poor", "Good"), each = 25))</pre>
  CVparams <- CrossValParams(permutations = 2, folds = 2)
  result <- runTests(genesMatrix, classes, CVparams, ModellingParams())</pre>
  models(result)
  # Genes 50 to 74 have differential expression in new data set.
  newDataset <- sapply(1:100, function(sample) c(rnorm(25, 9, 0.3)))</pre>
 newDataset <- rbind(newDataset, cbind(sapply(1:49, function(sample) rnorm(25, 9, 0.3)),</pre>
                                       sapply(1:25, function(sample) rnorm(25, 14, 0.3)),
                                       sapply(1:26, function(sample) rnorm(25, 9, 0.3))))
  rownames(newDataset) <- rownames(genesMatrix)</pre>
  colnames(newDataset) <- colnames(genesMatrix)</pre>
selPars <- SelectParams(previousSelection, intermediate = ".iteration", classifyResult = result)</pre>
trPars <- TrainParams(previousTrained, intermediate = ".iteration", classifyResult = result)
 previousParams <- ModellingParams(selectParams = selPars, trainParams = trPars)</pre>
 newerResult <- runTests(newDataset, classes, CVparams, previousParams)</pre>
 models(newerResult)
#}
```

randomForest-class Trained randomForest Object

Description

Enables S4 method dispatching on it.

Author(s)

Dario Strbenac

86

randomForestInterfaces

An Interface for randomForest Package's randomForest Function

Description

A random forest classifier builds multiple decision trees and uses the predictions of the trees to determine a single prediction for each test sample.

```
## S4 method for signature 'matrix'
randomForestTrainInterface(measurementsTrain, classesTrain, ...)
## S4 method for signature 'DataFrame'
randomForestTrainInterface(measurementsTrain, classesTrain, ..., verbose = 3)
## S4 method for signature 'MultiAssayExperiment'
randomForestTrainInterface(
 measurementsTrain,
  targets = names(measurementsTrain),
  classesTrain,
  . . .
)
## S4 method for signature 'randomForest,matrix'
randomForestPredictInterface(forest, measurementsTest, ...)
## S4 method for signature 'randomForest,DataFrame'
randomForestPredictInterface(
  forest,
 measurementsTest,
  . . . ,
 returnType = c("both", "class", "score"),
  verbose = 3
)
## S4 method for signature 'randomForest,MultiAssayExperiment'
randomForestPredictInterface(
  forest,
 measurementsTest,
 targets = names(measurementsTest),
  . . .
)
```

Arguments

8		
measurementsTra	ain	
	Either a matrix, DataFrame or MultiAssayExperiment containing the training data. For a matrix or DataFrame, the rows are samples, and the columns are features.	
	Variables not used by the matrix nor the MultiAssayExperiment method which are passed into and used by the DataFrame method (e.g. verbose) or options which are accepted by the randomForest or predict.randomForest functions.	
classesTrain	A vector of class labels of class factor of the same length as the number of samples in measurementsTrain if it is a matrix or a DataFrame or a character vector of length 1 containing the column name in measurementsTrain if it is a DataFrame or the column name in colData(measurementsTrain) if measurementsTrain is a MultiAssayExperiment. If a column name, that column will be removed before training.	
verbose	Default: 3. A number between 0 and 3 for the amount of progress messages to give. This function only prints progress messages if the value is 3.	
targets	If measurementsTrain is a MultiAssayExperiment, the names of the data ta- bles to be used. "sampleInfo" is also a valid value and specifies that integer variables from the sample information data table will be used.	
forest	A trained random forest which was created by randomForest.	
measurementsTest		
	An object of the same class as measurementsTrain with no samples in common with measurementsTrain and the same number of features as it.	
returnType	Default: "both". Either "class", "score" or "both". Sets the return value from the prediction to either a vector of class labels, score for a sample belonging to the second class, as determined by the factor levels, or both labels and scores in a data.frame.	

Value

For randomForestTrainInterface, the trained random forest. For randomForestPredictInterface, either a factor vector of predicted classes, a matrix of scores for each class, or a table of both the class labels and class scores, depending on the setting of returnType.

Author(s)

Dario Strbenac

See Also

forestFeatures for a function to extract the features used to build the trees.

```
if(require(randomForest))
{
    # Genes 76 to 100 have differential expression.
```

rankingPlot

rankingPlot

}

Plot Pair-wise Overlap of Ranked Features

Description

Pair-wise overlaps can be done for two types of analyses. Firstly, each cross-validation iteration can be considered within a single classification. This explores the feature ranking stability. Secondly, the overlap may be considered between different classification results. This approach compares the feature ranking commonality between different results. Two types of commonality are possible to analyse. One summary is the average pair-wise overlap between all possible pairs of results. The second kind of summary is the pair-wise overlap of each level of the comparison factor that is not the reference level against the reference level. The overlaps are converted to percentages and plotted as lineplots.

```
## S4 method for signature 'list'
rankingPlot(
  results,
  topRanked = seq(10, 100, 10),
  comparison = "within",
  referenceLevel = NULL,
  characteristicsList = list(),
 orderingList = list(),
 sizesList = list(lineWidth = 1, pointSize = 2, legendLinesPointsSize = 1, fonts =
    c(24, 16, 12, 12, 12, 16)),
 lineColours = NULL,
  xLabelPositions = seq(10, 100, 10),
 yMax = 100,
  title = if (comparison[1] == "within") "Feature Ranking Stability" else
    "Feature Ranking Commonality",
 yLabel = if (is.null(referenceLevel)) "Average Common Features (%)" else
   paste("Average Common Features with", referenceLevel, "(%)"),
```

```
margin = grid::unit(c(1, 1, 1, 1), "lines"),
showLegend = TRUE,
plot = TRUE,
parallelParams = bpparam()
)
```

Arguments

results	A list of ClassifyResult objects.
topRanked	A sequence of thresholds of number of the best features to use for overlapping.
comparison	Default: within. The aspect of the experimental design to compare. Can be any characteristic that all results share or special value "within" to compared between all pairwise iterations of cross-validation.
referenceLevel	The level of the comparison factor to use as the reference to compare each non- reference level to. If NULL, then each level has the average pairwise overlap calculated to all other levels.
characteristics	sList
	A named list of characteristics. The name must be one of "lineColour", "pointType", "row" or "column". The value of each element must be a char- acteristic name, as stored in the "characteristic" column of the results' char- acteristics table.
orderingList	An optional named list. Any of the variables specified to characteristicsList can be the name of an element of this list and the value of the element is the order in which the factor should be presented in.
sizesList	Default: lineWidth = 1, pointSize = 2, legendLinesPointsSize = 1, fonts = $c(24, 16, 12, 12, 12, 16)$. A list which must contain elements named lineWidth, pointSize, legendLinesPointsSize and fonts. The first three specify the size of lines and points in the graph, as well as in the plot legend. fonts is a vector of length 6. The first element is the size of the title text. The second element is the size of the axes titles. The third element is the size of the axes values. The fourth element is the size of the legends' titles. The fifth element is the font size of the legend labels. The sixth element is the font size of the titles of grouped plots, if any are produced. Each list element must numeric.
lineColours	A vector of colours for different levels of the line colouring parameter, if one is specified by characteristicsList[["lineColour"]]. If none are specified but, characteristicsList[["lineColour"]] is, an automatically-generated palette will be used.
xLabelPositions	
	Locations where to put labels on the x-axis.
уМах	The maximum value of the percentage to plot.
title	An overall title for the plot.
yLabel	Label to be used for the y-axis of overlap percentages.
margin	The margin to have around the plot.
showLegend	If TRUE, a legend is plotted next to the plot. If FALSE, it is hidden.
plot	Logical. If TRUE, a plot is produced on the current graphics device.
parallelParams	An object of class MulticoreParam or SnowParam.

90

rankingPlot

Details

If comparison is "within", then the feature selection overlaps are compared within a particular analysis. The result will inform how stable the selections are between different iterations of cross-validation for a particular analysis. Otherwise, the comparison is between different cross-validation runs, and this gives an indication about how common are the features being selected by different classifications.

Calculating all pair-wise set overlaps for a large cross-validation result can be time-consuming. This stage can be done on multiple CPUs by providing the relevant options to parallelParams.

Value

An object of class ggplot and a plot on the current graphics device, if plot is TRUE.

Author(s)

Dario Strbenac

Examples

```
predicted <- data.frame(sample = sample(10, 100, replace = TRUE),</pre>
                         permutation = rep(1:2, each = 50),
                         class = rep(c("Healthy", "Cancer"), each = 50))
actual <- factor(rep(c("Healthy", "Cancer"), each = 5))</pre>
allFeatures <- sapply(1:100, function(index) paste(sample(LETTERS, 3), collapse = ''))
rankList <- list(allFeatures[1:100], allFeatures[c(15:6, 1:5, 16:100)],</pre>
               allFeatures[c(1:9, 11, 10, 12:100)], allFeatures[c(1:50, 61:100, 60:51)])
result1 <- ClassifyResult(DataFrame(characteristic = c("Data Set", "Selection Name", "Classifier Name",
                                                          "Cross-validation"),
                 value = c("Melanoma", "t-test", "Diagonal LDA", "2 Permutations, 2 Folds")),
                           LETTERS[1:10], allFeatures, rankList,
                           list(rankList[[1]][1:15], rankList[[2]][1:15],
                                 rankList[[3]][1:10], rankList[[4]][1:10]),
                           list(function(oracle){}), NULL,
                           predicted, actual)
predicted[, "class"] <- sample(predicted[, "class"])</pre>
rankList <- list(allFeatures[1:100], allFeatures[c(sample(20), 21:100)],</pre>
               allFeatures[c(1:9, 11, 10, 12:100)], allFeatures[c(1:50, 60:51, 61:100)])
result2 <- ClassifyResult(DataFrame(characteristic = c("Data Set", "Selection Name", "Classifier Name",
                                                          "Cross-validations"),
                 value = c("Melanoma", "t-test", "Random Forest", "2 Permutations, 2 Folds")),
                           LETTERS[1:10], allFeatures, rankList,
                           list(rankList[[1]][1:15], rankList[[2]][1:15],
                                 rankList[[3]][1:10], rankList[[4]][1:10]),
                           list(function(oracle){}), NULL,
                           predicted, actual)
```

rankingPlot(list(result1, result2), characteristicsList = list(pointType = "Classifier Name"))

ROCplot

Description

Creates one ROC plot or multiple ROC plots for a list of ClassifyResult objects. One plot is created if the data set has two classes and multiple plots are created if the data set has three or more classes.

Usage

```
## S4 method for signature 'list'
ROCplot(
  results,
 mode = c("merge", "average"),
  interval = 95,
  comparison = "Classifier Name",
  lineColours = NULL,
  lineWidth = 1,
  fontSizes = c(24, 16, 12, 12, 12),
  labelPositions = seq(0, 1, 0.2),
  plotTitle = "ROC",
  legendTitle = NULL,
  xLabel = "False Positive Rate",
  yLabel = "True Positive Rate",
 plot = TRUE,
  showAUC = TRUE
)
```

Arguments

results	A list of ClassifyResult objects.
mode	Default: "merge". Whether to merge all predictions of all iterations of cross- validation into one set or keep them separate. Keeping them separate will cause separate ROC curves to be computed for each iteration and confidence intervals to be drawn with the solid line being the averaged ROC curve.
interval	Default: 95 (percent). The percent confidence interval to draw around the averaged ROC curve, if mode is "each".
comparison	The aspect of the experimental design to compare. Can be any characteristic that all results share. If the data set has two classes, then the slot name with factor levels to be used for colouring the lines. Otherwise, it specifies the variable used for plot facetting.
lineColours	A vector of colours for different levels of the comparison parameter, or if there are three or more classes, the classes. If NULL, a default colour palette is automatically generated.
lineWidth	A single number controlling the thickness of lines drawn.

ROCplot

fontSizes	A vector of length 5. The first number is the size of the title. The second number is the size of the axes titles and AUC text, if it is not part of the legend. The third number is the size of the axes values. The fourth number is the size of the legends' titles. The fifth number is the font size of the legend labels.
labelPositions	Default: 0.0, 0.2, 0.4, 0.6, 0.8, 1.0. Locations where to put labels on the x and y axes.
plotTitle	An overall title for the plot.
legendTitle	A default name is used if the value is NULL. Otherwise a character name can be provided.
xLabel	Label to be used for the x-axis of false positive rate.
yLabel	Label to be used for the y-axis of true positive rate.
plot	Logical. If TRUE, a plot is produced on the current graphics device.
showAUC	Logical. If TRUE, the AUC value of each result is added to its legend text.

Details

The scores stored in the results should be higher if the sample is more likely to be from the class which the score is associated with. The score for each class must be in a column which has a column name equal to the class name.

For cross-validated classification, all predictions from all iterations are considered simultaneously, to calculate one curve per classification.

Value

An object of class ggplot and a plot on the current graphics device, if plot is TRUE.

Author(s)

Dario Strbenac

runTest

runTest

Perform a Single Classification

Description

For a data set of features and samples, the classification process is run. It consists of data transformation, feature selection, classifier training and testing.

```
## S4 method for signature 'matrix'
runTest(measurementsTrain, outcomesTrain, measurementsTest, outcomesTest, ...)
## S4 method for signature 'DataFrame'
runTest(
 measurementsTrain,
 outcomesTrain,
 measurementsTest,
 outcomesTest,
  crossValParams = CrossValParams(),
 modellingParams = ModellingParams(),
  characteristics = S4Vectors::DataFrame(),
  verbose = 1,
  .iteration = NULL
)
## S4 method for signature 'MultiAssayExperiment'
runTest(
 measurementsTrain,
 measurementsTest,
 targets = names(measurements),
 outcomesColumns,
  . . .
)
```

runTest

Arguments

measurementsTrain		
	Either a matrix, DataFrame or MultiAssayExperiment containing the training data. For a matrix or DataFrame, the rows are samples, and the columns are features.	
	Variables not used by the matrix nor the MultiAssayExperiment method which are passed into and used by the DataFrame method.	
outcomesTrain measurementsTes	Either a factor vector of classes, a Surv object, or a character string, or vector of such strings, containing column name(s) of column(s) containing either classes or time and event information about survival.	
lieasurelientsre	Same data type as measurementsTrain, but only the test samples.	
outcomesTest	Same data type as outcomesTrain, but only the test samples.	
crossValParams	An object of class CrossValParams, specifying the kind of cross-validation to be done, if nested cross-validation is used to tune any parameters.	
modellingParams	S	
	An object of class ModellingParams, specifying the class rebalancing, trans- formation (if any), feature selection (if any), training and prediction to be done on the data set.	
characteristic	-	
	A DataFrame describing the characteristics of the classification used. First col- umn must be named "charateristic" and second column must be named "value". Useful for automated plot annotation by plotting functions within this package. Transformation, selection and prediction functions provided by this package will cause the characteristics to be automatically determined and this can be left blank.	
verbose	Default: 1. A number between 0 and 3 for the amount of progress messages to give. A higher number will produce more messages as more lower-level functions print messages.	
.iteration	Not to be set by a user. This value is used to keep track of the cross-validation iteration, if called by runTests.	
targets	If measurementsTrain is a MultiAssayExperiment, the names of the data ta- bles to be used. "sampleInfo" is also a valid value and specifies that numeric variables from the sample information data table will be used.	
outcomesColumns		
	If measurementsTrain is a MultiAssayExperiment, the names of the column (class) or columns (survival) in the table extracted by colData(data) that contain(s) the samples' outcomes to use for prediction.	

Details

This function only performs one classification and prediction. See runTests for a driver function that enables a number of different cross-validation schemes to be applied and uses this function to perform each iteration.

Value

If called directly by the user rather than being used internally by runTests, a ClassifyResult object. Otherwise a list of different aspects of the result which is passed back to runTests.

Author(s)

Dario Strbenac

Examples

```
#if(require(sparsediscrim))
#{
    data(asthma)
    tuneList <- list(nFeatures = seq(5, 25, 5), performanceType = "Balanced Error")
    selectParams <- SelectParams(limmaRanking, tuneParams = tuneList)
    modellingParams <- ModellingParams(selectParams = selectParams)
    trainIndices <- seq(1, nrow(measurements), 2)
    testIndices <- seq(2, nrow(measurements), 2)
    runTest(measurements[trainIndices, ], classes[trainIndices],
    measurements[testIndices, ], classes[testIndices], modellingParams = modellingParams)
#}</pre>
```

runTests

Reproducibly Run Various Kinds of Cross-Validation

Description

Enables doing classification schemes such as ordinary 10-fold, 100 permutations 5-fold, and leave one out cross-validation. Processing in parallel is possible by leveraging the package BiocParallel.

Usage

```
## S4 method for signature 'matrix'
runTests(measurements, outcomes, ...)
## S4 method for signature 'DataFrame'
runTests(
    measurements,
    outcomes,
    crossValParams = CrossValParams(),
    modellingParams = ModellingParams(),
    characteristics = S4Vectors::DataFrame(),
    verbose = 1
)
## S4 method for signature 'MultiAssayExperiment'
runTests(measurements, targets = names(measurements), outcomesColumns, ...)
```

96

runTests

Arguments

Either a matrix, DataFrame or MultiAssayExperiment containing all of the data. For a matrix or DataFrame, the rows are samples, and the columns are features.
Variables not used by the matrix nor the MultiAssayExperiment method which are passed into and used by the DataFrame method.
Either a factor vector of classes, a Surv object, or a character string, or vector of such strings, containing column name(s) of column(s) containing either classes or time and event information about survival.
An object of class CrossValParams, specifying the kind of cross-validation to be done.
An object of class ModellingParams, specifying the class rebalancing, trans- formation (if any), feature selection (if any), training and prediction to be done on the data set.
A DataFrame describing the characteristics of the classification used. First col- umn must be named "charateristic" and second column must be named "value". Useful for automated plot annotation by plotting functions within this package. Transformation, selection and prediction functions provided by this package will cause the characteristics to be automatically determined and this can be left blank.
Default: 1. A number between 0 and 3 for the amount of progress messages to give. A higher number will produce more messages as more lower-level functions print messages.
If measurements is a MultiAssayExperiment, the names of the data tables to be used. "clinical" is also a valid value and specifies that the clinical data table will be used.
If measurementsTrain is a MultiAssayExperiment, the names of the column (class) or columns (survival) in the table extracted by colData(data) that contain(s)s the samples' outcomes to use for prediction.

Value

An object of class ClassifyResult.

Author(s)

Dario Strbenac

```
#if(require(sparsediscrim))
#{
    data(asthma)
```

samplesMetricMap Plot a Grid of Sample Error Rates or Accuracies

Description

A grid of coloured tiles is drawn. There is one column for each sample and one row for each classification result.

```
## S4 method for signature 'list'
samplesMetricMap(
  results,
  comparison = "Classifier Name",
 metric = c("Sample Error", "Sample Accuracy"),
  featureValues = NULL,
  featureName = NULL,
 metricColours = list(c("#3F48CC", "#6F75D8", "#9FA3E5", "#CFD1F2", "#FFFFFF"),
    c("#880015", "#A53F4F", "#C37F8A", "#E1BFC4", "#FFFFFF")),
  classColours = c("#3F48CC", "#880015"),
  groupColours = c("darkgreen", "yellow2"),
  fontSizes = c(24, 16, 12, 12, 12),
 mapHeight = 4,
  title = "Error Comparison",
  showLegends = TRUE,
  xAxisLabel = "Sample Name",
  showXtickLabels = TRUE,
  yAxisLabel = "Analysis",
  showYtickLabels = TRUE,
  legendSize = grid::unit(1, "lines"),
  plot = TRUE
)
## S4 method for signature 'matrix'
samplesMetricMap(
  results,
  classes,
```

```
metric = c("Sample Error", "Sample Accuracy"),
featureValues = NULL,
featureName = NULL,
metricColours = list(c("#3F48CC", "#6F75D8", "#9FA3E5", "#CFD1F2", "#FFFFFF"),
 c("#880015", "#A53F4F", "#C37F8A", "#E1BFC4", "#FFFFFF")),
classColours = c("#3F48CC", "#880015"),
groupColours = c("darkgreen", "yellow2"),
fontSizes = c(24, 16, 12, 12, 12),
mapHeight = 4,
title = "Error Comparison",
showLegends = TRUE,
xAxisLabel = "Sample Name",
showXtickLabels = TRUE,
yAxisLabel = "Analysis",
showYtickLabels = TRUE,
legendSize = grid::unit(1, "lines"),
plot = TRUE
```

Arguments

)

results	A list of ClassifyResult objects. Could also be a matrix of pre-calculated metrics, for backwards compatibility.	
comparison	Default: Classifier Name. The aspect of the experimental design to compare. Can be any characteristic that all results share.	
metric	The sample-wise metric to plot.	
featureValues	If not NULL, can be a named factor or named numeric vector specifying some variable of interest to plot underneath the class bar.	
featureName	A label describing the information in featureValues. It must be specified if featureValues is.	
metricColours	A vector of colours for metric levels.	
classColours	Either a vector of colours for class levels if both classes should have same colour, or a list of length 2, with each component being a vector of the same length. The vector has the colour gradient for each class.	
groupColours	A vector of colours for group levels. Only useful if groups is not NULL.	
fontSizes	A vector of length 5. The first number is the size of the title. The second number is the size of the axes titles. The third number is the size of the axes values. The fourth number is the size of the legends' titles. The fifth number is the font size of the legend labels.	
mapHeight	Height of the map, relative to the height of the class colour bar.	
title	The title to place above the plot.	
showLegends	Logical. IF FALSE, the legend is not drawn.	
xAxisLabel	The name plotted for the x-axis. NULL suppresses label.	
showXtickLabels		
	Logical. IF FALSE, the x-axis labels are hidden.	

yAxisLabel showYtickLabels	The name plotted for the y-axis. NULL suppresses label.
	Logical. IF FALSE, the y-axis labels are hidden.
legendSize	The size of the boxes in the legends.
plot	Logical. IF TRUE, a plot is produced on the current graphics device.
classes	If results is a matrix, this is a factor vector of the same length as the number of columns that results has.

Details

The names of results determine the row names that will be in the plot. The length of metricColours determines how many bins the metric values will be discretised to.

Value

A plot is produced and a grob is returned that can be saved to a graphics device.

Author(s)

Dario Strbenac

```
predicted <- data.frame(sample = LETTERS[sample(10, 100, replace = TRUE)],</pre>
                          class = rep(c("Healthy", "Cancer"), each = 50))
actual <- factor(rep(c("Healthy", "Cancer"), each = 5), levels = c("Healthy", "Cancer"))</pre>
features <- sapply(1:100, function(index) paste(sample(LETTERS, 3), collapse = ''))</pre>
result1 <- ClassifyResult(DataFrame(characteristic = c("Data Set", "Selection Name", "Classifier Name",
                                                           "Cross-validation"),
                  value = c("Example", "t-test", "Differential Expression", "2 Permutations, 2 Folds")),
                            LETTERS[1:10], features, list(1:100), list(sample(10, 10)),
                           list(function(oracle){}), NULL, predicted, actual)
predicted[, "class"] <- sample(predicted[, "class"])</pre>
result2 <- ClassifyResult(DataFrame(characteristic = c("Data Set", "Selection Name", "Classifier Name",
                                                           "Cross-validation"),
                  value = c("Example", "Bartlett Test", "Differential Variability", "2 Permutations, 2 Folds")),
                           LETTERS[1:10], features, list(1:100), list(sample(10, 10)),
                            list(function(oracle){}), NULL, predicted, actual)
result1 <- calcCVperformance(result1, "Sample Error")</pre>
result2 <- calcCVperformance(result2, "Sample Error")</pre>
groups <- factor(rep(c("Male", "Female"), length.out = 10))</pre>
names(groups) <- LETTERS[1:10]</pre>
cholesterol <- c(4.0, 5.5, 3.9, 4.9, 5.7, 7.1, 7.9, 8.0, 8.5, 7.2)
names(cholesterol) <- LETTERS[1:10]</pre>
wholePlot <- samplesMetricMap(list(Gene = result1, Protein = result2))</pre>
wholePlot <- samplesMetricMap(list(Gene = result1, Protein = result2),</pre>
                                featureValues = groups, featureName = "Gender")
wholePlot <- samplesMetricMap(list(Gene = result1, Protein = result2),</pre>
                               featureValues = cholesterol, featureName = "Cholesterol")
```

selectionPlot

Plot Pair-wise Overlap, Variable Importance or Selection Size Distribution of Selected Features

Description

Pair-wise overlaps can be done for two types of analyses. Firstly, each cross-validation iteration can be considered within a single classification. This explores the feature selection stability. Secondly, the overlap may be considered between different classification results. This approach compares the feature selection commonality between different selection methods. Two types of commonality are possible to analyse. One summary is the average pair-wise overlap between all levels of the comparison factor and the other summary is the pair-wise overlap of each level of the comparison factor that is not the reference level against the reference level. The overlaps are converted to percentages and plotted as lineplots.

Usage

```
## S4 method for signature 'list'
selectionPlot(
  results.
  comparison = "within",
  referenceLevel = NULL,
  characteristicsList = list(x = "Classifier Name"),
  coloursList = list(),
  orderingList = list(),
  binsList = list(),
  yMax = 100,
  fontSizes = c(24, 16, 12, 16),
 title = if (comparison == "within") "Feature Selection Stability" else if (comparison
    == "size") "Feature Selection Size" else if (comparison == "importance")
    "Variable Importance" else "Feature Selection Commonality",
 yLabel = if (is.null(referenceLevel) && !comparison %in% c("size", "importance"))
  "Common Features (%)" else if (comparison == "size") "Set Size" else if (comparison
    == "importance") tail(names(results[[1]]@importance), 1) else
    paste("Common Features with", referenceLevel, "(%)"),
  margin = grid::unit(c(1, 1, 1, 1), "lines"),
  rotate90 = FALSE,
  showLegend = TRUE,
  plot = TRUE,
  parallelParams = bpparam()
)
```

Arguments

results	A list of ClassifyResult objects.
comparison	Default: within. The aspect of the experimental design to compare. Can be any
	characteristic that all results share or either one of the special values "within"

	to compare between all pairwise iterations of cross-validation. or "size", to draw a bar chart of the frequency of selected set sizes, or "importance" to plot the variable importance scores of selected variables. "importance" only usable if doImportance was TRUE during cross-validation.
referenceLevel	The level of the comparison factor to use as the reference to compare each non- reference level to. If NULL, then each level has the average pairwise overlap calculated to all other levels.
characteristics	List
	A named list of characteristics. Each element's name must be one of "x", "row", "column", "fillColour", or "lineColour". The value of each element must be a characteristic name, as stored in the "characteristic" column of the results' characteristics table. Only "x" is mandatory.
coloursList	A named list of plot aspects and colours for the aspects. No elements are manda- tory. If specified, each list element's name must be either "fillColours" or "lineColours". If a characteristic is associated to fill or line by characteristicsList but this list is empty, a palette of colours will be automatically chosen.
orderingList	An optional named list. Any of the variables specified to characteristicsList can be the name of an element of this list and the value of the element is the order in which the factors should be presented in, in case alphabetical sorting is undesirable.
binsList	Used only if comparison is "size". A list with elements named "setSizes" and "frequencies" Both elements are mandatory. "setSizes" specifies the bin boundaries for bins of interest of feature selection sizes (e.g. 0, 10, 20, 30). "frequencies" specifies the bin boundaries for the relative frequency percent- ages to plot (e.g. 0, 20, 40, 60, 80, 100).
yMax	Used only if comparison is not "size". The maximum value of the percentage overlap to plot.
fontSizes	A vector of length 4. The first number is the size of the title. The second number is the size of the axes titles. The third number is the size of the axes values. The fourth number is the font size of the titles of grouped plots, if any are produced. In other words, when rowVariable or columnVariable are not NULL.
title	An overall title for the plot. By default, specifies whether stability or common- ality is shown.
yLabel	Label to be used for the y-axis of overlap percentages. By default, specifies whether stability or commonality is shown.
margin	The margin to have around the plot.
rotate90	Logical. If TRUE, the boxplot is horizontal.
showLegend	If TRUE, a legend is plotted next to the plot. If FALSE, it is hidden.
plot	Logical. If TRUE, a plot is produced on the current graphics device.
parallelParams	An object of class MulticoreParam or SnowParam.

Details

Additionally, a heatmap of selection size frequencies can be made by specifying size as the comparison to make.

selectionPlot

Lastly, a plot showing the distribution of performance metric changes when features are excluded from training can be made if variable importance calculation was turned on during cross-validation.

If comparison is "within", then the feature selection overlaps are compared within a particular analysis. The result will inform how stable the selections are between different iterations of cross-validation for a particular analysis. Otherwise, the comparison is between different cross-validation runs, and this gives an indication about how common are the features being selected by different classifications.

Calculating all pair-wise set overlaps can be time-consuming. This stage can be done on multiple CPUs by providing the relevant options to parallelParams. The percentage is calculated as the intersection of two sets of features divided by the union of the sets, multiplied by 100.

For the feature selection size mode, binsList is used to create bins which include the lowest value for the first bin, and the highest value for the last bin using cut.

Value

An object of class ggplot and a plot on the current graphics device, if plot is TRUE.

Author(s)

Dario Strbenac

```
predicted <- data.frame(sample = sample(10, 100, replace = TRUE),</pre>
                         class = rep(c("Healthy", "Cancer"), each = 50))
actual <- factor(rep(c("Healthy", "Cancer"), each = 5))</pre>
allFeatures <- sapply(1:100, function(index) paste(sample(LETTERS, 3), collapse = ''))
rankList <- list(allFeatures[1:100], allFeatures[c(5:1, 6:100)],</pre>
               allFeatures[c(1:9, 11, 10, 12:100)], allFeatures[c(1:50, 60:51, 61:100)])
result1 <- ClassifyResult(DataFrame(characteristic = c("Data Set", "Selection Name", "Classifier Name",</pre>
                                                          "Cross-validations"),
                  value = c("Melanoma", "t-test", "Random Forest", "2 Permutations, 2 Folds")),
                           LETTERS[1:10], allFeatures, rankList,
                           list(rankList[[1]][1:15], rankList[[2]][1:15],
                                 rankList[[3]][1:10], rankList[[4]][1:10]),
                           list(function(oracle){}), NULL,
                           predicted, actual)
predicted[, "class"] <- sample(predicted[, "class"])</pre>
rankList <- list(allFeatures[1:100], allFeatures[c(sample(20), 21:100)],</pre>
               allFeatures[c(1:9, 11, 10, 12:100)], allFeatures[c(1:50, 60:51, 61:100)])
result2 <- ClassifyResult(DataFrame(characteristic = c("Data Set", "Selection Name", "Classifier Name",</pre>
                                                          "Cross-validation"),
                  value = c("Melanoma", "t-test", "Diagonal LDA", "2 Permutations, 2 Folds")),
                           LETTERS[1:10], allFeatures, rankList,
                           list(rankList[[1]][1:15], rankList[[2]][1:25],
                                 rankList[[3]][1:10], rankList[[4]][1:10]),
                           list(function(oracle){}), NULL,
                           predicted, actual)
cList <- list(x = "Classifier Name", fillColour = "Classifier Name")</pre>
```

SelectParams

Parameters for Feature Selection

Description

Collects and checks necessary parameters required for feature selection. Either one function is specified or a list of functions to perform ensemble feature selection. The empty constructor is provided for convenience.

Constructor

- SelectParams() Creates a default SelectParams object. This uses either an ordinary t-test or ANOVA (depending on the number of classes) and tries the top 10 to top 100 features in increments of 10, and picks the number of features with the best resubstitution balanced error rate. Users should create an appropriate SelectParams object for the characteristics of their data.
- SelectParams(featureSelection, characteristics = DataFrame(), minPresence = 1, intermediate = charact subsetToSelections = TRUE, tuneParams = list(nFeatures = seq(10, 100, 10), performanceType = "Balan Creates a SelectParams object which stores the function(s) which will do the selection and parameters that the function will use.
 - featureRanking Either a function which will rank the features from most promising to least promising or a list of such functions. For a particular function, the first argument must be an DataFrame object. The function's return value must be a vector of indices.
 - characteristics A DataFrame describing the characteristics of feature selection to be done. First column must be named "charateristic" and second column must be named "value". If using wrapper functions for feature selection in this package, the feature selection name will automatically be generated and therefore it is not necessary to specify it.
 - minPresence If a list of functions was provided, how many of those must a feature have been selected by to be used in classification. 1 is equivalent to a set union and a number the same length as featureSelection is equivalent to set intersection.
 - intermediate Character vector. Names of any variables created in prior stages by runTest that need to be passed to a feature selection function.
 - subsetToSelections Whether to subset the data table(s), after feature selection has been done.
 - tuneParams A list specifying tuning parameters required during feature selection. The names of the list are the names of the parameters and the vectors are the values of the parameters to try. All possible combinations are generated. Two elements named nFeatures and

performanceType are mandatory, to define the performance metric which will be used to select features and how many top-ranked features to try.

... Other named parameters which will be used by the selection function. If featureSelection was a list of functions, this must be a list of lists, as long as featureSelection.

Summary

selectParams is a SelectParams object.

show(SelectParams): Prints a short summary of what selectParams contains.

Author(s)

Dario Strbenac

Examples

```
#if(require(sparsediscrim))
#{
   SelectParams(differentMeansRanking)
   # Ensemble feature selection.
   SelectParams(list(differentMeansRanking, pairsDifferencesRanking))
#}
```

SelectParamsOrNULL-class

Union of A SelectParams Object and NULL

Description

Allows a slot to be either a SelectParams class object or empty. No constructor.

Author(s)

Dario Strbenac

```
ModellingParams(selectParams = NULL)
ModellingParams(selectParams = SelectParams(differentMeansRanking))
```

StageParams-class StageParams Virtual Class

Description

A class for any one of TransformParams, SelectParams, TrainParams or PredictParams. Allows a method to dispatch on any of the parameter objects specifying any stage of cross-validation.

Author(s)

Dario Strbenac

StageParamsOrMissing-class

Union of A StageParams Object and NULL

Description

StageParamsOrMissing: Allows a slot to be either a class that has StageParams as its virtual parent class or empty. No constructor. StageParamsOrMissingOrNULL: Allows a slot to be either a class that has StageParams as its virtual parent class or empty or NULL. No constructor.

Author(s)

Dario Strbenac

subtractFromLocation Subtract Numeric Feature Measurements from a Location

Description

For each numeric feature, calculates the location, and subtracts all measurements from that location.

```
## S4 method for signature 'matrix,matrix'
subtractFromLocation(
    measurementsTrain,
    measurementsTest,
    location = c("mean", "median"),
    absolute = TRUE,
    verbose = 3
)
```

```
## S4 method for signature 'DataFrame,DataFrame'
subtractFromLocation(
 measurementsTrain,
 measurementsTest,
 location = c("mean", "median"),
  absolute = TRUE,
  verbose = 3
)
## S4 method for signature 'MultiAssayExperiment,MultiAssayExperiment'
subtractFromLocation(
 measurementsTrain,
 measurementsTest,
  targets = names(measurementsTrain),
  location = c("mean", "median"),
 absolute = TRUE,
  verbose = 3
)
```

Arguments

```
measurementsTrain
```

Either a matrix, DataFrame or MultiAssayExperiment containing the training data. For a matrix or DataFrame, the rows are samples, and the columns are features. If of type DataFrame or MultiAssayExperiment, the data set is subset to only those features of type numeric.

measurementsTest

	A data set of the same type as measurementsTrain with no samples in common with it. The subtraction will also be performed to it.
location	Character. Either "mean" or "median".
absolute	Logical. Default: TRUE. If TRUE, then absolute values of the differences are returned. Otherwise, they are signed.
verbose	Default: 3. A progress message is shown if this value is 3.
targets	If measurements is a MultiAssayExperiment, the names of the data tables to be used. "sampleInfo" is also a valid value and specifies that numeric variables from the sample information data table will be used.

Details

Only the samples specified by measurementsTrain are used in the calculation of the location.

Value

The same class of variable as the input variable measurements is, with the numeric features subtracted from the calculated location.

Author(s)

Dario Strbenac

Examples

```
aMatrix <- matrix(1:100, ncol = 10)
subtractFromLocation(aMatrix[1:5,], aMatrix[6:10, ], "median")</pre>
```

Surv-class

Survival Data Container

Description

Enables S4 method dispatching on it.

svm-class

Trained svm Object

Description

Enables S4 method dispatching on it.

Author(s)

Dario Strbenac

SVMtrainInterface An Interface for e1071 Package's Support Vector Machine Classifier.

Description

SVMtrainInterface generates a trained SVM classifier and SVMpredictInterface uses it to make predictions on a test data set.

108

SVMtrainInterface

Usage

```
## S4 method for signature 'matrix'
SVMtrainInterface(measurementsTrain, classesTrain, ...)
## S4 method for signature 'DataFrame'
SVMtrainInterface(measurementsTrain, classesTrain, ..., verbose = 3)
## S4 method for signature 'MultiAssayExperiment'
SVMtrainInterface(
 measurementsTrain,
  targets = names(measurementsTrain),
  classesTrain,
  . . .
)
## S4 method for signature 'svm,matrix'
SVMpredictInterface(model, measurementsTest, ...)
## S4 method for signature 'svm,DataFrame'
SVMpredictInterface(
 model,
 measurementsTest,
  returnType = c("both", "class", "score"),
 verbose = 3
)
## S4 method for signature 'svm,MultiAssayExperiment'
SVMpredictInterface(
 model,
 measurementsTest,
  targets = names(measurementsTest),
  . . .
)
```

Arguments

measurementsTrain	
	Either a matrix, DataFrame or MultiAssayExperiment containing the training data. For a matrix or DataFrame, the rows are samples, and the columns are features. If of type DataFrame or MultiAssayExperiment, the data set is subset to only those features of type numeric.
	Variables not used by the matrix nor the MultiAssayExperiment method which are passed into and used by the DataFrame method (e.g. verbose) or options that are used by the svm function.
classesTrain	A vector of class labels of class factor of the same length as the number of samples in measurementsTrain if it is a matrix or a DataFrame or a character vector of length 1 containing the column name in measurementsTrain if it is a DataFrame or the column name in colData(measurementsTrain) if

	measurementsTrain is a MultiAssayExperiment. If a column name, that column will be removed before training.	
verbose	Default: 3. A number between 0 and 3 for the amount of progress messages to give. This function only prints progress messages if the value is 3.	
targets	If measurements is a MultiAssayExperiment, the names of the data tables to be used. "sampleInfo" is also a valid value and specifies that numeric variables from the sample information data table will be used.	
model	A fitted model as returned by SVMtrainInterface.	
measurementsTest		
	An object of the same class as measurements Train with no samples in common with measurements Train and the same number of features as it.	
returnType	Default: "both". Either "class", "score" or "both". Sets the return value from the prediction to either a vector of class labels, score for a sample belonging to the second class, as determined by the factor levels, or both labels and scores in a data.frame.	

Value

For SVMtrainInterface, a trained SVM classifier of type svm. For SVMpredictInterface, either a factor vector of predicted classes, a vector of secores for the second class, or a table of both the class labels and second class scores, depending on the setting of returnType.

Author(s)

Dario Strbenac

Examples

TrainParams

Description

Collects and checks necessary parameters required for classifier training. The empty constructor is provided for convenience.

Constructor

- TrainParams() Creates a default TrainParams object. The classifier function is dlda for Diagonal LDA. Users should create an appropriate TrainParams object for the characteristics of their data, once they are familiar with this software.
- TrainParams(classifier, characteristics = DataFrame(),

intermediate = character(0), getFeatures = NULL, ...)

Creates a TrainParams object which stores the function which will do the classifier building and parameters that the function will use.

- classifier A function which will construct a classifier, and also possibly make the predictions. The first argument must be a DataFrame object. The second argument must be a vector of classes. If the function also makes predictions and the value of the predictor setting of PredictParams is therefore NULL, the third argument must be a DataFrame of test data. The function must also accept a parameter named verbose. The function's return value can be either a trained classifier if the function only does training or a vector or data frame of class predictions if it also does prediction with the test set samples.
- characteristics A DataFrame describing the characteristics of the classifier used. First column must be named "charateristic" and second column must be named "value". If using wrapper functions for classifiers in this package, a classifier name will automatically be generated and therefore it is not necessary to specify it.
- intermediate Character vector. Names of any variables created in prior stages by runTest that need to be passed to classifier.
- getFeatures A function may be specified that extracts the selected features from the trained model. This is relevant if using a classifier that does feature selection within training (e.g. random forest). The function must return a list of two vectors. The first vector contains the ranked features (or empty if the training algorithm doesn't produce rankings) and the second vector contains the selected features.
- ... Other named parameters which will be used by the classifier.

Summary

trainParams is a TrainParams object.

show(trainParams): Prints a short summary of what trainParams contains.

Author(s)

Dario Strbenac

Examples

```
#if(require(sparsediscrim))
    trainParams <- TrainParams(DLDAtrainInterface)</pre>
```

TransformParams Parameters for Data Transformation

Description

Collects and checks necessary parameters required for transformation within CV. The empty constructor is for when no data transformation is desired. See subtractFromLocation for an example of such a function.

Constructor

TransformParams(transform, characteristics = DataFrame(), intermediate = character(0), ...) Creates a TransformParams object which stores the function which will do the transformation and parameters that the function will use.

- transform A function which will do the transformation. The first argument must be a DataFrame object.
- characteristics A DataFrame describing the characteristics of data transformation to be done. First column must be named "charateristic" and second column must be named "value". If using wrapper functions for data transformation in this package, the data transformation name will automatically be generated and therefore it is not necessary to specify it.
- intermediate Character vector. Names of any variables created in prior stages by runTest that need to be passed to a feature selection function.
- ... Other named parameters which will be used by the transformation function.

Summary

transformParams is a TransformParams object.

show(transformParams): Prints a short summary of what transformParams contains.

Author(s)

Dario Strbenac

Examples

transformParams <- TransformParams(subtractFromLocation, location = "median")
Subtract all values from training set median, to obtain absolute deviations.</pre>

TransformParamsOrNULL-class

Union of A TransformParams Object and NULL

Description

Allows a slot to be either a TransformParams class object or empty. No constructor.

Author(s)

Dario Strbenac

Examples

Index

* datasets asthma, 4 HuRI, 48[,FeatureSetCollection,numeric,missing,ANY-methodenFeatureNames(ClassifyResult),11 (FeatureSetCollection), 37 [[,FeatureSetCollection,ANY,missing-method (FeatureSetCollection), 37 actualOutcomes (ClassifyResult), 11 actualOutcomes,ClassifyResult-method (ClassifyResult), 11 allFeatureNames (ClassifyResult), 11 allFeatureNames,ClassifyResult-method (ClassifyResult), 11 asthma, 4 bartlett.test,5 bartlettRanking, 4 bartlettRanking,DataFrame-method (bartlettRanking), 4 bartlettRanking,matrix-method (bartlettRanking), 4 bartlettRanking,MultiAssayExperiment-method (bartlettRanking), 4 BiocParallel, 96 BiocParallelParam, 23 bpparam, 23 calcCVperformance (calcExternalPerformance), 6 calcCVperformance,ClassifyResult-method (calcExternalPerformance), 6 calcExternalPerformance, 6 calcExternalPerformance, factor, factor-method

(calcExternalPerformance), 6 calcExternalPerformance,Surv,numeric-method (calcExternalPerformance), 6 calcNormFactors, 31 calcPerformance

(calcExternalPerformance), 6

characterOrDataFrame (characterOrDataFrame-class), 8 characterOrDataFrame-class, 8 chosenFeatureNames,ClassifyResult-method (ClassifyResult), 11 classes (asthma), 4 Classify, 9, 10 classifyInterface, 9 classifyInterface,DataFrame-method (classifyInterface), 9 classifyInterface, matrix-method (classifyInterface), 9 classifyInterface,MultiAssayExperiment-method (classifyInterface), 9 ClassifyResult, 7, 8, 11, 22, 25, 76, 85, 90, 92, 96, 97, 99, 101 ClassifyResult,DataFrame,character,characterOrDataFrame-me (ClassifyResult), 11 ClassifyResult-class (ClassifyResult), 11 coxnetInterface (coxnetTrainInterface), 13 coxnetPredictInterface (coxnetTrainInterface), 13 coxnetPredictInterface,coxnet,DataFrame-method (coxnetTrainInterface), 13 coxnetPredictInterface, coxnet, matrix-method (coxnetTrainInterface), 13 coxnetPredictInterface, coxnet, MultiAssayExperiment-method (coxnetTrainInterface), 13 coxnetPredictInterface,multnet,DataFrame-method (coxnetTrainInterface), 13 coxnetPredictInterface,multnet,matrix-method (coxnetTrainInterface), 13 coxnetPredictInterface, multnet, MultiAssayExperiment-method (coxnetTrainInterface), 13 coxnetTrainInterface, 13 coxnetTrainInterface,DataFrame-method

(coxnetTrainInterface), 13

(crossValidate), 18 coxnetTrainInterface,matrix-method (coxnetTrainInterface). 13 CrossValParams, 22, 95, 97 coxnetTrainInterface,MultiAssayExperiment-metGodssValParams-class(CrossValParams), (coxnetTrainInterface), 13 22 cut, 103 coxph, 17 coxph (coxph-class), 15 coxph-class, 15 data.frame, 20, 46 coxphInterface (coxphTrainInterface), 16 DataFrame, 5, 10, 11, 14, 16, 17, 20, 24, 27, coxphInterface,DataFrame-method 29, 31, 36, 40, 42, 46, 47, 49–51, (coxphTrainInterface), 16 53-55, 57, 58, 60, 61, 64, 68, 71, 74, coxphInterface, matrix-method 79, 82, 84, 88, 95, 97, 104, 107, 109, (coxphTrainInterface), 16 111, 112 coxphInterface, MultiAssayExperiment-method DataFrameOrNULL (coxphTrainInterface), 16 (DataFrameOrNULL-class), 23 coxphPredictInterface DataFrameOrNULL-class, 23 (coxphTrainInterface), 16 density, 69 coxphPredictInterface, coxph, DataFrame-method differentMeansRanking, 24 (coxphTrainInterface), 16 differentMeansRanking,DataFrame-method coxphPredictInterface, coxph, matrix-method (differentMeansRanking), 24 (coxphTrainInterface), 16 differentMeansRanking, matrix-method coxphPredictInterface, coxph, MultiAssayExperiment-meth(wdifferentMeansRanking), 24 (coxphTrainInterface), 16 differentMeansRanking,MultiAssayExperiment-method coxphRanking, 15 (differentMeansRanking), 24 coxphRanking, DataFrame-method distribution, 25 (coxphRanking), 15 distribution, ClassifyResult-method coxphRanking, matrix-method (distribution), 25 (coxphRanking), 15 dlda (dlda-class), 28 coxphRanking, MultiAssayExperiment-method DLDA Interface, 26 (coxphRanking), 15 dlda-class, 28 coxphTrainInterface, 16 DLDApredictInterface(DLDA Interface), coxphTrainInterface,DataFrame-method 26 (coxphTrainInterface), 16 DLDApredictInterface, dlda, DataFrame-method coxphTrainInterface,matrix-method (DLDA Interface), 26 (coxphTrainInterface), 16 DLDApredictInterface,dlda,matrix-method coxphTrainInterface,MultiAssayExperiment-method (DLDA Interface), 26 (coxphTrainInterface), 16 DLDApredictInterface, dlda, MultiAssayExperiment-method crossValidate, 18 (DLDA Interface), 26 crossValidate, data.frame-method DLDAtrainInterface (DLDA Interface), 26 (crossValidate), 18 DLDAtrainInterface, DataFrame-method crossValidate,DataFrame-method (DLDA Interface), 26 (crossValidate), 18 DLDAtrainInterface, matrix-method (DLDA crossValidate,list-method Interface), 26 (crossValidate), 18 DLDAtrainInterface, MultiAssayExperiment-method (DLDA Interface), 26 crossValidate, matrix-method (crossValidate), 18 DMDranking, 29 crossValidate,MultiAssayExperiment-method DMDranking, DataFrame-method (crossValidate), 18 (DMDranking), 29

DMDranking, matrix-method (DMDranking), 29 DMDranking, MultiAssayExperiment-method (DMDranking), 29 edgeR, *31* edgeRranking, 30 edgeRranking, DataFrame-method (edgeRranking), 30 39 edgeRranking, matrix-method (edgeRranking), 30 edgeRranking, MultiAssayExperiment-method (edgeRranking), 30 edgesToHubNetworks, 32 elasticNetFeatures, 33, 37 elasticNetFeatures, multnet-method (elasticNetFeatures), 33 elasticNetGLMinterface (elasticNetGLMtrainInterface), 34 elasticNetGLMpredictInterface (elasticNetGLMtrainInterface), 34 elasticNetGLMpredictInterface,multnet,DataFrame-method (elasticNetGLMtrainInterface). 34 elasticNetGLMpredictInterface,multnet,matrix-method (elasticNetGLMtrainInterface), 34 elasticNetGLMpredictInterface,multnet,MultiAssayExperiment-method functionOrList-class,44 34 (elasticNetGLMtrainInterface), 34 44 elasticNetGLMtrainInterface, 34 functionOrNULL-class, 44 elasticNetGLMtrainInterface,DataFrame-method (elasticNetGLMtrainInterface), generateCrossValParams, 45 34 generateModellingParams, 45 elasticNetGLMtrainInterface, matrix-method geom_histogram, 25 (elasticNetGLMtrainInterface), getLocationsAndScales, 29, 47, 57, 60 34 34 getLocationsAndScales,DataFrame-method elasticNetGLMtrainInterface,MultiAssayExperiment-method (getLocationsAndScales),47 (elasticNetGLMtrainInterface), 34 estimateDisp, 31 factor, 5, 10, 20, 24, 27, 29, 31, 36, 42, 51, glmFit, 31

53, 55, 57, 58, 60, 61, 64, 68, 71, 74, 79, 88, 109 features (ClassifyResult), 11

features, ClassifyResult-method (ClassifyResult), 11 FeatureSetCollection, 33, 37, 40 FeatureSetCollection, list-method (FeatureSetCollection), 37 FeatureSetCollection-class (FeatureSetCollection), 37 FeatureSetCollectionOrNULL (FeatureSetCollectionOrNULL-class), FeatureSetCollectionOrNULL-class, 39 featureSetSummary, 39 featureSetSummary,DataFrame-method (featureSetSummary), 39 featureSetSummary,matrix-method (featureSetSummary), 39 featureSetSummary,MultiAssayExperiment-method (featureSetSummary), 39 fisherDiscriminant, 41 fisherDiscriminant,DataFrame-method (fisherDiscriminant), 41 fisherDiscriminant, matrix-method (fisherDiscriminant), 41 (fisherDiscriminant), 41 forestFeatures, 43, 88 (forestFeatures), 43 functionOrList(functionOrList-class), functionOrNULL (functionOrNULL-class),

```
getLocationsAndScales, matrix-method
        (getLocationsAndScales), 47
getLocationsAndScales,MultiAssayExperiment-method
        (getLocationsAndScales), 47
glmnet, 14, 34, 36
```

```
HuRI, 48
```

INDEX

interactorDifferences, 49

interactorDifferences,DataFrame-method

(interactorDifferences), 49 interactorDifferences, matrix-method (interactorDifferences), 49 (interactorDifferences), 49 interactors (HuRI), 48 knn, 50–52 kNNinterface, 50 kNNinterface,DataFrame-method (kNNinterface), 50 kNNinterface, matrix-method (kNNinterface), 50 kNNinterface, MultiAssayExperiment-method (kNNinterface), 50 KolmogorovSmirnovRanking, 52 KolmogorovSmirnovRanking,DataFrame-method (KolmogorovSmirnovRanking), 52 KolmogorovSmirnovRanking, matrix-method (KolmogorovSmirnovRanking), 52 KolmogorovSmirnovRanking,MultiAssayExperiment-method 97, 107, 109 (KolmogorovSmirnovRanking), 52 ks.test, 53 kTSPclassifier, 54, 75 kTSPclassifier,DataFrame-method mixModelsPredict (mixModelsTrain), 63 (kTSPclassifier), 54 kTSPclassifier, matrix-method mixModelsPredict,MixModelsListsSet,DataFrame-method (kTSPclassifier), 54 mixModelsPredict,MixModelsListsSet,matrix-method kTSPclassifier,MultiAssayExperiment-method (kTSPclassifier), 54 mixModelsPredict,MixModelsListsSet,MultiAssayExperiment-me KullbackLeiblerRanking, 56 KullbackLeiblerRanking,DataFrame-method mixModelsTrain. 63 (KullbackLeiblerRanking), 56 mixModelsTrain,DataFrame-method KullbackLeiblerRanking, matrix-method (KullbackLeiblerRanking), 56 KullbackLeiblerRanking,MultiAssayExperiment-meikModelsTrain,matrix-method (KullbackLeiblerRanking), 56 mixModelsTrain,MultiAssayExperiment-method length, FeatureSetCollection-method ModellingParams, 66, 95, 97 (FeatureSetCollection), 37 ModellingParams-class leveneRanking, 58 leveneRanking, DataFrame-method (leveneRanking), 58 ModellingParamsOrNULL leveneRanking, matrix-method (leveneRanking), 58 leveneRanking,MultiAssayExperiment-method ModellingParamsOrNULL-class, 67

(leveneRanking), 58

```
likelihoodRatioRanking, 59
                                                 likelihoodRatioRanking, DataFrame-method
                                                          (likelihoodRatioRanking), 59
                                                 likelihoodRatioRanking, matrix-method
                                                          (likelihoodRatioRanking), 59
interactorDifferences,MultiAssayExperiment-methodlihoodRatioRanking,MultiAssayExperiment-method
                                                          (likelihoodRatioRanking), 59
                                                 limmaRanking, 61
                                                 limmaRanking, DataFrame-method
                                                          (limmaRanking), 61
                                                 limmaRanking,matrix-method
                                                          (limmaRanking), 61
                                                 limmaRanking, MultiAssayExperiment-method
                                                          (limmaRanking), 61
                                                 list. 48
                                                 listOrNULL (listOrNULL-class), 62
                                                 listOrNULL-class, 62
                                                 lmFit, <u>61</u>
                                                 matrix, 5, 10, 14, 16, 17, 20, 24, 27, 29, 31,
                                                          36, 40, 42, 46, 47, 49, 51, 53–55, 57,
                                                          58, 60, 61, 64, 68, 74, 79, 84, 88, 95,
                                                 measurements (asthma), 4
                                                 MixmodCluster, 65
                                                 mixmodCluster, 64
                                                 mixmodels (mixModelsTrain), 63
```

(mixModelsTrain), 63

(mixModelsTrain), 63

(mixModelsTrain), 63

(mixModelsTrain), 63

(mixModelsTrain), 63

(mixModelsTrain), 63

(ModellingParams), 66

67

models (ClassifyResult), 11

(ModellingParamsOrNULL-class),

```
117
```

models, ClassifyResult-method (ClassifyResult), 11 MultiAssayExperiment, 5, 10, 14, 16, 17, 20, 24, 27, 29, 31, 36, 40, 42, 46, 47, 49, 51, 53-55, 57, 58, 60, 61, 64, 68, 74, 79, 84, 88, 95, 97, 107, 109, 110 performancePlot, 76 MulticoreParam, 90, 102 multnet (multnet-class), 67 multnet-class. 67 naiveBayesKernel, 67 naiveBayesKernel,DataFrame-method (naiveBayesKernel), 67 naiveBayesKernel, matrix-method (naiveBayesKernel), 67 naiveBayesKernel,MultiAssayExperiment-method predict,ClassifyResult-method (naiveBayesKernel), 67 NSCfeatures (NSCtrainInterface), 70 predict.coxph, 17 NSCfeatures, pamrtrained-method (NSCtrainInterface), 70 NSCpredictInterface (NSCtrainInterface), 70 NSCpredictInterface, pamrtrained, DataFrame-method (NSCtrainInterface), 70 NSCpredictInterface, pamrtrained, matrix-methodPredictParams, functionOrNULL-method (NSCtrainInterface), 70 NSCpredictInterface, pamrtrained, MultiAssayExperimenter (NSCtrainInterface), 70 NSCtrainInterface, 70, 71 NSCtrainInterface, DataFrame-method (NSCtrainInterface), 70 NSCtrainInterface, matrix-method (NSCtrainInterface), 70 NSCtrainInterface,MultiAssayExperiment-methodpreviousSelection,DataFrame-method (NSCtrainInterface), 70 numericOrNULL (numericOrNULL-class), 73 numericOrNULL-class, 73

Pairs, 48, 49, 55, 74, 75, 78 pairsDifferencesRanking, 56, 73 pairsDifferencesRanking,DataFrame-method (pairsDifferencesRanking), 73 pairsDifferencesRanking, matrix-method (pairsDifferencesRanking), 73 pairsDifferencesRanking,MultiAssayExperiment-mentdondForest (randomForest-class),86 (pairsDifferencesRanking), 73 pamr.listgenes, 71, 72 pamr.predict, 70–72 pamr.train, 70, 72

pamrtrained (pamrtrained-class), 75 pamrtrained-class, 75 performance (ClassifyResult), 11 performance, ClassifyResult-method (ClassifyResult), 11 performancePlot,list-method (performancePlot), 76 plotFeatureClasses, 78 plotFeatureClasses,DataFrame-method (plotFeatureClasses), 78 plotFeatureClasses,matrix-method (plotFeatureClasses), 78 plotFeatureClasses,MultiAssayExperiment-method (plotFeatureClasses), 78 (crossValidate), 18 predict.glmnet, 14, 36 predict.randomForest, 88 predictions (ClassifyResult), 11 predictions, ClassifyResult-method (ClassifyResult), 11 PredictParams, 66, 82, 106 (PredictParams), 82 (PredictParams), 82 PredictParams-class (PredictParams), 82 PredictParamsOrNULL.83 PredictParamsOrNULL-class (PredictParamsOrNULL), 83 previousSelection, 83 (previousSelection), 83 previousSelection,matrix-method (previousSelection), 83 previousSelection,MultiAssayExperiment-method (previousSelection), 83 previousTrained, 85 previousTrained, ClassifyResult-method (previousTrained), 85

randomForest, 43, 88 randomForest-class, 86 randomForestInterfaces, 87 randomForestPredictInterface (randomForestInterfaces), 87

INDEX

```
randomForestPredictInterface, randomForest, Data€hemePaneathsdrNULL
        (randomForestInterfaces), 87
                                                        (SelectParamsOrNULL-class), 105
randomForestPredictInterface, randomForest, matsekemeRapamsOrNULL-class, 105
        (randomForestInterfaces), 87
                                                show, ClassifyResult-method
randomForestPredictInterface, randomForest, MultiAssayE(Xplersingen/RemarkIno)d11
        (randomForestInterfaces), 87
                                                show,FeatureSetCollection-method
randomForestTrainInterface
                                                        (FeatureSetCollection), 37
        (randomForestInterfaces), 87
                                                show.PredictParams-method
randomForestTrainInterface,DataFrame-method
                                                        (PredictParams), 82
        (randomForestInterfaces), 87
                                               show,SelectParams-method
randomForestTrainInterface,matrix-method
                                                        (SelectParams), 104
        (randomForestInterfaces), 87
                                                show,TrainParams-method(TrainParams),
randomForestTrainInterface,MultiAssayExperiment-method11
        (randomForestInterfaces), 87
                                                show,TransformParams-method
rankingPlot, 89
                                                        (TransformParams), 112
rankingPlot,list-method(rankingPlot),
                                                SnowParam, 90, 102
        89
                                               StageParams (StageParams-class), 106
ROCplot, 92
                                                StageParams-class, 106
ROCplot, list-method (ROCplot), 92
                                                StageParamsOrMissing
rowFtests, 24
                                                        (StageParamsOrMissing-class),
rowttests, 24
                                                        106
runTest, 11, 82, 94, 104, 111, 112
                                                StageParamsOrMissing-class, 106
runTest,DataFrame-method (runTest),94
                                                StageParamsOrMissingOrNULL
runTest, matrix-method (runTest), 94
                                                        (StageParamsOrMissing-class),
runTest,MultiAssayExperiment-method
                                                        106
        (runTest), 94
                                                StageParamsOrMissingOrNULL-class
runTests, 6, 8, 11, 22, 84, 85, 95, 96, 96
                                                        (StageParamsOrMissing-class),
runTests,DataFrame-method (runTests), 96
                                                        106
runTests, matrix-method (runTests), 96
                                                stat_density, 25
runTests,MultiAssayExperiment-method
                                                stats, 5
        (runTests), 96
                                                subtractFromLocation, 66, 106, 112
                                                subtractFromLocation,DataFrame,DataFrame-method
sampleNames (ClassifyResult), 11
                                                        (subtractFromLocation), 106
sampleNames,ClassifyResult-method
                                                subtractFromLocation, matrix, matrix-method
        (ClassifyResult), 11
                                                        (subtractFromLocation), 106
samplesMetricMap, 98
                                                subtractFromLocation,MultiAssayExperiment,MultiAssayExperi
samplesMetricMap,list-method
                                                        (subtractFromLocation), 106
        (samplesMetricMap), 98
                                               Surv, 14, 95, 97
samplesMetricMap,matrix-method
                                                Surv (Surv-class), 108
        (samplesMetricMap), 98
                                                Surv-class, 108
selectionPlot, 101
                                                svm. 109
selectionPlot,list-method
                                                svm (svm-class), 108
        (selectionPlot), 101
                                                svm-class, 108
SelectParams, 66, 104, 106
SelectParams, functionOrList-method
                                               SVMpredictInterface
                                                        (SVMtrainInterface), 108
        (SelectParams), 104
SelectParams, missing-method
                                               SVMpredictInterface, svm, DataFrame-method
        (SelectParams), 104
                                                        (SVMtrainInterface), 108
SelectParams-class (SelectParams), 104
                                                SVMpredictInterface, svm, matrix-method
```

INDEX

(SVMtrainInterface), 108 SVMpredictInterface, svm,MultiAssayExperiment-method (SVMtrainInterface), 108 SVMtrainInterface,DataFrame-method (SVMtrainInterface), 108 SVMtrainInterface,matrix-method (SVMtrainInterface), 108 SVMtrainInterface,MultiAssayExperiment-method (SVMtrainInterface), 108 totalPredictions (ClassifyResult), 11 totalPredictions,ClassifyResult, 11

TrainParams, 66, 106, 111 TrainParams, function-method (TrainParams), 111 TrainParams, missing-method (TrainParams), 111 TrainParams-class (TrainParams), 111 TransformParams, 66, 106, 112 TransformParams, ANY-method (TransformParams), 112 TransformParams, function-method (TransformParams), 112 TransformParams-class (TransformParams), 112 TransformParamsOrNULL (TransformParamsOrNULL-class), 113 TransformParamsOrNULL-class, 113 tunedParameters (ClassifyResult), 11 tunedParameters,ClassifyResult-method

(ClassifyResult), 11