
Package ‘Ringo’
December 2, 2021

Type Package

Title R Investigation of ChIP-chip Oligoarrays

Version 1.58.0

Date 2016-03-07

Author Joern Toedling, Oleg Sklyar, Tammo Krueger, Matt Ritchie, Wolfgang Huber

Maintainer J. Toedling <jtoedling@yahoo.de>

Depends methods, Biobase (>= 1.14.1), RColorBrewer, limma, Matrix,
grid, lattice

Imports BiocGenerics (>= 0.1.11), genefilter, limma, vsn, stats4

Suggests rtracklayer (>= 1.3.1), mclust, topGO (>= 1.15.0)

Description The package Ringo facilitates the primary analysis
of ChIP-chip data. The main functionalities of the package are
data read-in, quality assessment, data visualisation and
identification of genomic regions showing enrichment in ChIP-chip.
The package has functions to deal with two-color oligonucleotide
microarrays from NimbleGen used in ChIP-chip projects, but also
contains more general functions for ChIP-chip data analysis, given
that the data is supplied as RGList (raw) or ExpressionSet (pre-
processed).
The package employs functions from various other packages of the
Bioconductor project and provides additional ChIP-chip-specific
and NimbleGen-specific functionalities.

Reference Joern Toedling, Oleg Sklyar, Tammo Krueger, Jenny J.
Fischer, Silke Sperling, and Wolfgang Huber (2007). Ringo - an
R/Bioconductor package for analyzing ChIP-chip readouts. BMC
Bioinformatics, 8:221.

License Artistic-2.0

biocViews Microarray,TwoChannel,DataImport,QualityControl,Preprocessing

LazyLoad yes

git_url https://git.bioconductor.org/packages/Ringo

git_branch RELEASE_3_14

1

2 R topics documented:

git_last_commit 0d4f926

git_last_commit_date 2021-10-26

Date/Publication 2021-12-02

R topics documented:

asExprSet . 3
autocor . 4
cher-class . 5
cherByThreshold . 7
chipAlongChrom . 9
compute.gc . 11
computeRunningMedians . 12
computeSlidingT . 13
corPlot . 15
exportCherList . 16
extractProbeAnno . 17
features2Probes . 18
findChersOnSmoothed . 19
ftr2xys . 21
getFeats . 22
image.RGList . 23
nonzero-methods . 24
plot.autocor.result . 25
plot.cher . 26
plotBM . 27
posToProbeAnno . 28
preprocess . 30
probeAnno-class . 32
quantilesOverPositions . 33
readNimblegen . 34
regionOverlap . 35
relateChers . 37
sliding.meansd . 38
sliding.quantile . 39
twoGaussiansNull . 40
upperBoundNull . 41

Index 43

asExprSet 3

asExprSet converts a Ringo MAList into an ExpressionSet

Description

Function to convert an object of class MAList into an object of class ExpressionSet. Note that the
otherwise optional targets component is required in this case to generate the phenoData of the
new ExpressionSet.

Usage

asExprSet(from, idColumn="PROBE_ID")

Arguments

from object of class MAList to convert into an ExpressionSet

idColumn string; indicating which column of the genes data.frame of the MAList holds the
identifier for reporters on the microarray. This column, after calling make.names
on it, will make up the unique featureNames of the resulting ExpressionSet.

Value

an object of class ExpressionSet

Note

There is a more general function for converting MALists to ExpressionSets in the package convert.
This function here is solely intended for converting Ringo-generated MALists into ExpressionSets.

Author(s)

Joern Toedling

See Also

ExpressionSet, preprocess

Examples

exDir <- system.file("exData",package="Ringo")
exRG <- readNimblegen("example_targets.txt","spottypes.txt",path=exDir)
exMA <- preprocess(exRG, "none", returnMAList=TRUE)
exX <- asExprSet(exMA)

4 autocor

autocor Function to compute auto-correlation of probe intensities

Description

Function to compute auto-correlation of probe intensities at specified offsets from the original po-
sitions.

Usage

autocor(x, probeAnno, chrom, samples = NULL, lag.max = 2000,
lag.step = 100, cor.method = "pearson",
channel = c("red","green","logratio"),
idColumn = "ID", verbose = TRUE)

Arguments

x an object either of class ExpressionSet containing the normalized probe inten-
sities or of class RGList containing the raw intensities.

probeAnno Object of class probeAnno holding chromosomal match positions and indices of
reporters in data matrix.

chrom character; chromosome to compute the autocorrelation for

samples which samples of the data to use; if more than 1 for each probe the mean inten-
sity over these samples is taken.

lag.max integer; maximal offset from the original position, the auto-correlation is to be
computed for.

lag.step integer; step size of lags between 0 and maximal lag.

cor.method character; which type of correlation to compute, translates to argument method
of function cor

channel character; in case x is an RGList, which channel to plot, either red, green or
the logratio log2(red)-log2(green)

idColumn string; indicating which column of the genes data.frame of the RGList holds
the identifier for reporters on the microarray. Character entries of the index el-
ements of the probeAnno will be matched against these identifiers. If the index
elements of the probeAnno are numeric or x is of class ExpressionSet, this
argument will be ignored.

verbose logical; extended output to STDOUT

Details

the lags, i.e. the offsets from the original position, the auto-correlation is to be computed for, are
constructed from the given arguments as seq(0,lag.max,by=lag.step).

cher-class 5

Value

Object of class autocor.result, a numeric vector of auto-correlation values at the offsets specified
in argument lags. The lag values are stored as the names of the vector. Argument chrom is stored
as attribute chromosome of the result.

Author(s)

Joern Toedling

See Also

cor,plot.autocor.result

Examples

exDir <- system.file("exData",package="Ringo")
load(file.path(exDir,"exampleProbeAnno.rda"))
load(file.path(exDir,"exampleX.rda"))
exAc <- autocor(exampleX, probeAnno=exProbeAnno,

chrom="9", lag.max=1000)
plot(exAc)

cher-class Class "cher" - ChIP-enriched region

Description

An object of class cher (ChIP-enriched region) holds characteristics of an enriched genomic region
from ChIP chip data.

Objects from the Class

Objects can be created by calls of the form new("cher",name,chromosome,start,end,cellType,antibody,maxLevel,score,probes,extras,...).

Slots

name: character vector of length 1 unequivocally describing the cher, e.g. "Suz12.Nudt2.upstream.cher"

chromosome: character vector of length one, naming the chromosome of the region, e.g. "9"

start: integer, region start position on the chromosome, e.g. 34318900

end: integer, region end position on the chromosome, e.g. 34320100

cellType: character vector describing the cell type the ChIP chip experiment has been done on,
e.g. "HeLa" or "human"

antibody: character vector describing the antibody or characteristic for which fragments were
supposedly enriched in immuno-precipitation step, e.g. "Suz12" for the protein Suz12

maxLevel: numeric, maximal (smoothed) probe level in the cher, e.g. 2.00

6 cher-class

score: numeric of a cher score, currently we use the sum of smoothed probe levels (log fold
changes), e.g. 69.16

probes: vector of probe identifiers of all probes with match positions in the cher

extras: list of further elements used to annotate the cher; examples of such that are used in
Ringo are:

typeUpstream optional character vector of features that this cher is located upstream of, e.g.
the transcriptional start site of "ENST00000379158". See relateChers for details.

typeInside optional character vector of features that this cher is located inside of
distMid2TSS optional named numeric vector of distances of the cher’s middle position to

features, e.g. TSSs of features upstream and inside; names are the features to which the
distances are given; only meaningful in combination with typeUpstream and typeInside;
e.g. 55 with name "ENST00000379158"

upSymbol optional character vector of gene symbols of features the cher is located upstream
of; supplements typeUpstream; e.g. "Nudt2"

inSymbol optional character vector of gene symbols of features the cher is located upstream
of; supplements typeInside.

. . . further list elements can be added using the update method.

Methods

initialize create a new cher; see section examples below

plot calls chipAlongChrom to plot the cher; see plot.cher for more details

update signature(cher,...); updates elements of the cher object; The further arguments in ’...’ are
interpreted. Arguments corresponding to defined slot names of the cher result in the value
by that slot being replaced by the specified value for the argument; argument names that
do not correspond to slot names of the object result in list elements of the extras list of
the cher being replaced by the given values for these arguments or the values are appended
to the current extras list and the argument names make up the list names of the appended
arguments. See section examples below for an example how to use this method.

cellType obtain or replace the description of the cell type, the ChIP-enriched regions was found in
with this antibody

probes obtain the vector of probes involved in a ChIP-enriched region

cherList

A list in which each element is of class cher, is called a cherList. This class, however, is rarely
used (yet).

Note

The cher class used to be an S3 list before.

The term ’cher’ is shorthand for ’ChIP-enriched region’. We think this term is more appropriate
than the term ’peak’ commonly used in ChIP-chip context. Within such regions the actual signal
could show two or more actual signal peaks or none at all (long plateau).

cherByThreshold 7

Author(s)

Joern Toedling, Tammo Krueger

See Also

plot.cher, findChersOnSmoothed, relateChers

Examples

how to create a cher object from scratch
cherNudt2 <- new("cher", name="nudt2.cher", chromosome=9,

start=34318954, end=34319944, antibody="Suz12",
maxLevel=2.00, score=69.2, upSymbol="NUDT2")
#extras=list(upSymbol="NUDT2"))

cherNudt2
str(cherNudt2)

use the update method (note:this update is biologically meaningless)
cher2 <- update(cherNudt2, cellType="HeLa", downSymbol="P53",

probes=c("probe1","probe2"))
cher2; str(cher2)

plot a cher object
exDir <- system.file("exData",package="Ringo")
load(file.path(exDir,"exampleProbeAnno.rda"))
load(file.path(exDir,"exampleX.rda"))
smoothX <- computeRunningMedians(exampleX, probeAnno=exProbeAnno,

modColumn = "Cy5", allChr = "9", winHalfSize = 400)
plot(cherNudt2, smoothX, probeAnno=exProbeAnno, gff=exGFF, extent=5000)

cherByThreshold Function to identify chers based on thresholds

Description

Given a vector of probe positions on the chromosome, a vector of smoothed intensities on these
positions, and a threshold for intensities to indicated enrichment, this function identifies Chers
(ChIP-enriched regions) on this chromosome.

This function is called by the function findChersOnSmoothed.

Usage

cherByThreshold(positions, scores, threshold, distCutOff,
minProbesInRow = 3)

8 cherByThreshold

Arguments

positions numeric vector of genomic positions of probes

scores scores (intensities) of probes on those positions

threshold threshold for scores to be called a cher

distCutOff maximal positional distance between two probes to be part of the same cher

minProbesInRow integer; minimum number of enriched probes required for a cher; see details
for further explanation.

Details

Specifying a minimum number of probes for a cher (argument minProbesInRow) guarantees that a
cher is supported by a reasonable number of measurements in probe-sparse regions. For example, if
there’s only one enriched probe within a certain genomic 1kb region and no other probes can been
mapped to that region, this single probe does arguably not provide enough evidence for calling this
genomic region enriched.

Value

A LIST with n components, where the first n components are the cher clusters, each one holding
the scores and, as their names, the genomic positions of probes in that cluster.

Author(s)

Joern Toedling

See Also

findChersOnSmoothed

Examples

example with random generated data:
rpos <- cumsum(round(runif(200)*5))
rsco <- rnorm(200)+0.2
plot(rpos, rsco, type="l", col="seagreen3", lwd=2)
rug(rpos, side=1, lwd=2); abline(h=0, lty=2)
rchers <- cherByThreshold(rpos, rsco, threshold=0, distCutOff=2)
sapply(rchers[-length(rchers)], function(thisClust){
points(x=as.numeric(names(thisClust)), y=thisClust, type="h", lwd=2,
col="gold")})

chipAlongChrom 9

chipAlongChrom Visualize ChIP intensities along the chromosome

Description

This function can visualize the array intensities from a ChIP chip experiment for a chromosomal
region or the whole chromosome. It’s based on the plotAlongChrom function from the package
tilingArray, but provides a different visualization.

Usage

S4 method for signature 'ExpressionSet,probeAnno'
plot(x, y, ...)

chipAlongChrom(eSet, probeAnno, chrom, xlim, ylim,
samples = NULL, paletteName = "Set2", colPal = NULL,
ylab = "Fold change [log]", ipch = 16, ilwd = 3, ilty = 1,
icex = 3, gff = NULL,
featureExclude=c("chromosome", "nucleotide_match","insertion"),
zeroLine = TRUE, sampleLegend = TRUE, sampleLegendPos = "topleft",
featureLegend = FALSE, maxInterDistance = 200, coord = NULL,
highlight, main, ...)

Arguments

eSet An expression set containing the (normalized) ChIP intensities, e.g. the result
objects from functions preprocess and computeRunningMedians.

x Corresponds to argument eSet when calling the S4 method

probeAnno An object of class probeAnno holding genomic position, index and gene associ-
ation of probes on array.

y Corresponds to argument probeAnno when calling the S4 method

chrom character; the chromosome to visualize

xlim start and end genomic coordinates on the chromosome to visualize

ylim minimum and maximum probe intensities for the plot, if missing (default) set to
range(exprs(eSet))

samples numeric; which samples from the eSet are to be shown. Default is to show all
samples in the eSet,

paletteName character; Name of the RColorBrewer palette to use for sample colors. If the
number of samples is greater than the palette size, random colors are taken.

colPal vector of colors to use for the sample intensities. This is alternative to the argu-
ment paletteName for specifying which colors to use.

ylab character; label for the y-axis, passed on to the plotting function as ylab

ipch plot character to use

10 chipAlongChrom

icex character expansion to use for plotting symbol

ilwd line width of plotted data lines

ilty line type of plotted data lines; passed on to par(lty).

gff data frame containing annotation for genomic feature to be used to further an-
notate the plot.

featureExclude character vector specifying the feature types in the data.frame gff that should
not be shown in the plot

zeroLine logical; should a dashed horizontal line at y=0 be put into the plot?

sampleLegend logical; should a sample legend be put into the plot?

sampleLegendPos

character; where to put the sample legend; one of ‘topleft’ (default), ‘bottom-
left’, ‘topright’, or ‘bottomrigth’

featureLegend logical; should a feature legend be put beneath the plot?

maxInterDistance

numeric; only used when itype is either "r" or "u"; specifies the maximal dis-
tance up to which adjacent probe positions should be connected by a line.

coord optional integer of length 2; can be used instead of xlim to specify the start and
end coordinates of the genomic region to plot

highlight optional list specifying a genomic region to be highlighted in the shown plot

main optional main title for the plot; if not specified: the default is ‘Chromosome
coordinate [bp]’

... further parameters passed on to grid.polyline and grid.points

Value

invisible list of probe positions (element x) and probe levels (element y) in the selected genomic
region.

Note

The S4 method is provided as a mere convenience wrapper.

When plotting a new ‘grid’ plot in an active x11 window that already contains a plot, remember to
call grid.newpage() before.

Author(s)

Joern Toedling

See Also

ExpressionSet-class, probeAnno-class, grid.points, plotAlongChrom in package tilingArray

compute.gc 11

Examples

load data
ringoExampleDir <- system.file("exData",package="Ringo")
load(file.path(ringoExampleDir,"exampleProbeAnno.rda"))
load(file.path(ringoExampleDir,"exampleX.rda"))

show a gene that is well represented on this microarray
plot(exampleX, exProbeAnno, chrom="9",

xlim=c(34318000,34321000), ylim=c(-2,4), gff=exGFF)

this should give you the same result as:
chipAlongChrom(exampleX, chrom="9", xlim=c(34318000,34321000),

ylim=c(-2,4), probeAnno=exProbeAnno, gff=exGFF)

compute.gc Compute the GC content of DNA and probe sequences

Description

Simple auxiliary function to compute the GC content of a given set of DNA sequences, such as
microarray probe sequences.

Usage

compute.gc(probe.sequences, digits = 2)

Arguments

probe.sequences

character vector of DNA or probe sequences of which the GC content is to be
computed

digits integer specifying the desired precision

Value

a numeric vector with sequence-wise GC contents; the names of this vector are the names of the
supplied probe.sequences.

Author(s)

Joern Toedling

See Also

Function basecontent in package matchprobes for a more general function to compute base oc-
currence in sequences

12 computeRunningMedians

Examples

ex.seqs <- c("gattaca", "GGGNTT", "ggAtT", "tata","gcccg")
names(ex.seqs) <- paste("sequence",1:5,sep="")
compute.gc(ex.seqs)

computeRunningMedians Function to compute running medians on a tiling expression set

Description

Function to compute running medians (or other quantiles) on a tiling expression set.

Usage

computeRunningMedians(xSet, probeAnno, modColumn = "Cy5",
allChr, winHalfSize = 400, min.probes = 5, quant = 0.5,
combineReplicates = FALSE, nameSuffix = ".sm", checkUnique=TRUE,
uniqueCodes=c(0), verbose = TRUE)

Arguments

xSet Object of class ExpressionSet holding the normalized probe intensity data

probeAnno Environment holding the genomic positions of probes in the ExpressionSet

modColumn Column of the ExpressionSet’s phenoData holding the samples’ difference of
interest

allChr Character vector of all chromosomes in genome; if not specified (defaul) all
chromosomes annotated in the supplied probeAnno are used.

winHalfSize Half the size of the window centered at a probe position, in which all other
probes contribute to the calculation of the median.

min.probes integer; if less probes are in the sliding window, NA instead of the median is
returned. This meant to avoid to computing non-meaningful medians. If un-
wanted, set this to 1 or less

quant numeric; which quantile to use for the smoothing. The default 0.5 means com-
pute the median over the values in the sliding window.

combineReplicates

logical; should the median not be computed over individual samples in the Ex-
pressionSet, but should samples be combined according to the column modColumn
of the phenoData. The median is then computed across all probe levels and sam-
ples of the same type in the window. The resulting ExpressionSet has so many
columns as are there different entries in the column modColumn

nameSuffix character; suffix attached to the sample labels of the supplied ExpressionSet
xSet for the sample names of the resulting ExpressionSet.

checkUnique logical; indicates whether the uniqueness indicator of probe matches from the
probeAnno environment should be used.

computeSlidingT 13

uniqueCodes numeric; which numeric codes in the chromosome-wise match-uniqueness ele-
ments of the probeAnno environment indicate uniqueness?

verbose logical; detailed progress output to STDOUT?

Value

An object of class ExpressionSet, holding smoothed intensity values for the probes of the sup-
plied ExpressionSet. The number of results samples is either the number of levels in the supplied
modColumn of the supplied ExpressionSet’s phenoData if combineReplicates is set to TRUE or
equal to the number of samples in the supplied ExpressionSet xSet otherwise.

Author(s)

Joern Toedling

See Also

ExpressionSet, sliding.quantile, probeAnno-class

Examples

exDir <- system.file("exData",package="Ringo")
load(file.path(exDir,"exampleProbeAnno.rda"))
load(file.path(exDir,"exampleX.rda"))
smoothX <- computeRunningMedians(exampleX, probeAnno=exProbeAnno,

winHalfSize = 400)
combX <- combine(exampleX, smoothX)
if (interactive()){
grid.newpage()
plot(combX, exProbeAnno, chrom="9", xlim=c(34318000,34321000),

ylim=c(-2,4), gff=exGFF)
}

computeSlidingT Function to compute sliding T statistics on a tiling expression set

Description

Function to compute sliding (regularized) one- or two-sample T statistics on a tiling expression set.

Usage

computeSlidingT(xSet, probeAnno, allChr = c(1:19, "X", "Y"), test = "one.sample", grouping = NULL, winHalfSize = 400, min.probes = 5, checkUnique = TRUE, uniqueCodes = c(0), verbose = TRUE)

14 computeSlidingT

Arguments

xSet Object of class ExpressionSet holding the normalized probe intensity data

probeAnno Environment holding the genomic positions of probes in the ExpressionSet

allChr Character vector of all chromosomes in genome

test character; one of one.sample or two.sample

grouping factor vector of length equal to number of samples, not required if test=one.sample

winHalfSize Half the size of the window centered at a probe position, in which all other
probes contribute to the calculation of the mean and standard deviation.

min.probes integer; if less probes are in the sliding window, NA instead of the mean and
sd is returned. This is meant to avoid to computing non-meaningful means and
standard deviations. If unwanted, set this to 1 or less

checkUnique logical; indicates whether the uniqueness indicator of probe matches from the
probeAnno environment should be used.

uniqueCodes numeric; which numeric codes in the chromosome-wise match-uniqueness ele-
ments of the probeAnno environment indicate uniqueness?

verbose logical; detailed progress output to STDOUT?

Value

An object of class ExpressionSet, holding the T statistics values for the probes of the supplied Ex-
pressionSet. The number of results samples is the number of levels in the supplied factor grouping.

Author(s)

Joern Toedling

See Also

sliding.meansd

Examples

exDir <- system.file("exData",package="Ringo")
load(file.path(exDir,"exampleProbeAnno.rda"))
load(file.path(exDir,"exampleX.rda"))
tX <- computeSlidingT(exampleX, probeAnno=exProbeAnno,

allChr=c("9"), winHalfSize=400)
sampleNames(tX) <- "t-Stat_Suz12vsTotal"
if (interactive()){

grid.newpage()
plot(cbind2(exampleX, tX), exProbeAnno, chrom="9",

xlim=c(34318000,34321000), ylim=c(-2,8.5), gff=exGFF,
paletteName="Paired")

}

corPlot 15

corPlot Function to plot correlation of different samples

Description

This function can be used to visualise the (rank) correlation in expression data between different
samples or sample groups.

Usage

corPlot(eset, samples = NULL, grouping = NULL, ref = NULL,
useSmoothScatter = TRUE, ...)

Arguments

eset object of class ExpressionSet holding the array data, or a numeric matrix in-
stead

samples which samples’ expression shall be correlated to each other; either a numeric
vector of sample numbers in the ExpressionSet or a character vector that must
be contained in the sampleNames of the ExpressionSet, default NULL means
take all samples in the ExpressionSet

grouping an optional factor vector defining if the correlation should be assessed between
groups of samples, rather than individual samples. If two or more samples are
assigned into the same group, the mean over these samples’ expression values
is taken before computing correlation. Default NULL means assess correlation
between individual samples only.

ref reference than only applies if argument grouping is given; see relevel

useSmoothScatter

logical; should the function smoothScatter be used?

... additional arguments, not used yet

Value

The function only returns NULL (invisible). The function is called for its side-effect producing the
pairs plot.

Author(s)

Joern Toedling

See Also

ExpressionSet, relevel, pairs, smoothScatter

16 exportCherList

Examples

data(sample.ExpressionSet)
if (interactive())
corPlot(sample.ExpressionSet,
grouping=paste(sample.ExpressionSet$sex,
sample.ExpressionSet$type, sep="."))

exportCherList Function to export cherList into a file

Description

Function to export cherList into a file of gff or BED format. This files can be imported as tracks
into genome browsers.

Usage

exportCherList(object, filename = "chers.gff", format = "gff3",
genome="hg18", ...)

Arguments

object an object of class cherList

filename character; path to file to be written

format Format of exported file; currently only "gff3" and "bed" are supported

genome character; which genome the ChIP-enriched regions were found in denoting
species and assembly, e.g. ‘hg18’ or ‘mm9’

... further arguments to be passed on to the trackSet method

Details

First converts the cherList into an object of class trackSet from package rtracklayer and then
calls the export method as defined for a trackSet.

Value

returns invisible NULL; called for the side effect of writing the file filename.

Author(s)

Joern Toedling

See Also

Class trackset in package rtracklayer

extractProbeAnno 17

Examples

Not run:
exDir <- system.file("exData",package="Ringo")
load(file.path(exDir,"exampleProbeAnno.rda"))
load(file.path(exDir,"exampleX.rda"))
smoothX <- computeRunningMedians(exampleX, probeAnno=exProbeAnno,

modColumn = "Cy5", allChr = "9", winHalfSize = 400)
chersX <- findChersOnSmoothed(smoothX, probeAnno=exProbeAnno,

thresholds=0.45, allChr="9", distCutOff=600, cellType="human")
exportCherList(chersX, file="chers.gff")

End(Not run)

extractProbeAnno Build probeAnno from match positions in an RGList

Description

This function can be used to build a probeAnno object from the reporter match positions given in
the ’genes’ slot of an RGList if present, as is the case with some ChIP-chip microarray platforms,
e.g. with certain Agilent ones after reading in the data with read.maimages(...,"agilent").

Usage

extractProbeAnno(object, format = "agilent", ...)

Arguments

object an object that holds the data and the probe match positions, currently can only
be of class RGList

format in which format are the reporter match positions stored in the object; see details;
currently only "agilent" is implemented

... further arguments that are passed on to the function posToProbeAnno

Details

Which information is used for creating the probeAnno is specified by the argument format.

agilent expects that the object is of class RGList. The ’genes’ element of the object is taken.
This element is expected to have at least a column ’ProbeName’, which stores the unique
reporter/probe identifiers, and a column ’SystematicName’, which holds the probe match
position in the format "chr<chromosome>:coordinate1-coordinate2", e.g."chr1:087354051-
087354110".

Value

An object of class probeAnno holding the mapping between reporters and genomic positions.

18 features2Probes

Author(s)

Joern Toedling

See Also

posToProbeAnno, probeAnno-class

features2Probes Function for mapping genomic features to probes

Description

This function creates a mapping between annotated genomic features and probes on the array whose
matching genomic positions are stored in a probeAnno environment.

Usage

features2Probes(gff, probeAnno, upstream = 5000, checkUnique = TRUE, uniqueCodes = c(0), mem.limit=1e8, verbose = TRUE)

Arguments

gff data.frame holding genomic feature annotation

probeAnno Object of class environment holding the genomic positions of probes in the
ExpressionSet

upstream up to how many bases upstream of annotated genomic features should probes be
counted as related to that feature (see details)

checkUnique logical; indicates whether the uniqueness indicator of probe matches from the
probeAnno environment should be used.

uniqueCodes numeric; which numeric codes in the chromosome-wise match-uniqueness ele-
ments of the probeAnno environment indicate uniqueness?

mem.limit integer value; what is the maximal allowed size of matrices during the compu-
tation; see regionOverlap

verbose logical; detailed progress output to STDOUT?

Value

The results is a list of length equal to the number of rows in the provided gff, the data.frame of
genomic features. The names of the list are the names specified in the gff. Each element of the
list is specified by the probes mapping into the genomic region from upstream bases upstream
of the feature’s start site to the feature’s end site. The entries itself are either NULL, if no probe
was mapped into this region, or a named numeric vector, with its values being the distances of the
probes’ middle positions to the feature’s start site (which depends on the strand the feature is on)
and its names being the identifiers of these probes.

findChersOnSmoothed 19

Note

This resulting mapping is not used excessively by other Ringo functions, so creating this mapping
is optional at this time, but it may simplify subsequent gene/transcript-based analyses.

Here, the term feature describes a genomic entity such as a gene, transcript, non-coding RNA or a
similar feature annotated to a genome. It does NOT refer to oligo-nucleotide or cDNA probes on
the microarray.

Author(s)

Joern Toedling

See Also

regionOverlap

Examples

ringoExampleDir <- system.file("exData",package="Ringo")
load(file.path(ringoExampleDir,"exampleProbeAnno.rda"))
trans2Probe <- features2Probes(exGFF, exProbeAnno)
trans2Probe[exGFF$name[match("NUDT2", exGFF$symbol)]]
exGFF[match(names(trans2Probe)[listLen(trans2Probe)>0],exGFF$name),]
trans2Probe[listLen(trans2Probe)==1]

findChersOnSmoothed Find ChIP-enriched regions on smoothed ExpressionSet

Description

Given an ExpressionSet of smoothed probe intensities, an environment with the mapping of probes
to chromosomes, and a vector of thresholds for calling genomic sites enriched, this function finds
the ’chers’ (ChIP-enriched regions) consisting of enriched genomic positions, with probes mapped
to them. ’Adjacent’ enriched positions are condensed into a single Cher.

Usage

findChersOnSmoothed(smoothedX, probeAnno, thresholds, allChr = NULL,
distCutOff = 600, minProbesInRow = 3, cellType = NULL,
antibodyColumn=NULL, checkUnique = TRUE, uniqueCodes = c(0),
verbose = TRUE)

Arguments

smoothedX Object of class ExpressionSet holding the smoothed probe intensities, e.g. the
result of function computeRunningMedians.

probeAnno environment containing the probe to genome mapping

20 findChersOnSmoothed

thresholds numeric vector of threshold above which smoothed probe intensities are consid-
ered to correspond to enriched probes. The vector has to be of length equal the
number of samples in smoothedX, with a single threshold for each sample.

allChr character vector of all chromosomes on which enriched regions are sought. Ev-
ery chromosome here has to have probes mapped to it in the probeAnno envi-
ronment. By default (NULL) the chromosomeNames of the probeAnno object are
used.

distCutOff integer; maximum amount of base pairs at which enriched probes are condensed
into one Cher.

minProbesInRow integer; minimum number of enriched probes required for a Cher; see details
for further explanation.

cellType character; name of cell type the data comes from, is either a. of length one indi-
cating the column of pData(smoothedX) that holds the cell type OR b. of length
one indicating the common cell type for all samples in the ExpressionSet OR
c. of length equal to ncol(smoothedX) specifying the cell type of each sample
individually.

antibodyColumn the name or number of the column of the pData(smoothedX) that holds the
description of the antibody used for each sample. This information is used
to annotate found ChIP-enriched regions accordingly. If NULL (default), the
sampleNames of smoothedX are used.

checkUnique logical; indicates whether the uniqueness indicator of probe matches from the
probeAnno environment should be used.

uniqueCodes numeric; which numeric codes in the chromosome-wise match-uniqueness ele-
ments of the probeAnno environment indicate uniqueness?

verbose logical; extended output to STDOUT?

Details

Specifying a minimum number of probes for a Cher (argument minProbesInRow) guarantees that a
Cher is supported by a reasonable number of measurements in probe-sparse regions. For example,
if there’s only one enriched probe within a certain genomic 1kb region and no other probes can been
mapped to that region, this single probe does arguably not provide enough evidence for calling this
genomic region enriched.

Value

A list of class cherList, holding objects of class cher that were found on the supplied data.

Author(s)

Joern Toedling

See Also

cherByThreshold,computeRunningMedians, relateChers

ftr2xys 21

Examples

exDir <- system.file("exData",package="Ringo")
load(file.path(exDir,"exampleProbeAnno.rda"))
load(file.path(exDir,"exampleX.rda"))
smoothX <- computeRunningMedians(exampleX, probeAnno=exProbeAnno,

modColumn = "Cy5", allChr = "9", winHalfSize = 400)
chersX <- findChersOnSmoothed(smoothX, probeAnno=exProbeAnno,

thresholds=0.45, allChr="9", distCutOff=600, cellType="human")
if (interactive())

plot(chersX[[1]], smoothX, probeAnno=exProbeAnno, gff=exGFF)
chersX <- relateChers(chersX, exGFF)
as.data.frame.cherList(chersX)

ftr2xys Convert a NimbleScan ftr-file into a xys-file

Description

Auxiliary function to convert a NimbleScan feature-report file into a xys-file that can be used
with the function read.xysfiles of package oligo.

Usage

ftr2xys(ftr.file, path=getwd())

Arguments

ftr.file character; file path of feature report file to convert into an xys file

path file path to directory where the xys-file should be written to; defaults to the
current working directory

Details

The output file is names as the input ftr file; with the file extension .ftr replaced by .xys.

Value

Function returns only NULL invisibly and is only called for its side effect to write the xys-file into
the current working directory.

Note

This function should only be used with one-color Nimblegen microarrays and when the correct xys-
file of the raw data is not available. The output file can be used with the function read.xysfiles
of package oligo.

Author(s)

Joern Toedling

22 getFeats

Examples

Not run:
sapply(list.files(pattern=".ftr$"),ftr2xys)
library(oligo)
fs = read.xysfiles(list.xysfiles())

End(Not run)

getFeats Utility function to extract all features from a cherList

Description

This is a small utility function for extracting all related features from a cherList, a list of ChIP-
enriched regions.

Usage

getFeats(cl)

Arguments

cl object of class cherList, a list of cher objects

Value

a character vector containing the names of all features that were associated to any ChIP-enriched
region in the list before, using the function relateChers

Author(s)

Joern Toedling

See Also

relateChers,cher-class

image.RGList 23

image.RGList Function to visualize spatial distribution of raw intensities

Description

Function to visualize spatial distribution of raw intensities on NimbleGen Oligoarrays. Requires
RGList with component genes complete with genes$X and genes$X coordinates of probes on array.
arrayImage is a synonym of image.RGList.

Usage

S3 method for class 'RGList'
image(x,arrayno,channel=c("red","green","logratio"),

mycols=NULL, mybreaks=NULL, dim1="X", dim2="Y",
ppch=20, pcex=0.3, verbose=TRUE, ...)

Arguments

x object of class RGList containing red and green channel raw intensities; possibly
result of readNimblegen.

arrayno integer; which array to plot; one of 1:ncol(x$R)

channel character; which channel to plot, either red, green or the logratio log2(red)-log2(green)

mycols vector of colors to use for image; if NULL defaults to colorRampPalette(c("White","Yellow","Red"))(10)

mybreaks optional numeric vector of breaks to use as argument breaks in image.default;
default NULL means take length(mycols)+1 quantiles of the data as breaks.

dim1 string; which column of the ’genes’ element of the supplied RGList indicates the
first dimension of the reporter position on the microarray surface; for example
this column is called ’X’ with some NimbleGen arrays and ’Row’ with some
Agilent arrays.

dim2 string; which column of the ’genes’ element of the supplied RGList indicates
the second dimension of the reporter position on the microarray surface; for
example this column is called ’Y’ with some NimbleGen arrays and ’Col’ with
some Agilent arrays.

ppch which symbol to use for intensities; passed on as pch to points..default

pcex enlargement factor for intensity symbols; passed on as cex to points.default

verbose logical; extended output to STDOUT?

... further arguments passed on to plot.default and points.default

Value

invisibly returns NULL; function is called for its side effect, this is producing the plot

Author(s)

Joern Toedling

24 nonzero-methods

See Also

readNimblegen,plot.default, points

Examples

exDir <- system.file("exData",package="Ringo")
exRG <- readNimblegen("example_targets.txt","spottypes.txt",path=exDir)
image(exRG, 1, channel="red", mycols=c("black","darkred","red"))
this example looks strange because the example data files only
includes the probe intensities of probes mapped to the forward
strand of chromosome 9.
you can see these probes are distributed all over the array

nonzero-methods Methods for Function nonzero

Description

Auxiliary functions to retrieve the indices of non-zero elements in sparse matrices.

Value

A two-column matrix. Each row gives the row and column index of a non-zero element in the
supplied matrix x.

Methods

x = "dgCMatrix" returns the indices of non-zero elements in matrices of class dgCMatrix

x = "matrix.csr" returns the indices of non-zero elements in matrices of class matrix.csr

x = "matrix" returns the indices of non-zero elements in matrices of base class matrix; equivalent
to which(x != 0,arr.ind=TRUE)

Note

Originally we used the matrix.csr class from SparseM, but we have switched to the class dgCMatrix
from package Matrix, as that package is part of the R distribution bundle now.

The idea is to have a function similar to which(x != 0,arr.ind=TRUE) if x is a matrix.

See Also

dgCMatrix-class

plot.autocor.result 25

Examples

(A <- matrix(c(0,0,0,0,0,1,0,0,0,0,0,0,0,0,-34),
nrow=5, byrow=TRUE))

str(A.dgc <- as(A, "dgCMatrix"))
nonzero(A.dgc)
A2.dgc <- cbind(A.dgc, A.dgc)
as.matrix(A2.dgc)
nonzero(A2.dgc)

plot.autocor.result Plots auto-correlation of probe intensities

Description

Function to plot the auto-correlation of probe intensities computed by function autocor.

Usage

S3 method for class 'autocor.result'
plot(x,
plot.title = "ChIP: Autocorrelation of Intensities", ...)

Arguments

x an object of class autocor.result, the result of function autocor

plot.title main title of the plot
... further arguments passed on to plot.default, see details

Details

The following arguments to plot.default are already defined in the function and thus cannot be
specified by the user as further arguments in . . . : type,lwd,xlab,ylab,col. Argument main is
specified in plot.title.

Value

invisible NULL

Author(s)

Joern Toedling

See Also

autocor

Examples

see the help page of 'autocor' for an example

26 plot.cher

plot.cher Plot identified Chers

Description

Function for plotting identified Chers (ChIP-enriched regions).

Usage

S4 method for signature 'cher,ExpressionSet'
plot(x, y, probeAnno, samples=NULL, extent = 1000, gff = NULL, ...)

Arguments

x object of class cher

y data object of class ExpressionSet that was used for function findChersOnSmoothed

probeAnno object of class probeAnno holding the reporter/probe to genome mappings

samples which samples to plot, either a numeric vector of entries in 1 to ncol(dat), or
character vector with entries in sampleNames(dat) or NULL meaning plot the
levels from all samples in the ExpressionSet

extent integer; how many base pairs to the left and right should the plotted genomic
region be extended

gff data frame with gene/transcript annotation

... further arguments passed on to function chipAlongChrom

Value

called for generating the plot; invisible(NULL)

Author(s)

Joern Toedling

See Also

chipAlongChrom, cher-class

plotBM 27

plotBM Visualization of a binary matrix

Description

This function produces simple, heatmap-like visualizations of binary matrices.

Usage

plotBM(x, boxCol = "darkblue", reorder = FALSE, frame = TRUE, ...)

Arguments

x Binary matrix to visualize

boxCol Color to use for boxes of ’1’s

reorder logical; states whether the rows shall be reordered according to the size of the
category

frame logical; states whether a frame should be drawn around the visualization. In
contrast to the frame drawn in plot.default, there is no gap between the visu-
alization and this frame.

... further arguments passed on to plot.default

Details

For reordering, each row is interpreted as a binary matrix, for example a row z=(1,0,0,1) would be
interpreted as the binary number 1001 = 9 in the decimal system. Rows are then reordered by the
frequency of each binary number with the rows that correspond to the most frequent binary number
shown at the top in the visualization.

Value

The function invisibly returns the (reordered) matrix x, but its mainly called for its side effect of
producing the visualization.

Note

An alternative way to display such matrices are given by heatmap or, the simpler version thereof,
image. However, image files produced with this functions tend to be very large. This function uses
plot.default and polygon which results in much smaller file sizes and is sufficient for binary
matrices.

Author(s)

Joern Toedling

28 posToProbeAnno

See Also

polygon,colors

Examples

A <- matrix(round(runif(80)), ncol=4, byrow=TRUE)
dimnames(A)=list(letters[seq(nrow(A))],

as.character(as.roman(seq(ncol(A)))))
show(A)
plotBM(A, reorder=FALSE)
plotBM(A, reorder=TRUE)

posToProbeAnno Function for creating a probeAnno environment

Description

This function allows the user to create a probeAnno environment that holds the mapping between
probes on the array and their genomic match position(s). As input, the function takes either a.) one
of NimbleGen’s POS file or a similar file that holds the mapping of probes to the genome. OR b.) a
data.frame holding this information

Usage

posToProbeAnno(pos, chrNameColumn = "CHROMOSOME",
probeColumn = "PROBE_ID", chrPositionColumn = "POSITION",
lengthColumn = "LENGTH", sep="\t", genome="unknown",
microarrayPlatform="unknown", verbose = TRUE, ...)

Arguments

pos either a file-name that specifies the path to the POS or other mapping file OR a
data.frame holding the mapping

chrNameColumn name of the column in the file or data.frame that holds the chromosome name
of the match

probeColumn name of the column that holds the matching probe’s unique identifier
chrPositionColumn

name of the column that holds the match genomic position/coordinate on the
chromosome

lengthColumn name of the column that holds the length of the match position, in case of perfect
match should correspond to the sequence length of the probe

sep string; denotes the seperator between elements in the supplied mappings file
pos; passed on to function scan; ignored if pos is not a filename.

genome string; denotes genome (and assembly) the reporters have been mapped to for
this probeAnno object, e.g. "M. musculus (mm9)"

posToProbeAnno 29

microarrayPlatform

string; denotes the commercial or custom microarray platform/design that holds
the reporters whose mapping is stored in this probeAnno object, e.g. "Nimble-
Gen MOD SUZ12"

verbose logical; should progress be written to STDOUT?

... further arguments passed on to function scan, which is used for reading in the
file pos.

Details

The default column names correspond to the column names in a NimbleGen POS file.

For custom mappings, using the tools Exonerate, BLAT or MUMmer, the scripts directory of this
package holds Perl scripts to generate such a POS file from the respective output files.

Value

The results is an object of class probeAnno.

Author(s)

Joern Toedling

See Also

probeAnno-class, scan

Examples

exPos <- read.delim(file.path(system.file("exData",package="Ringo"),
"MOD_2003-12-05_SUZ12_1in2.pos"),
header=TRUE,as.is=TRUE)

str(exPos)
exProbeAnno <- posToProbeAnno(exPos,

genome="M. musculus (assembly mm8)",
microarrayPlatform="NimbleGen 2005-06-17_Ren_MM5Tiling_Set1")

is equivalent to
exProbeAnno2 <- posToProbeAnno(file.path(

system.file("exData",package="Ringo"),"MOD_2003-12-05_SUZ12_1in2.pos"),
genome="M. musculus (assembly mm8)",
microarrayPlatform="NimbleGen 2005-06-17_Ren_MM5Tiling_Set1")

ls(exProbeAnno)
chromosomeNames(exProbeAnno2)

30 preprocess

preprocess Preprocess Raw ChIP-chip Intensities

Description

Calls one of various (limma) functions to transform raw probe intensities into (background-corrected)
normalized log ratios (M-values).

Usage

preprocess(myRG, method="vsn", ChIPChannel="R", inputChannel="G",
returnMAList=FALSE, idColumn="PROBE_ID", verbose=TRUE, ...)

Arguments

myRG object of class RGList

method string; denoting which normalization method to choose, see below for details

ChIPChannel string; which element of the RGList holds the ChIP result, see details

inputChannel string; which element of the RGList holds the untreated input sample; see details

returnMAList logical; should an MAList object be returned? Default is to return an Expres-
sionSet object.

idColumn string; indicating which column of the genes data.frame of the RGList holds the
identifier for reporters on the microarray. This column, after calling make.names
on it, will make up the unique featureNames of the resulting ExpressionSet.
If argument returnMAList is TRUE, this argument is ignored.

verbose logical; progress output to STDOUT?

... further arguments to be passed on normalizeWithinArrays and normalizeBetweenArrays

Details

The procedure and called limma functions depend on the choice of method.

loess Calls normalizeWithinArrays with method="loess".

vsn Calls normalizeBetweenArrays with method="vsn".

Gquantile Calls normalizeBetweenArrays with method="Gquantile".

Rquantile Calls normalizeBetweenArrays with method="Rquantile".

median Calls normalizeWithinArrays with method="median".

nimblegen Scaling procedure used by Nimblegen. Yields scaled log-ratios by a two step proce-
dure: srat = log2(R) - log2(G) srat = srat - tukey.biweight(srat)

Gvsn Learns vsn model on green channel intensities only and applies that transformation to both
channels before computing fold changes.

Rvsn Learns vsn model on red channel intensities only and applies that transformation to both
channels before computing fold changes.

preprocess 31

none No normalization of probe intensities, takes raw log2(R)-log2(G) as component M and
(log2(R)+log2(G))/2 as component A; uses normalizeWithinArrays with method="none".

Mostly with two-color ChIP-chip, the ChIP sample is marked with the red Cy5 dye and for the
untreated input sample the green Cy3 dye is used. In that case the RGListmyRG’s element R holds
the ChIP data, and element G holds the input data. If this is not the case with your data, use the
arguments ChIPChannel and inputChannel to specify the respective elements of myRG.

Value

Returns normalized, transformed values as an object of class ExpressionList or MAList.

Note

Since Ringo version 1.5.6, this function does not call limma’s function backgroundCorrect di-
rectly any longer. If wanted by the user, background correction should be indicated as additional
arguments passed on to normalizeWithinArrays or normalizeBetweenArrays, or alternatively
call backgroundCorrect on the RGList before preprocessing.

Author(s)

Joern Toedling

See Also

normalizeWithinArrays, normalizeBetweenArrays, malist, ExpressionSet, vsnMatrix

Examples

exDir <- system.file("exData",package="Ringo")
exRG <- readNimblegen("example_targets.txt","spottypes.txt",

path=exDir)
exampleX <- preprocess(exRG)
sampleNames(exampleX) <- make.names(paste(exRG$targets$Cy5,"vs",

exRG$targets$Cy3,sep="_"))
print(exampleX)
compare VSN to NimbleGen's tukey-biweight scaling
exampleX.NG <- preprocess(exRG, method="nimblegen")
sampleNames(exampleX.NG) <- sampleNames(exampleX)
if (interactive())

corPlot(cbind(exprs(exampleX),exprs(exampleX.NG)),
grouping=c("VSN normalized","Tukey-biweight scaled"))

32 probeAnno-class

probeAnno-class Class "probeAnno"

Description

A class that holds the mapping between reporters/probes on a microarray and their genomic match
position(s) in a chosen genome.

Objects from the Class

Objects can be created by calls of the form new("probeAnno",map,arrayName,genome).

Slots

map: Object of class "environment" This map consists of four vectors for each chromosome/strand,
namely, say for chromosome 1:

1.start genomic start coordinates of probe matches on chromosome 1
1.end genomic start coordinates of probe matches on chromosome 1
1.index identifier of probes matching at these coordinates
1.unique vector of the same length as the three before; encoding how many matches the

corresponding probe has in the given file or data.frame. An entry of ’0’ indicates that
the probe matching at this position has only this one match.

arrayName: Object of class "character", the name or identifier of the microarray design, e.g.
2005-06-17_Ren_MM5Tiling_Set1

genome: Object of class "character", which genome the reporters have been mapped to

Methods

arrayName obtain the microarray platform name

arrayName<- replace the microarray platform name

[get elements from the map environment

[<- assign elements to the map environment

chromosomeNames obtain a character vector holding the names of the chromosomes for which
the probeAnno objects holds a mapping.

get get elements from the map environment

initialize create mew probeAnno object

ls list elements of the map environment

genome obtain the description of the genome the reporters were mapped to

genome<- replace the description of the genome the reporters were mapped to

as signature(from="environment"); function to coerce old-style ’probeAnno’ environments to new-
style ’probeAnno’ objects. Simply creates a new object with the old environment in its map
slot

quantilesOverPositions 33

Note

’probeAnno’ objects used to be environments and still are used as such in package tilingArray

Author(s)

Joern Toedling; Wolfgang Huber

See Also

posToProbeAnno

Examples

pa <- new("probeAnno")
pa["X.start"] <- seq(5000,10000,by=1000)
if (interactive()) show(pa)
pa2 <- posToProbeAnno(file.path(system.file("exData",package="Ringo"),

"MOD_2003-12-05_SUZ12_1in2.pos"))
arrayName(pa2) <- "NimbleGen MOD_2003-12-05_SUZ12_1in2"
genome(pa2) <- "H. sapiens (hg18)"
show(pa2)
head(pa2["9.start"])

quantilesOverPositions

show ChIP-chip data aligned over genome features, e.g. TSSs

Description

Function to show the ChIP-chip data aligned over certain genome features, for example transcription
start sites (TSSs).

Usage

quantilesOverPositions(xSet, selGenes, g2p,
positions = seq(-5000, 10000, by = 250),
quantiles = c(0.1, 0.5, 0.9))

Arguments

xSet an ExpressionSet holding the ChIP-chip data
selGenes character; vector of genome features, e.g. transcripts, to use for the plot
g2p A list object containing the mapping between genome positions and probes on

the microarray. Created with the function features2Probes.
positions Numeric vector of positions related to the coordinates of the genome features,

such as in which distances of the TSS the values should be computed over the
aligned data

quantiles numeric; which quantiles to compute over the aligned data

34 readNimblegen

Value

An object of class qop, which can be visualized by its plot method.

Author(s)

Joern Toedling

See Also

features2Probes, qop-class

Examples

ringoExampleDir <- system.file("exData",package="Ringo")
load(file.path(ringoExampleDir,"exampleProbeAnno.rda"))
trans2Probe <- features2Probes(exGFF, exProbeAnno)
load(file.path(ringoExampleDir,"exampleX.rda"))
exampleSX <- computeRunningMedians(exampleX, probeAnno=exProbeAnno,

modColumn = "Cy5", allChr = "9", winHalfSize = 400)
exampleC <- findChersOnSmoothed(exampleSX, probeAnno=exProbeAnno,

thresholds=0.2, allChr="9", distCutOff=600, cellType="human")
exampleC <- relateChers(exampleC, exGFF)
exampleQop <- quantilesOverPositions(exampleSX,

selGenes=getFeats(exampleC), quantiles=c(0.5, 0.9),
g2p=trans2Probe, positions=seq(-4000, 1000, by=250))

show(exampleQop)
plot(exampleQop, ylim=c(-0.5, 2.1))

readNimblegen Function to read in Nimblegen Intensity Text Files

Description

Function to read in Nimblegen Intensity Text Files into an RGList. Calls some other functions for
actual reading of data. This function is to be used with two-color NimbleGen array data. Use the
function read.xysfiles of the oligo package for single-color data.

Usage

readNimblegen(hybesFile, spotTypesFile, path = getwd(),
headerPattern="# software=NimbleScan",verbose = TRUE, ...)

Arguments

hybesFile Name of the file describing the arrays. In limma this file would be called targets
file.

spotTypesFile spot types also used by limma

regionOverlap 35

path Path to directoy that hold the files hybesFile, spotTypesFile and also the in-
tensity files. Set this to NULL if you prefer the arguments hybesFile, spotTypesFile
and the file-name entries of the hybes file to be treated as absolute or relative file
paths themselves.

headerPattern string; pattern used to identify explantory header lines in the supplied pair-
format files

verbose logical; progress output to STDOUT?

... further arguments passed on the readNgIntensitiesTxt

Value

Returns raw intensity values in form of an RGList.

Author(s)

Joern Toedling

See Also

rglist, readTargets

Examples

exDir <- system.file("exData",package="Ringo")
exRG <- readNimblegen("example_targets.txt","spottypes.txt",path=exDir)
print(exRG)

regionOverlap Function to compute overlap of genomic regions

Description

Given two data frames of genomic regions, this function computes the base-pair overlap, if any,
between every pair of regions from the two lists.

Usage

regionOverlap(xdf, ydf, chrColumn = "chr", startColumn = "start",
endColumn = "end", mem.limit=1e8)

Arguments

xdf data.frame that holds the first set of genomic regions

ydf data.frame that holds the first set of genomic regions

chrColumn character; what is the name of the column that holds the chromosome name of
the regions in xdf and ydf

36 regionOverlap

startColumn character; what is the name of the column that holds the start position of the
regions in xdf and ydf

endColumn character; what is the name of the column that holds the start position of the
regions in xdf and ydf

mem.limit integer value; what is the maximal allowed size of matrices during the compu-
tation

Value

Originally, a matrix with nrow(xdf) rows and nrow(ydf) columns, in which entry X[i,j] specifies
the length of the overlap between region i of the first list (xdf) and region j of the second list (ydf).
Since this matrix is very sparse, we use the dgCMatrix representation from the Matrix package for
it.

Note

The function only return the absolute length of overlapping regions in base-pairs. It does not return
the position of the overlap or the fraction of region 1 and/or region 2 that overlaps the other regions.

The argument mem.limit is not really a limit to used RAM, but rather the maximal size of matrices
that should be allowed during the computation. If larger matrices would arise, the second regions list
is split into parts and the overlap with the first list is computed for each part. During computation,
matrices of size nrow(xdf) times nrow(ydf) are created.

Author(s)

Joern Toedling

See Also

dgCMatrix-class

Examples

toy example:
regionsH3ac <- data.frame(chr=c("chr1","chr7","chr8","chr1","chrX","chr8"), start=c(100,100,100,510,100,60), end=c(200, 200, 200,520,200,80))
regionsH4ac <- data.frame(chr=c("chr1","chr2","chr7","chr8","chr9"),

start=c(500,100,50,80,100), end=c(700, 200, 250, 120,200))

compare the regions first by eye
which ones do overlap and by what amount?
regionsH3ac
regionsH4ac

compare it to the result:
as.matrix(regionOverlap(regionsH3ac, regionsH4ac))
nonzero(regionOverlap(regionsH3ac, regionsH4ac))

relateChers 37

relateChers Relate found Chers to genomic features

Description

This function relates found ’cher’s (ChIP-enriched regions) to annotated genomic features, such as
transcripts.

Usage

relateChers(pl, gff, upstream = 5000, verbose = TRUE)

Arguments

pl Object of class cherList

gff data.frame holding genomic feature annotation

upstream up to how many bases upstream of annotated genomic features should chers be
counted as related to that feature (see details)

verbose logical; extended output to STDOUT?

Details

chers will be counted as related to genomic features, if

• their middle position is located between start and end position of the feature

• their middle position is located not more than argument upstream bases upstream of the fea-
ture start

.

One can visualize such cher-feature relations as a graph using the Bioconductor package Rgraphviz.
See the script ’graphChers2Transcripts.R’ in Ringo’s scripts directory for an example.

Value

An object of class cherList with for each cher the elements typeUpstream and typeInside filled
in with the names of the features that have been related to.

Author(s)

Joern Toedling

Examples

see findChersOnSmoothed for an example

38 sliding.meansd

sliding.meansd Compute mean and standard deviation of scores in a sliding window

Description

This functions is used to slide a window of specified size over scores at given positions. Computed
is the mean and standard deviation over the scores in the window.

Usage

sliding.meansd(positions, scores, half.width)

Arguments

positions numeric; sorted vector of (genomic) positions of scores
scores numeric; scores to be smoothed associated to the positions

half.width numeric, half the window size of the sliding window

Value

Matrix with three columns:

mean means over scores in running window centered at the positions that were speci-
fied in argument positions.

sd standard deviations over scores in running window centered at the positions that
were specified in argument positions.

count number of points that were considered for computing the mean and standard
deviation at each position

Author(s)

Joern Toedling and Oleg Sklyar

See Also

sliding.quantile

Examples

set.seed(123)
sampleSize <- 10
ap <- cumsum(1+round(runif(sampleSize)*10))
as <- c(rnorm(floor(sampleSize/3)),

rnorm(ceiling(sampleSize/3),mean=1.5),
rnorm(floor(sampleSize/3)))

sliding.meansd(ap, as, 20)
ap
mean(as[1:3])
sd(as[1:3])

sliding.quantile 39

sliding.quantile Compute quantile of scores in a sliding window

Description

This functions is used to slide a window of specified size over scores at given positions. Computed
is the quantile over the scores in the window.

Usage

sliding.quantile(positions, scores, half.width, prob = 0.5,
return.counts = TRUE)

Arguments

positions numeric; sorted vector of (genomic) positions of scores

scores numeric; scores to be smoothed associated to the positions

half.width numeric, half the window size of the sliding window

prob numeric specifying which quantile is to be computed over the scores in the win-
dow; default 0.5 means compute the median over the scores.

return.counts logical; should the number of points, e.g. probes, that were used for computing
the median in each sliding window also returned?

Value

Matrix with two columns:

quantile medians over running window centered at the positions that were specified in
argument positions.

count number of points that were considered for computing the median at each position

These positions are given as row.names of the resulting vector. If argument return.counts is
FALSE, only a vector of the medians is returned, with the positions as names.

Author(s)

Oleg Sklyar and Joern Toedling

See Also

quantile

40 twoGaussiansNull

Examples

sampleSize <- 1000
ap <- cumsum(1+round(runif(sampleSize)*10))
as <- c(rnorm(floor(sampleSize/3)),

rnorm(ceiling(sampleSize/3),mean=1.5),
rnorm(floor(sampleSize/3)))

arm <- sliding.quantile(ap, as, 20)
arq <- sliding.quantile(ap, as, 20, prob=0.25)
plot(ap, as, pch=20, xlab="position",ylab="level")
points(ap, arm[,1], type="l", col="red", lwd=2)
points(ap, arq[,1], type="l", col="green", lwd=2)
legend(x="topleft", legend=c("median","1st quartile"),

col=c("red","green"), lty=1, lwd=2)

twoGaussiansNull Estimate a threshold from Gaussian mixture distribution

Description

Function to estimate a threshold from Gaussian mixture distribution. The data is assumed to follow
a mixture of two Gaussian distributions. The one Gaussian with the lower mean value is assumed
to be the null distribution and probe levels are assigned p-values based on this null distribution. The
threshold is then the minimal data value with an adjusted p-value smaller than a specified threshold.

Usage

twoGaussiansNull(x, p.adj.method = "BY", max.adj.p = 0.1, var.equal = FALSE, ...)

Arguments

x numeric vector of data values

p.adj.method method for adjusting the p-values for multiple testing; must be one of p.adjust.methods

max.adj.p which adjusted p-value to use as upper limit for estimating the threshold

var.equal logical; is the variance of the two Gaussians assumed to be equal or different

... further arguments passed on to function Mclust

Details

This function uses the package mclust to fit a mixture of two Gaussians to the data. The threshold
is then estimated from the fitted Gaussian with the lower mean value.

Value

Single numeric value. The threshold that is the minimal data value with an adjusted p-value smaller
than a specified threshold.

upperBoundNull 41

Note

Please note that the use of the package ’mclust’ is only free for strict academic use (see the license
of ’mclust’ here: http://www.stat.washington.edu/mclust/license.txt). The alternative
function upperBoundNull does not have this restriction.

Thanks to Richard Bourgon for pointing out the necessity of providing this method as an alternative
way of estimating the threshold.

Author(s)

Joern Toedling, Aleksandra Pekowska

See Also

mclust, p.adjust, upperBoundNull

Examples

exDir <- system.file("exData",package="Ringo")
load(file.path(exDir,"exampleProbeAnno.rda"))
load(file.path(exDir,"exampleX.rda"))
smoothX <- computeRunningMedians(exampleX, probeAnno=exProbeAnno,

modColumn = "Cy5", allChr = "9", winHalfSize = 400)

compare the two different ways of estimating the threshold
y0a <- apply(exprs(smoothX), 2, upperBoundNull)
y0b <- apply(exprs(smoothX), 2, twoGaussiansNull)

hist(exprs(smoothX)[,1], n=10, main=NA,
xlab="Smoothed expression level [log2]")

abline(v=c(y0a, y0b), col=c("blue","orange"), lwd=2)
legend(x="topright", col=c("blue","orange"), lwd=2,

legend=c(expression(paste(y[0]," Non-parametric")),
expression(paste(y[0]," Gaussian"))))

upperBoundNull function to estimate upper limit of null distribution

Description

The data is assumed to arise from a mixture of two distributions, a symmetric null distribution
with its mode close to zero, and an alternative distribution that is stochastically larger than the null.
This function tries to pinpoint the minimum of data values that are more likely to arise from the
alternative distribution, i.e. an upper bound for values following the null distribution.

Usage

upperBoundNull(x, modeMethod = "shorth", limits = c(-1, 1), prob = 0.99, ...)

http://www.stat.washington.edu/mclust/license.txt

42 upperBoundNull

Arguments

x numeric vector of data values

modeMethod character string; which method to use for estimating the mode of the null distri-
bution; see details

limits numeric of length 2; data values within this range are used for estimating the
mode of the null distribution

prob quantile of the null distribution that will be used as an upper bound

... additional arguments that are passed on to the function for mode estimation

Details

For estimating the mode of the null distribution, current options are

"shorth" the function shorth

"half.range.mode" the function half.range.mode

"null" does not estimate the mode from the data, but sets it to 0

Value

a single numeric value which is the estimated upper bound for the null distribution.

Note

This way of estimating the null distribution is mentioned in the PhD thesis of Richard Bourgon.

Author(s)

Joern Toedling, based on suggestions by Richard Bourgon

See Also

shorth, half.range.mode

Examples

exDir <- system.file("exData",package="Ringo")
load(file.path(exDir,"exampleProbeAnno.rda"))
load(file.path(exDir,"exampleX.rda"))
smoothX <- computeRunningMedians(exampleX, probeAnno=exProbeAnno,

modColumn = "Cy5", allChr = "9", winHalfSize = 400)
apply(exprs(smoothX), 2, upperBoundNull)

Index

∗ IO
exportCherList, 16
ftr2xys, 21
readNimblegen, 34

∗ classes
cher-class, 5
probeAnno-class, 32

∗ file
exportCherList, 16
ftr2xys, 21
readNimblegen, 34

∗ hplot
chipAlongChrom, 9
corPlot, 15
image.RGList, 23
plot.autocor.result, 25
plot.cher, 26
plotBM, 27

∗ manip
asExprSet, 3
autocor, 4
cherByThreshold, 7
compute.gc, 11
computeRunningMedians, 12
computeSlidingT, 13
extractProbeAnno, 17
features2Probes, 18
findChersOnSmoothed, 19
getFeats, 22
posToProbeAnno, 28
preprocess, 30
quantilesOverPositions, 33
regionOverlap, 35
relateChers, 37
sliding.meansd, 38
sliding.quantile, 39
twoGaussiansNull, 40
upperBoundNull, 41

∗ methods

nonzero-methods, 24
[,probeAnno,ANY,ANY,ANY-method

(probeAnno-class), 32
[,probeAnno-method (probeAnno-class), 32
[<-,probeAnno,ANY,ANY,ANY-method

(probeAnno-class), 32
[<-,probeAnno-method (probeAnno-class),

32

arrayImage (image.RGList), 23
arrayName (probeAnno-class), 32
arrayName,probeAnno-method

(probeAnno-class), 32
arrayName<- (probeAnno-class), 32
arrayName<-,probeAnno,character-method

(probeAnno-class), 32
asExpressionSet (asExprSet), 3
asExprSet, 3
autocor, 4, 25
autocorr (autocor), 4
autocorrelation (autocor), 4

backgroundCorrect, 31

cellType (cher-class), 5
cellType,cher-method (cher-class), 5
cellType<- (cher-class), 5
cellType<-,cher,character-method

(cher-class), 5
Cher (cher-class), 5
cher (cher-class), 5
cher-class, 5
cherByThreshold, 7, 20
cherList (cher-class), 5
cherList-class (cher-class), 5
cherPlot (plot.cher), 26
chersToBED (cher-class), 5
chipAlongChrom, 6, 9, 26
chromosomeNames (probeAnno-class), 32

43

44 INDEX

chromosomeNames,probeAnno-method
(probeAnno-class), 32

coerce,environment,probeAnno-method
(probeAnno-class), 32

colors, 28
compute.gc, 11
computeRunningMedians, 12, 20
computeSlidingT, 13
cor, 5
corPlot, 15
corrPlot (corPlot), 15
createProbeAnno (posToProbeAnno), 28

exportCherList, 16
ExpressionSet, 3, 13, 15, 31
extractProbeAnno, 17

features2Probes, 18, 34
findChersOnSmoothed, 7, 8, 19
ftr2xys, 21

gccontent (compute.gc), 11
genome (probeAnno-class), 32
genome,probeAnno-method

(probeAnno-class), 32
genome<- (probeAnno-class), 32
genome<-,probeAnno,character-method

(probeAnno-class), 32
get,character,missing,probeAnno-method

(probeAnno-class), 32
getFeats, 22
getFeatures (getFeats), 22
grid.points, 10

half.range.mode, 42

image,RGList-method (image.RGList), 23
image.RGList, 23
initialize,cher-method (cher-class), 5
initialize,probeAnno-method

(probeAnno-class), 32
invisible, 10

ls,probeAnno,missing,missing,missing,missing-method
(probeAnno-class), 32

make.names, 3, 30
malist, 31

nonzero (nonzero-methods), 24

nonzero,dgCMatrix-method
(nonzero-methods), 24

nonzero,matrix-method
(nonzero-methods), 24

nonzero,matrix.csr-method
(nonzero-methods), 24

nonzero-methods, 24
normalizeBetweenArrays, 31
normalizeWithinArrays, 31
nullUpperBound (upperBoundNull), 41

p.adjust, 41
pairs, 15
plot,cher,ExpressionSet-method

(plot.cher), 26
plot,cher,missing-method (plot.cher), 26
plot,ExpressionSet,probeAnno-method

(chipAlongChrom), 9
plot.autocor.result, 5, 25
plot.cher, 6, 7, 26
plot.default, 24
plotAutocor (plot.autocor.result), 25
plotBinaryMatrix (plotBM), 27
plotBM, 27
plotCher (plot.cher), 26
points, 24
polygon, 28
posToProbeAnno, 18, 28
posToProbeAnnoEnvironment

(posToProbeAnno), 28
preprocess, 3, 30
probeAnno (probeAnno-class), 32
probeAnno-class, 32
probeAnnoFromRGList (extractProbeAnno),

17
probes (cher-class), 5
probes,cher-method (cher-class), 5
probes,cherList-method (cher-class), 5

quantile, 39
quantilesOverPositions, 33

readNimblegen, 24, 34
readTargets, 35
region.overlap (regionOverlap), 35
regionOverlap, 19, 35
relateChers, 6, 7, 20, 22, 37
relevel, 15
rglist, 35

INDEX 45

scan, 29
shorth, 42
show,cher-method (cher-class), 5
show,probeAnno-method

(probeAnno-class), 32
sliding.meansd, 14, 38
sliding.quantile, 13, 38, 39
slidingquantile (sliding.quantile), 39
smoothScatter, 15

twoGaussiansNull, 40

update,cher-method (cher-class), 5
upperBoundNull, 41, 41

vsnMatrix, 31

	asExprSet
	autocor
	cher-class
	cherByThreshold
	chipAlongChrom
	compute.gc
	computeRunningMedians
	computeSlidingT
	corPlot
	exportCherList
	extractProbeAnno
	features2Probes
	findChersOnSmoothed
	ftr2xys
	getFeats
	image.RGList
	nonzero-methods
	plot.autocor.result
	plot.cher
	plotBM
	posToProbeAnno
	preprocess
	probeAnno-class
	quantilesOverPositions
	readNimblegen
	regionOverlap
	relateChers
	sliding.meansd
	sliding.quantile
	twoGaussiansNull
	upperBoundNull
	Index

