res {distinct} | R Documentation |
distinct_test
functionResults from distinct_test
function
res |
contains a |
Simone Tiberi simone.tiberi@uzh.ch
# load the input data: # data("Kang_subset", package = "distinct") # Kang_subset # # create the design of the study: # samples = Kang_subset@metadata$experiment_info$sample_id # group = Kang_subset@metadata$experiment_info$stim # design = model.matrix(~group) # rownames of the design must indicate sample ids: # rownames(design) = samples # design # # Note that the sample names in `colData(x)$name_sample` have to be the same ones as those in `rownames(design)`. # rownames(design) # unique(SingleCellExperiment::colData(Kang_subset)$sample_id) # # In order to obtain a finer ranking for the most significant genes, if computational resources are available, we encourage users to increase P_4 (i.e., the number of permutations when a raw p-value is < 0.001) and set P_4 = 20,000 (by default P_4 = 10,000). # # The group we would like to test for is in the second column of the design, therefore we will specify: column_to_test = 2 # # set.seed(61217) # res = distinct_test( # x = Kang_subset, # name_assays_expression = "logcounts", # name_cluster = "cell", # design = design, # column_to_test = 2, # min_non_zero_cells = 20, # n_cores = 2) # # save(res, file = "res.RData") # saveRDS(res, file = "res.rds")