
Estrogen 2×2 Factorial Design

Denise Scholtens, Robert Gentleman

Experimental Data

In this vignette, we demonstrate how to use linear models and the package factDesign to
analyze data from a factorial designed microarray experiment. When careful attention is paid
to the biological interpretation of the linear model parameters, multifactor experiments can
be particularly useful for disentangling complex biological systems. These methods are also
more generally applicable to any microarray experiment to which linear modeling applies. For
small experiments, investigators may want to consider moderating variance estimates using the
techniques available in packages such as limma, siggenes, LPE , and EBarrays.

In this package, an ExpressionSet object called estrogen contains gene expression levels
for 500 genes from Affymetrix HGU95av2 chips for eight samples from a breast cancer cell line.
The results of the analysis of the full data set (12,625 probes, 32 samples) are discussed in
Scholtens, et al. Analyzing Factorial Designed Microarray Experiments. Journal of Multivari-
ate Analysis. (To appear). The expression estimates were calculated using the rma method
after quantile normalization from the affy package. The expression values are reported in log
base 2 scale as returned by rma (Irizarry et al, 2003).

> library(Biobase)

> library(affy)

> library(stats)

> library(factDesign)

>

The investigators in this experiment were interested in the effect of estrogen on the genes
in ER+ breast cancer cells over time. After serum starvation of all eight samples, they exposed
four samples to estrogen, and then measured mRNA transcript abundance after 10 hours for
two samples and 48 hours for the other two. They left the remaining four samples untreated,
and measured mRNA transcript abundance at 10 hours for two samples, and 48 hours for
the other two. Since there are two factors in this experiment (estrogen and time), each at two
levels, (estrogen: absent or present,time: 10 hours or 48 hours), this experiment is said to have
a 2×2 factorial design. Table 1 shows the correspondence of the sample names in estrogen

with the experimental conditions.

> data(estrogen)

> estrogen

ExpressionSet (storageMode: lockedEnvironment)

assayData: 500 features, 8 samples
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Table 1: Experimental Conditions for .cel Files

time estrogen
absent present

10 hours et1 Et1

et2 Et2

48 hours eT1 ET1

eT2 ET2

element names: exprs, se.exprs

protocolData: none

phenoData

sampleNames: et1.CEL et2.CEL ... ET2.CEL (8 total)

varLabels: ES TIME

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'
Annotation: hgu95av2

> pData(estrogen)

ES TIME

et1.CEL A 10h

et2.CEL A 10h

Et1.CEL P 10h

Et2.CEL P 10h

eT1.CEL A 48h

eT2.CEL A 48h

ET1.CEL P 48h

ET2.CEL P 48h

>

Analysis Using Fold Change Criteria

A simple method for finding estrogen-affected genes would be to form a ratio of the mean
expression levels of the estrogen-treated samples to the mean of the expression levels for the
untreated samples. Suppose we consider only the 10-hour time point, calculate fold change
(FC) values for the estrogen-treated vs. untreated samples, and select genes for which we
observe FC>2. In the plots below, absence/presence of estrogen is represented by e/E and the
10/48 hour time point is represented by t/T on the horizontal axis. The proposed FC criteria
at 10 hours would compare the mean of the green dots to the mean of the red dots.

If we used a FC> 2 criteria to identify ES-affected genes in the estrogen data set, we
would successfully eliminate genes like 34371 at and select genes like 37325 at; however, we
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could miss several interesting genes. For example, 33744 at has a lower fold change value of
1.245, but the replicates are very consistent, leading us to believe that this smaller effect might
be real. We would want to distinguish this from other genes like 39792 at which has a similar
fold change value of 1.246, but quite variable observations.

> par(mfrow=c(2,2))

> par(las=2)

> for (i in c("34371_at","37325_at","33744_at","39792_at")){

+ expvals <- 2^exprs(estrogen)[i,]

+ plot(expvals,axes=F,cex=1.5,

+ xlab="Conditions",ylab="Expression Estimate")

+ points(1:2,expvals[1:2],pch=16,cex=1.5,col=2)

+ points(3:4,expvals[3:4],pch=16,cex=1.5,col=3)

+ axis(1,at=1:8,labels=c("et1","et2","Et1","Et2","eT1","eT2","ET1","ET2"))

+ axis(2)

+ FC <- round(mean(expvals[3:4])/mean(expvals[1:2]),3)

+ title(paste(i,", FC=",FC,sep=""))

+ }

>
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We would like to find genes with consistent expression estimates between replicate samples
that are either up- or down-regulated by estrogen, for example 32536 at and 40446 at. We
would also like to find genes like gene 32901 at for which the magnitude of the effect of estrogen
changes over time. Furthermore, we would like to exclude genes like 31826 at that demonstrate
change primarily over time, and not necessarily due to estrogen.

Selecting genes according to fold change estimates alone does not take advantage of the
measure of variability in gene expression offered by the replicate sampels. Furthermore, we
cannot attach statistical significance (i.e., a p-value) to the fold change estimates computed in
this manner. It is also difficult to quantify any change in estrogen effect over time. Classical
statistical linear modeling with thoughtful biological interpretation of the parameters offers a
natural paradigm for the analysis of factorial designed microarray experiments.

> par(mfrow=c(2,2))

> par(las=2)

> for (i in c("32536_at","40446_at","32901_s_at","31826_at")){

+ expvals <- exprs(estrogen)[i,]

+ plot(expvals,axes=F,cex=1.5,

+ xlab="Conditions",ylab="log 2 Expression Estimate")

+ axis(1,at=1:8,labels=c("et1","et2","Et1","Et2","eT1","eT2","ET1","ET2"))

+ axis(2)

+ title(i)

+ }

>
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Removing Outliers

Before defining the linear model for this particular experiment, we may want to remove obser-
vations that might be single outliers in the data set. The test we used is based on the differences
between replicates and is appropriate for small factorial experimental designs. First, we iden-
tify replicate pairs with differences that are significantly larger than expected, and then we
can apply a median absolute deviation filter to make sure one of the observations is indeed the
single outlier. For example, 728 at has a replicate pair with a large difference, but we wouldn’t
want to label either observation as the single outlier. 33379 at has one observation that indeed
appears to be a single outlier.

Removing single outliers from small factorial designed experiments does assume that the
changes in expression across experimental conditions are small compared to the outlier effects.
For probe 33379 at, it could very well be the second observation which is the outlier if true
expression happens to be higher at the earlier time in the presence of estrogen. Users should
consider whether or not single outlier elimination is appropriate in their particular experimental
setting. Here we have commented out the code that could be used to replace single outliers
with ”NA” values.
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> op1 <- outlierPair(exprs(estrogen)["728_at",],INDEX=pData(estrogen),p=.05)

> print(op1)

$test

[1] TRUE

$pval

[1] 0.01432178

$whichPair

[1] 7 8

> madOutPair(exprs(estrogen)["728_at",],op1[[3]])

[1] NA

> par(mfrow=c(2,2))

> par(las=2)

> for (i in c("728_at","33379_at")){

+ expvals <- exprs(estrogen)[i,]

+ plot(expvals,axes=F,cex=1.5,

+ xlab="Conditions",ylab="log 2 Expression Estimate")

+ if(i=="728_at") points(7:8,expvals[7:8],pch=16,cex=1.5)

+ if(i=="33379_at") points(1:2,expvals[1:2],pch=16,cex=1.5)

+ axis(1,at=1:8,labels=c("et1","et2","Et1","Et2","eT1","eT2","ET1","ET2"))

+ axis(2)

+ title(i)

+ }

>

> #for (j in 1:500){

> # op <- outlierPair(exprs(estrogen)[j,],INDEX=pData(estrogen),p=.05)

> # if(op[[1]]){

> # so <- madOutPair(exprs(estrogen)[j,],op[[3]])

> # if(!is.na(so)) exprs(estrogen)[j,so] <- NA

> # }

> #}

>

>
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Describing the Linear Model

The 2×2 factorial design of this experiment allows us to use a statistical linear model to
measure the effects of estrogen and time on gene expression. In equation (1), yfull,ij is the
observed expression level for gene i in sample j (j = 1, ..., 8). xESj = 1 if estrogen is present
and 0 otherwise; xTIMEj = 1 if gene expression was measured at 48 hours and 0 otherwise. µi
is the expression level of untreated gene i at 10 hours. βESi and βTIMEi represent the effects
of estrogen and time on the expression level of gene i, respectively. βES:TIMEi is called an
interaction term for gene i; this allows us to quantify any change in estrogen effect over time
for probes like 1700_at. εij represents random error for gene i and sample j, and is assumed to
be independent for each gene and sample, and normally distributed with mean 0 and variance
σ2i . The biologically independent replicates of the experimental conditions in this study allow
us to estimate σ2i .

yij = µi + βESixESj + βTIMEixTIMEj + βES:TIMEixESjxTIMEj + εij (1)

To proceed with the analysis, we estimate the β parameters for every gene using least squares,
and call the estimates β̂ESi, β̂TIMEi, and β̂ES:TIMEi. For gene i, the samples that were not
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treated with estrogen and were measured at 10 hours will have estimated expression values
of µ̂i. The estrogen-treated, 10-hour samples will have estimates µ̂i + β̂ESi. The untreated,
48-hour samples will have estimates µ̂i + β̂TIMEi. The estrogen-treated, 48-hour samples will
have estimates µ̂i + β̂ESi + β̂TIMEi + β̂ES:TIMEi.

We will also form a reduced model with only an effect for time (2), and use this to decide
if a model including estrogen is appropriate for the gene of interest.

yij = µi + βTIMEixTIMEj + εi (2)

> lm.full <- function(y) lm(y ~ ES + TIME + ES:TIME)

> lm.time <- function(y) lm(y ~ TIME)

> lm.f <- esApply(estrogen, 1, lm.full)

> lm.t <- esApply(estrogen, 1, lm.time)

> lm.f[[1]]

Call:

lm(formula = y ~ ES + TIME + ES:TIME)

Coefficients:

(Intercept) ESP TIME48h ESP:TIME48h

4.81164 -0.22762 0.01055 0.03839

> lm.t[[1]]

Call:

lm(formula = y ~ TIME)

Coefficients:

(Intercept) TIME48h

4.69783 0.02974

>

Selecting Genes of Interest using the Linear Model

We are only interested in genes which are affected by estrogen. One way to select such genes is
to compare the full linear model (lm.f) to the linear model consisting of only a term for time
(lm.t) using an ANOVA F -test. If the full model lm.f fits better than the reduced model
lm.t, then we know the gene must be affected by estrogen.

Since we have so many genes to consider, multiple comparisons is an obvious problem.
The R package multtest contains many functions that are suitable for multiple comparisons
adjustment for microarrays. Here, the p-values from the ANOVA F -tests are adjusted according
to the Benjamini and Hochberg (1995) False Discovery Rate method with an FDR of .15.

> Fpvals <- rep(0,length(lm.f))

> for(i in 1:length(lm.f)){
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+ Fpvals[i]<-anova(lm.t[[i]],lm.f[[i]])$P[2]

+ }

> library(multtest)

> procs <- c("BH")

> F.res <- mt.rawp2adjp(Fpvals,procs)

> F.adjps <- F.res$adjp[order(F.res$index),]

> Fsub <- which(F.adjps[,"BH"]<.15)

> estrogen.Fsub <- estrogen[Fsub]

> lm.f.Fsub <- lm.f[Fsub]

> estrogen.Fsub

ExpressionSet (storageMode: lockedEnvironment)

assayData: 28 features, 8 samples

element names: exprs, se.exprs

protocolData: none

phenoData

sampleNames: et1.CEL et2.CEL ... ET2.CEL (8 total)

varLabels: ES TIME

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'
Annotation: hgu95av2

>

>

Suppose we want to identify genes that are affected by estrogen at 10 hours. In our linear
model, this corresponds to testing a null hypothesis H0ES : βES = 0, and if the hypothesis
rejected, concluding that the gene has a main estrogen effect.

> betaNames <- names(coef(lm.f[[1]]))

> lambda <- par2lambda(betaNames,c("ESP"),c(1))

> mainES <- function(x) contrastTest(x,lambda,p=0.05)[[1]]

> mainESgenes <- sapply(lm.f.Fsub,FUN=mainES)

> sum(mainESgenes=="REJECT")

[1] 22

>

Heatmaps can be a useful way to visualize genes that are selected according to a certain
criteria. In the first heatmap that follows, we see genes for which the null hypothesis H0ES

was rejected at a 0.05 significance level. In the second heatmap, we see the genes for which
the main estrogen effect was not statistically significant; it appears that estrogen affected these
genes only after 48 hours.

> heatmap(exprs(estrogen.Fsub)[mainESgenes=="REJECT",],Colv=NA,col=cm.colors(256))

>
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> heatmap(exprs(estrogen.Fsub)[mainESgenes=="FAIL TO REJECT",],Colv=NA,col=cm.colors(256))

>
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Selecting genes according to p-value can produce some possibly misleading results. For
example, 32901 s at had a main ES effect with p-value for βES less than 0.01, but the estimate
of fold change supression at 10 hours is only .8922. While this small effect is statistically
significant, it may not be biologically interesting. Selecting genes with significant contrast test
p-values as well as fold change values above a certain threshold can give a good approximation
to more sophisticated variance moderating analyses.

> lambdaNum <- par2lambda(betaNames,list(c("(Intercept)","ESP")),list(c(1,1)))

> lambdaDenom <- par2lambda(betaNames,list(c("(Intercept)")),list(c(1)))

> FCval <- findFC(lm.f.Fsub[["32901_s_at"]],lambdaNum,lambdaDenom,logbase=2)

> print(FCval)

[,1]

[1,] 0.8922424

> FCvals <- lapply(lm.f.Fsub,FUN=findFC,lambdaNum,lambdaDenom,logbase=2)

> largeFC <- unlist(FCvals>1.4 | FCvals<.7)

> estrogen.Fsub.FC <- estrogen.Fsub[largeFC & mainESgenes=="REJECT"]

> heatmap(exprs(estrogen.Fsub.FC),Colv=NA,col=cm.colors(256))

>

Now suppose we want to find genes that are affected by estrogen after both 10 and 48
hours. By testing for the main estrogen effect, we have already found genes with an estrogen
effect at 10 hours. To select genes with an estrogen effect at 48 hours, we want to compare
the gene expression levels of the untreated samples that were measured at 48 hours with the
estrogen-treated samples at 48 hours. In terms of our linear model, for each gene, we want to
test the null hypothesis H0ES,TIME in (3).

H0ES,TIME : µ+ βTIME = µ+ βES + βTIME + βES:TIME (3)
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Testing the null hypothesis H0ES,TIME is equivalent to testing the linear contrast H0ES,TIME∗
in (4).

H0ES,TIME∗ : βES + βES:TIME = 0 (4)

The technique for testing this linear contrast follows from straightforward linear model theory.
The par2lambda function helps set up the appropriate matrix for testing sets of linear contrasts.

> lambdaEST <- par2lambda(betaNames,list(c("ESP","ESP:TIME48h")),list(c(1,1)))

> ESTcontrast <- function(x) contrastTest(x,lambdaEST,p=.10)[[1]]

> ESTgenes <- sapply(lm.f.Fsub,FUN=ESTcontrast)

> sum(ESTgenes=="REJECT")

[1] 27

>

Again, we can use a heatmap to look at genes for which we rejected bothH0ES andH0ES,TIME∗.

> heatmap(exprs(estrogen.Fsub)[mainESgenes=="REJECT" & ESTgenes=="REJECT",],Colv=NA,col=cm.colors(256))

>
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After genes are selected according to contrast tests of interest, the annotation information
available in other Bioconductor packages allows for more in-depth research on specific genes.

Using linear models for factorial designed microarray experiments enables investigators to
extend analyses beyond basic gene filtering according to fold change. Genes can be selected in a
high-throughput manner with biologically interpretable parameters and quantifiable measures
of confidence. This lab investigated the effects of estrogen on breast cancer cells, but the
principles behind this specific example are applicable to any carefully designed microarray
study.
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