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Abstract

When dealing with large scale gene expression studies, observations are commonly
contaminated by sources of unwanted variation such as platforms or batches. Not tak-
ing this unwanted variation into account when analyzing the data can lead to spurious
associations and to missing important signals. When the analysis is unsupervised, e.g.
when the goal is to cluster the samples or to build a corrected version of the dataset
— as opposed to the study of an observed factor of interest — taking unwanted varia-
tion into account can become a difficult task. The factors driving unwanted variation
may be correlated with the unobserved factor of interest, so that correcting for the
former can remove the latter if not done carefully. RUVnormalize implements meth-
ods described in Jacob et al. [2012] to estimate and remove unwanted variation from
microarray gene expression data. These methods rely on negative control genes and
replicate samples.

1 Introduction

Over the last few years, microarray-based gene expression studies involving a large number
of samples have been conducted [Cardoso et al., 2007, Cancer Genome Atlas Research
Network, 2008], with the goal of helping understand or predict some particular factors of
interest like the prognosis or the subtypes of a cancer. Such large gene expression studies
are often carried out over several years, may involve several hospitals or research centers and
typically contain some unwanted variation. Sources of unwanted variation can be technical
elements such as batches, different platforms or laboratories, or any biological signal which
is not the factor of interest of the study such as heterogeneity in ages or different ethnic
groups.

Unwanted variation can easily lead to spurious associations. For example when one
is looking for genes which are differentially expressed between two subtypes of cancer,
the observed differential expression of some genes could actually be caused by differences
between laboratories if laboratories are partially confounded with subtypes. When doing
clustering to identify new subgroups of the disease, one may actually identify some of the
unwanted factors if their effects on gene expression are stronger than the subgroup effect.
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If one is interested in predicting prognosis, one may actually end up predicting whether the
sample was collected at the beginning or at the end of the study because better prognosis
patients were accepted at the end of the study. In this case, the classifier obtained would
have little value for predicting the prognosis of new patients.

Similar problems arise when trying to combine several smaller studies rather than work-
ing on one large heterogeneous study: in a dataset resulting from the merging of several
studies the strongest effect one can observe is generally related to the membership of sam-
ples to different studies. A very important objective is therefore to remove this unwanted
variation without losing the variation of interest.

A large number of methods have been proposed to tackle this problem, mostly using
linear models. When both the factor of interest and the unwanted factors are observed, the
problem essentially boils down to a linear regression [Johnson et al., 2007]. When the factor
of interest is observed but the unwanted factors are not, the latter need to be estimated
before a regression is possible. This is typically done using the covariance structure of the
gene expression matrix [Kang et al., 2008], the residuals after an ordinary regression [Leek
and Storey, 2007, Listgarten et al., 2010] or negative control genes [Gagnon-Bartsch and
Speed, 2012]. Finally if the factor of interest itself is not defined, some methods [Alter
et al., 2000] use singular value decomposition (SVD) on gene expression to identify and
remove the unwanted variation and others [Benito et al., 2004] remove observed batches
by linear regression.

RUVnormalize addresses this latter case where there is no predefined factor of interest.
This situation arises when performing unsupervised estimation tasks such as clustering
or PCA, in the presence of unwanted variation. It can also be the case that one needs
to normalize a dataset without knowing which factors of interest will be studied. Our
main objective is to correct the gene expression by estimating and removing the unwanted
variation, without removing the — unobserved — variation of interest.

For more detail about the statistical model and method, see Jacob et al. [2012] and
references therein.

2 Software features

RUVnormalize takes as input gene expression data, negative control genes and replicate
samples, and offers the following functionalities:

Gene expression correction RUVnormalize estimates the unwanted variation from nega-
tive control genes or replicate samples and removes it from the input gene expression
data, returning a corrected matrix.

Representation RUVnormalize provides a function to represent the influence of unwanted
variation on gene expression.
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3 Case studies

We now show on a particular dataset how RUVnormalize can be used to remove unwanted
variation from gene expression data.

Vawter et al. [2004] systematically measured the expression of 12, 600 genes for 5 male
and 5 female patients, with the goal to study gender related differential expression. The
samples come from different brain regions and are hybridized from different labs, both of
which affect gene expression. Ideally, a correction method applied to this dataset would
remove the effect of these unwanted sources of variation without affecting the gender signal.

We apply various correction methods on this dataset and assess how well the corrected
data clusters by gender.

3.1 Loading the library and the data

We load the RUVnormalize package by typing or pasting the following codes in R command
line. We also need the spams package.

> library(RUVnormalize)

> library(RUVnormalizeData)

We then load the expression data, control genes and known factors affecting the ex-
pression:

> data('gender', package='RUVnormalizeData')
> Y <- t(exprs(gender))

> X <- as.numeric(phenoData(gender)$gender == 'M')
> X <- X - mean(X)

> X <- cbind(X/(sqrt(sum(X^2))))

> chip <- annotation(gender)

> ## Extract regions and labs for plotting purposes

> lregions <- sapply(rownames(Y),FUN=function(s) strsplit(s,'_')[[1]][2])
> llabs <- sapply(rownames(Y),FUN=function(s) strsplit(s,'_')[[1]][3])
> ## Dimension of the factors

> m <- nrow(Y)

> n <- ncol(Y)

> p <- ncol(X)

> Y <- scale(Y, scale=FALSE) # Center gene expressions

> cIdx <- which(featureData(gender)$isNegativeControl) # Negative control genes

> ## Number of genes kept for clustering, based on their variance

> nKeep <- 1260

We prepare variables which will then be used to plot the data before and after correction.
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> ## Prepare plots

> annot <- cbind(as.character(sign(X)))

> colnames(annot) <- 'gender'
> plAnnots <- list('gender'='categorical')
> lab.and.region <- apply(rbind(lregions, llabs),2,FUN=function(v) paste(v,collapse='_'))
> gender.col <- c('-1' = "deeppink3", '1' = "blue")

Gene expression in this dataset is strongly affected by a platform effect. This effect is
reasonably well corrected by centering the data by platform, so we apply this centering as
a pre-processing.

> ## Remove platform effect by centering.

> Y[chip=='hgu95a.db',] <- scale(Y[chip=='hgu95a.db',], scale=FALSE)

> Y[chip=='hgu95av2.db',] <- scale(Y[chip=='hgu95av2.db',], scale=FALSE)

Some correction methods use a table describing which samples are replicates of each
others. The table has as many columns as the largest set of replicates for one sample. Each
row corresponds to a set of replicates of the same sample and gives the row indices of the
replicates in the gene expression matrix, padded with -1 entries.

> ## Prepare control samples

> scIdx <- matrix(-1,84,3)

> rny <- rownames(Y)

> added <- c()

> c <- 0

> # Replicates by lab

> for(r in 1:(length(rny) - 1)){

+ if(r %in% added)

+ next

+ c <- c+1

+ scIdx[c,1] <- r

+ cc <- 2

+ for(rr in seq(along=rny[(r+1):length(rny)])){

+ if(all(strsplit(rny[r],'_')[[1]][-3] == strsplit(rny[r+rr],'_')[[1]][-3])){
+ scIdx[c,cc] <- r+rr

+ cc <- cc+1

+ added <- c(added,r+rr)

+ }

+ }

+ }

> scIdxLab <- scIdx

> scIdx <- matrix(-1,84,3)
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> rny <- rownames(Y)

> added <- c()

> c <- 0

> ## Replicates by region

> for(r in 1:(length(rny) - 1)){

+ if(r %in% added)

+ next

+ c <- c+1

+ scIdx[c,1] <- r

+ cc <- 2

+ for(rr in seq(along=rny[(r+1):length(rny)])){

+ if(all(strsplit(rny[r],'_')[[1]][-2] == strsplit(rny[r+rr],'_')[[1]][-2])){
+ scIdx[c,cc] <- r+rr

+ cc <- cc+1

+ added <- c(added,r+rr)

+ }

+ }

+ }

> scIdx <- rbind(scIdxLab,scIdx)

3.2 Correction

We now apply the correction methods and plot the corrected data. More specifically after
each correction, we apply k-means clustering to the corrected gene expression matrix,
and plot the projection of the samples onto the space spanned by the first two principal
components. We plot the projections as we go, and summarize the clustering qualities in
a table at the end of the vignette. We use the function clScore to compare the partition
of the samples obtained using k-means to the ground truth (partition by gender).

As described in Jacob et al. [2012], we only keep the 10% genes with the largest variance
for clustering an computing the principal components.

As a baseline, we start with the uncorrected gene expression matrix:

> ## Sort genes by their standard deviation

> sdY <- apply(Y, 2, sd)

> ssd <- sort(sdY, decreasing=TRUE, index.return=TRUE)$ix

> ## Cluster the samples

> kmres <- kmeans(Y[, ssd[1:nKeep], drop=FALSE], centers=2, nstart=200)

> vclust <- kmres$cluster

> ## Compute the distance between clustering by gender

> ## and clustering obtained by k-means

> uScore <- clScore(vclust,X)
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We then plot the first two principal components for the uncorrected gene expression
matrix.

The plot suggests that without correction, the observed gene expression is mainly driven
by a lab effect (PC1) and a brain region effect (PC2).

In the rest of the vignette, we apply the same steps (clustering and PCA plot) after
centering genes by lab-region batch, using naive RUV-2, random naive RUV-2, the replicate
based correction and iterative corrections based on replicates and negative control genes
only. See Jacob et al. [2012] for more details about the correction methods.

> ## Centering by region-lab

> YmeanCorr <- Y

> for(rr in unique(lregions)){

+ for(ll in unique(llabs)){

+ YmeanCorr[(lregions==rr)&(llabs==ll),] <- scale(YmeanCorr[(lregions==rr)&(llabs==ll),],scale=FALSE)

+ }

+ }

> sdY <- apply(YmeanCorr, 2, sd)

> ssd <- sort(sdY,decreasing=TRUE,index.return=TRUE)$ix

> kmresMC <- kmeans(YmeanCorr[,ssd[1:nKeep],drop=FALSE],centers=2,nstart=200)

> vclustMC <- kmresMC$cluster

> MCScore <- clScore(vclustMC, X)

The plot shows that centering removed the lab and brain region effects, but not in a
way that leads to a clustering by gender. The following methods lead to a removal of the
lab and brain region effects which leads to a better clustering of the samples by gender.

> ## Naive RUV-2 no shrinkage

> k <- 20

> nu <- 0

> nsY <- naiveRandRUV(Y, cIdx, nu.coeff=0, k=k)

> sdY <- apply(nsY, 2, sd)

> ssd <- sort(sdY,decreasing=TRUE,index.return=TRUE)$ix

> kmres2ns <- kmeans(nsY[,ssd[1:nKeep],drop=FALSE],centers=2,nstart=200)

> vclust2ns <- kmres2ns$cluster

> nsScore <- clScore(vclust2ns, X)

> ## Naive RUV-2 + shrinkage

>

> k <- m

> nu.coeff <- 1e-3

> nY <- naiveRandRUV(Y, cIdx, nu.coeff=nu.coeff, k=k)
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> svdResUncorr <- svdPlot(Y[, ssd[1:nKeep], drop=FALSE],

+ annot=annot,

+ labels=lab.and.region,

+ svdRes=NULL,

+ plAnnots=plAnnots,

+ kColors=gender.col, file=NULL)
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Figure 1: Samples of the gender study represented in the space of their first two principal
components before correction. Blue samples are males, pink samples are females. The
upper case letter represents the lab, the lower case one is the brain region.
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> svdResMC <- svdPlot(YmeanCorr[, ssd[1:nKeep], drop=FALSE],

+ annot=annot,

+ labels=lab.and.region,

+ svdRes=NULL,

+ plAnnots=plAnnots,

+ kColors=gender.col, file=NULL)
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Figure 2: Samples of the gender study represented in the space of their first two principal
components after mean centering genes withing each region/lab groups. Blue samples are
males, pink samples are females. The upper case letter represents the lab, the lower case
one is the brain region.
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> svdRes2ns <- svdPlot(nsY[, ssd[1:nKeep], drop=FALSE],

+ annot=annot,

+ labels=lab.and.region,

+ svdRes=NULL,

+ plAnnots=plAnnots,

+ kColors=gender.col, file=NULL)
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Figure 3: Samples of the gender study represented in the space of their first two principal
components after applying the naive RUV-2 correction naiveRandRUV with rank reduction
(k = 20) and no shrinkage (ν = 0). Blue samples are males, pink samples are females. The
upper case letter represents the lab, the lower case one is the brain region.
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> sdY <- apply(nY, 2, sd)

> ssd <- sort(sdY,decreasing=TRUE,index.return=TRUE)$ix

> kmres2 <- kmeans(nY[,ssd[1:nKeep],drop=FALSE],centers=2,nstart=200)

> vclust2 <- kmres2$cluster

> nScore <- clScore(vclust2,X)

> ## Replicate-based

>

> sRes <- naiveReplicateRUV(Y, cIdx, scIdx, k=20)

> sdY <- apply(sRes$cY, 2, sd)

> ssd <- sort(sdY,decreasing=TRUE,index.return=TRUE)$ix

> kmresRep <- kmeans(sRes$cY[,ssd[1:nKeep],drop=FALSE],centers=2,nstart=200)

> vclustRep <- kmresRep$cluster

> RepScore <- clScore(vclustRep,X)

The last two correction methods are iterative: they start by a computing a naive
estimate of the Wα unwanted variation term, then estimate a term of interest Xβ from
the residuals Y −Wα, re-estimate Wα from Y −Xβ and iterate between these two steps
for a fixed number of steps or until some convergence is reached.

In these example, the estimation of Xβ given Wα is done using a sparse dictionary
learning method [Mairal et al., 2010]. The choice of the regularization parameters is dis-
cussed in Jacob et al. [2012]. The paramXb variable corresponds to the parameters of the
sparse dictionary learning method. The D, batch, iter and mode should not be modified
unless you are familiar with Mairal et al. [2010] and know precisely what you are doing.
K corresponds to the rank of X, i.e., p in our notation, and lambda is the regularization
parameter. Large values of lambda lead to sparser, more shrunk estimates of β.

> if (require(spams)){

+ ## Iterative replicate-based

+ cEps <- 1e-6

+ maxIter <- 30

+ p <- 20

+

+ paramXb <- list()

+ paramXb$K <- p

+ paramXb$D <- matrix(c(0.),nrow = 0,ncol=0)

+ paramXb$batch <- TRUE

+ paramXb$iter <- 1

+

+ ## l1

+ paramXb$mode <- 'PENALTY'
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> svdRes2 <- svdPlot(nY[, ssd[1:nKeep], drop=FALSE],

+ annot=annot,

+ labels=lab.and.region,

+ svdRes=NULL,

+ plAnnots=plAnnots,

+ kColors=gender.col, file=NULL)
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Figure 4: Samples of the gender study represented in the space of their first two principal
components after applying the naive RUV-2 correction naiveRandRUV using no rank re-
duction (k = m) but shrinkage ν 6= 0. Blue samples are males, pink samples are females.
The upper case letter represents the lab, the lower case one is the brain region.
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> svdResRep <- svdPlot(sRes$cY[, ssd[1:nKeep], drop=FALSE],

+ annot=annot,

+ labels=lab.and.region,

+ svdRes=NULL,

+ plAnnots=plAnnots,

+ kColors=gender.col, file=NULL)
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Figure 5: Samples of the gender study represented in the space of their first two principal
components after applying the replicate based correction naiveReplicateRUV. Blue sam-
ples are males, pink samples are females. The upper case letter represents the lab, the
lower case one is the brain region.
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+ paramXb$lambda <- 0.25

+

+ iRes <- iterativeRUV(Y, cIdx, scIdx, paramXb, k=20, nu.coeff=0,

+ cEps, maxIter,

+ Wmethod='rep', wUpdate=11)

+

+ ucY <- iRes$cY

+

+ sdY <- apply(ucY, 2, sd)

+ ssd <- sort(sdY,decreasing=TRUE,index.return=TRUE)$ix

+

+ kmresIter <- kmeans(ucY[,ssd[1:nKeep]],centers=2,nstart=200)

+ vclustIter <- kmresIter$cluster

+ IterScore <- clScore(vclustIter,X)

+ }else{

+ IterScore <- NA

+ }

> if (require(spams)){

+ ## Iterated ridge

+ paramXb <- list()

+ paramXb$K <- p

+ paramXb$D <- matrix(c(0.),nrow = 0,ncol=0)

+ paramXb$batch <- TRUE

+ paramXb$iter <- 1

+ paramXb$mode <- 'PENALTY' #2

+ paramXb$lambda <- 6e-2

+ paramXb$lambda2 <- 0

+

+ iRes <- iterativeRUV(Y, cIdx, scIdx=NULL, paramXb, k=nrow(Y), nu.coeff=1e-3/2,

+ cEps, maxIter,

+ Wmethod='svd', wUpdate=11)

+

+ nrcY <- iRes$cY

+

+ sdY <- apply(nrcY, 2, sd)

+ ssd <- sort(sdY,decreasing=TRUE,index.return=TRUE)$ix

+

+ kmresIter <- kmeans(nrcY[,ssd[1:nKeep]],centers=2,nstart=200)

+ vclustIter <- kmresIter$cluster

+ IterRandScore <- clScore(vclustIter,X)
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+ }else{

+ IterRandScore <- NA

+ }

Finally, we summarize the clustering errors obtained after each correction in a single
table:

> scores <- c(uScore, MCScore, nsScore, nScore, RepScore, IterScore, IterRandScore)

> names(scores) <- c('Uncorrected', 'Centered', 'Naive RUV-2', 'Naive + shrink', 'Replicates', 'Replicates + iter', 'Shrinkage + iter')
> print('Clustering errors after each correction')

[1] "Clustering errors after each correction"

> print(scores)

Uncorrected Centered Naive RUV-2 Naive + shrink

0.9997457 0.9725210 0.7507730 0.6737471

Replicates Replicates + iter Shrinkage + iter

0.7702779 NA NA

4 Session Information

R version 4.1.1 Patched (2021-08-22 r80813)

Platform: x86_64-apple-darwin17.0 (64-bit)

Running under: macOS Mojave 10.14.6

Matrix products: default

BLAS: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.0.dylib

LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib

locale:

[1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] RUVnormalizeData_1.13.0 Biobase_2.54.0 BiocGenerics_0.40.0

[4] RUVnormalize_1.28.0

loaded via a namespace (and not attached):

[1] compiler_4.1.1 tools_4.1.1
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