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Abstract

DExMA (Differential Expression Meta-Analysis) performs all the necessary steps of differen-
tial expression meta-analysis considering the possible existence of missing genes. It controls
the existence of unmeasured genes by two approaches: considering the genes that are con-
tained in a proportion of datasets (set by the users) or imputing the expression values of the
unmeasured genes using the Knn method in the space of samples. In addition, it allows to
apply quality controls, download GEO datasets and show a graphical representation of the
results.
packageVersionDExMA 1.2.1

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Previous steps: Meta-analysis object . . . . . . . . . . . . . . . 3

2.1 Meta-analysis object creation (objectMA) . . . . . . . . . . . . . 4

2.2 Adding a new dataset to the meta-analysis object . . . . . . . . . 7

3 Performing Meta-analysis . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Gene annotation and quality controls . . . . . . . . . . . . . . . 9
3.1.1 Setting all the datasets in the same annotation . . . . . . . . . 9
3.1.2 Logarithm transformation . . . . . . . . . . . . . . . . . . 11
3.1.3 Heterogeneity study . . . . . . . . . . . . . . . . . . . . 12

3.2 Imputing missing genes expression values (optional). . . . . . . . 13

3.3 Performing meta-analysis: metaAnalysisDE() . . . . . . . . . . . 14
3.3.1 Effects size combination results . . . . . . . . . . . . . . . 15
3.3.2 P-value combination results . . . . . . . . . . . . . . . . . 16

3.4 Visualization of the results: heatmap . . . . . . . . . . . . . . . 17

4 Additional information . . . . . . . . . . . . . . . . . . . . . . . . 18

mailto:pedro.carmona@genyo.es


DExMA package

4.1 GEO microarray data download . . . . . . . . . . . . . . . . . . 18

4.2 Using RNA-Seq data . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 Removing Batch Effects . . . . . . . . . . . . . . . . . . . . . 19

4.4 Calculating Effects size . . . . . . . . . . . . . . . . . . . . . . 21

4.5 Calculating Individual P-values . . . . . . . . . . . . . . . . . . 22

5 Session info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2



DExMA package

1 Introduction
DExMA is a package designed to perform gene expression meta-analysis. Gene expression
meta-analysis comprises a set of methods that combine the results of several differential
expression studies into a single common result [1]. Furthermore, this package has the ad-
vantage that it allows to takes into account those genes that are not measured in a study.
The first approach to control these missing genes, DExMA offers two options: apply the
k-nearest neighbors method (knn method) in the space of samples to impute the expression
values of these missing genes [2]. The second option is to take into account those genes
that are contained in at least a certain proportion (set by the user) of datasets. The use
of only the genes common to all the datasets could lead to the loss of some genes that are
not measured in a single study, which would lead to the loss of information. Due to this
fact, DExMA package is very useful to work with Microarray data, because this type of data
is what usually produces the existence of uncommon genes between datasets with different
annotations. However, previously normalized RNA-Seq data can also be used, as well as,
both Microarray data and normalized RNA-Seq data at the same time.
DExMA package has implemented methods from the three main types of gene expression
meta-analysis [1] meta-analysis based on effects sizes combination and meta-analysis based on
p-values combination. Once one of the methods has been applied, DExMA package provides
a specific and adapted results table. Moreover, this package contains some functions that
allows the user to carry out a previous quality control in order to results obtained are more
reliable. Finally, this package provides some additional function that, for example, help the
user to download public Microarray data from NCBI GEO public database [3] or to visualize
the significant genes in a heatmap.
This document gives a tutorial-style introduction to all the steps that must be carry out in
order to properly perform gene expression meta-analysis by making use of DExMA package.

2 Previous steps: Meta-analysis object
DExMA uses a specific object as input, which is a list of nested lists where each nested list
corresponds to a study. This object can be created directly by the users or they can use
createObjectMA() function to create it.
For the examples that are going to be shown, synthetic data will be used. We load the sample
data into our R session.
> library(DExMA)

> data("DExMAExampleData")

• listMatrixEX: a list of four expression arrays
• listPhenodatas: a list of the four phenodata corresponding to the four expression arrays
• listExpression: a list of four ExpressionSets object. It contains the same information as

listMatrixEX and listPhenodatas
• ExpressionSetStudy5: an ExpressionSet object similar to the ExpressionSets objects of

listExpression.
• maObjectDif: the meta-analysis object created from the listMatrixEX and listPheno-

datas objects.
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• maObject: the meta-analysis object after setting all the studies in Official Gene Symbol
annotation

2.1 Meta-analysis object creation (objectMA)
As previously stated, the meta-analysis input in DExMA is a list of nested lists. Each nested
list contains two elements:

• A gene expression matrix with genes in rows and samples in columns
• A vector of 0 and 1 indicating the group of each sample. 0 represents reference group

(usually controls) and 1 represents experimental group (usually cases).
This object can be created directly by the user or we can make use of createObjectMA()
function, which creates the *objectMA* after indicating how the reference and experimental
groups are identified.
createObjectMA() function allows to create the object needed to perform meta-analysis. In
this case, it is necessary to indicate as input of the function the variables that contain the
experimental and reference groups:

• listEX: a list of dataframes or matrix (genes in rows and samples in columns). A list
of ExpressionSets can be used too:
> #List of expression matrices

> data("DExMAExampleData")

> ls(listMatrixEX)

[1] "Study1" "Study2" "Study3" "Study4"

> head(listMatrixEX$Study1)

Sample1 Sample2 Sample3 Sample4

100859927 5.439524 6.253319 2.926444 4.4304023

8086 5.769823 5.971453 1.831349 4.0466288

8212 7.558708 5.957130 2.365252 3.4352889

65985 6.070508 7.368602 2.971158 3.7151784

729522 6.129288 5.774229 3.670696 3.9171749

13 7.715065 7.516471 1.349453 0.3390772

> #List of ExpressionSets

> ls(listExpressionSets)

[1] "Study1" "Study2" "Study3" "Study4"

> listExpressionSets$Study1

ExpressionSet (storageMode: lockedEnvironment)

assayData: 200 features, 4 samples

element names: exprs

protocolData: none

phenoData

rowNames: Sample1 Sample2 Sample3 Sample4

varLabels: condition gender organism race

varMetadata: labelDescription

featureData: none
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experimentData: use 'experimentData(object)'

Annotation:

• listPheno: a list of phenodatas (samples in rows and covariables in columns). If the
object listEX is a list of ExpressionSets this element can be null.
> data("DExMAExampleData")

> #Example of a phenodata object

> ls(listPhenodatas)

[1] "Study1" "Study2" "Study3" "Study4"

> listPhenodatas$Study1

condition gender organism race

Sample1 Diseased Female Homo Sapiens AA

Sample2 Diseased Female Homo Sapiens AA

Sample3 Healthy Female Homo Sapiens AA

Sample4 Healthy Female Homo Sapiens H

• namePheno: a list or vector of the different column names or column positions from the
pheno used for perfoming the comparison between groups. Each element of namePheno
correspont to its equivalent element in the listPheno. (default a vector of 1, all the
first columns of each elements of listPheno are selected)

• expGroups: a list or vector of the group names or positions from namePheno variable
used as experimental group (cases) to perform the comparison (default a vector of 1,
all the first groups are selected).

• refGroups: a list or vector of the group names or positions from namePheno variable
used as reference group (controls) to perform the comparison (default a vector of 2,
all the second groups are selected).

It is important to note that if any element does not belong to the experimental or the reference
group, that sample is not taken into account in the creation of meta-analysis object.
Here, we have included an example to show how exactly the function is used:
Since this function can be a bit complicated if there are many datasets, we recommend
creating a vector to keep the column names of the phenodatas that contains the variable
that identifies the groups to compare (namePheno argument). Moreover, we should create
two others lits to indicate how to identify experimental (cases) and reference (controls) groups
in these variables (expGroups and refGroups arguments).
If we look at the example phenodatas list we have the following four objects:
> listPhenodatas$Study1

condition gender organism race

Sample1 Diseased Female Homo Sapiens AA

Sample2 Diseased Female Homo Sapiens AA

Sample3 Healthy Female Homo Sapiens AA

Sample4 Healthy Female Homo Sapiens H

In the "Study1" phenoData, the groups variable is "condition". Experimental group is named
as "Diseased" and reference group as "Healthy".
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> listPhenodatas$Study2

condition gender organism race

Sample5 Diseased Female Homo Sapiens AA

Sample6 Diseased Female Homo Sapiens AA

Sample7 ill Male Homo Sapiens C

Sample8 Healthy Female Homo Sapiens H

Sample9 control Female Homo Sapiens H

Sample10 control Male Homo Sapiens H

In the "Study2" phenoData, the groups variable is "condition". Experimental group is named
as "Diseased" or "ill" and reference group as "Healthy" or "control"
> listPhenodatas$Study3

state gender organism race

Sample11 Diseased Female Homo Sapiens AA

Sample12 Diseased Female Homo Sapiens AA

Sample13 Healthy Female Homo Sapiens AA

Sample14 Healthy Female Homo Sapiens H

In the "Study3" phenoData, the groups variable is "state". Experimental group is named as
"Diseased" and reference group as "Healthy".
> listPhenodatas$Study4

state gender organism race

Sample15 ill Female Homo Sapiens AA

Sample16 ill Female Homo Sapiens AA

Sample17 ill Male Homo Sapiens AA

Sample18 control Female Homo Sapiens C

Sample19 control Female Homo Sapiens H

Sample20 control Male Homo Sapiens H

In this phenoData, the groups variable is "state". Experimental group is named as "ill" and
reference group as "control".
We all this information we can create the vector for namePheno argument and the two list
for expGroups and refGroups:
> phenoGroups = c("condition", "condition", "state", "state")

> phenoCases = list(Study1 = "Diseased", Study2 = c("Diseased", "ill"),

+ Study3 = "Diseased", Study4 = "ill")

> phenoControls = list(Study1 = "Healthy", Study2 = c("Healthy", "control"),

+ Study3 = "Healthy", Study4 = "control")

Then, we can apply more easily createObjectMA() function:
> newObjectMA <- createObjectMA(listEX=listMatrixEX,

+ listPheno = listPhenodatas,

+ namePheno=phenoGroups,

+ expGroups=phenoCases,

+ refGroups = phenoControls)

> #Study 1
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> head(newObjectMA[[1]][[1]])

Sample1 Sample2 Sample3 Sample4

100859927 5.439524 6.253319 2.926444 4.4304023

8086 5.769823 5.971453 1.831349 4.0466288

8212 7.558708 5.957130 2.365252 3.4352889

65985 6.070508 7.368602 2.971158 3.7151784

729522 6.129288 5.774229 3.670696 3.9171749

13 7.715065 7.516471 1.349453 0.3390772

> newObjectMA[[1]][[2]]

[1] 1 1 0 0

> #Study 2

> head(newObjectMA[[2]][[1]])

Sample5 Sample6 Sample7 Sample8 Sample9 Sample10

100859927 4.367690 6.648252 5.786897 2.820073 2.688687 3.331881

8086 5.937004 5.914434 7.124650 3.234439 3.228559 4.521235

8212 5.294553 4.092231 5.194514 3.368330 2.750491 5.369983

65985 5.685822 5.900363 5.539580 2.153294 3.166798 3.162232

729522 5.733054 5.553966 6.592146 3.275042 2.659061 2.452524

13 6.153159 5.435909 6.991360 4.860632 3.751608 3.121853

> newObjectMA[[2]][[2]]

[1] 1 1 1 0 0 0

The result obtained is the proper object to perform meta-analysis (objectMA).

2.2 Adding a new dataset to the meta-analysis object
It may happen that once the meta-analysis object is created we want to add a new dataset
before doing the meta-analysis. DExMA provides the elementObjectMA() function, which
allows the creation of an element ofthe meta-analysis object. This function contains the
following arguments:

• expressionMatrix: a dataframe or matrix that contanining genes in rows and samples
in columns. An ExpressionSet object can be used too.

• pheno: a data frame or a matrix containing samples in rows and covariates in columns.
If NULL (default), pheno is extracted from the ExpressionSet object

• groupPheno: the column name or position from pheno where experimental group
(cases) and reference group (control) are identified

• expGroups: a vector of the names or positions from groupPheno variable used as
experimental group (cases). By default the first group (character) is taken

• refGroups: a vector of the names or positions from groupPheno variable used as refer-
ence group (control). By default the second group (character) is taken.

As with the createObjectMA() function, if any element does not belong to the experimental
or the reference group, that sample is not included in the creation of the object.
Here we provided an example of the use of this function, in which we create an element of the
meta-analysis object from the information of the "Study 2" of the listExpressionSets object:
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> data("DExMAExampleData")

> ExpressionSetStudy5

ExpressionSet (storageMode: lockedEnvironment)

assayData: 200 features, 6 samples

element names: exprs

protocolData: none

phenoData

rowNames: newSample1 newSample2 ... newSample6 (6 total)

varLabels: condition gender organism race

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'

Annotation:

> library(Biobase)

> pData(ExpressionSetStudy5)

condition gender organism race

newSample1 Diseased Female Homo Sapiens AA

newSample2 Diseased Female Homo Sapiens AA

newSample3 ill Male Homo Sapiens C

newSample4 Healthy Female Homo Sapiens H

newSample5 control Female Homo Sapiens H

newSample6 control Male Homo Sapiens H

We had to load Biobase package in order to the information in the ExpressionSet. In the
phenoData we can observe that groups variable is "condition". In addition, Experimental
group is name as "Diseased" or "ill" and reference group as "Healthy" or "control"
> newElem <-elementObjectMA(expressionMatrix = ExpressionSetStudy5,

+ groupPheno = "condition",

+ expGroup = c("Diseased", "ill"),

+ refGroup = c("Healthy", "control"))

> head(newElem[[1]])

newSample1 newSample2 newSample3 newSample4 newSample5 newSample6

100859927 5.867690 8.148252 7.286897 4.320073 4.188687 4.831881

8086 7.437004 7.414434 8.624650 4.734439 4.728559 6.021235

8212 6.794553 5.592231 6.694514 4.868330 4.250491 6.869983

65985 7.185822 7.400363 7.039580 3.653294 4.666798 4.662232

729522 7.233054 7.053966 8.092146 4.775042 4.159061 3.952524

13 7.653159 6.935909 8.491360 6.360632 5.251608 4.621853

> head(newElem[[2]])

[1] 1 1 1 0 0 0

As we can see, we obtain a list that has the same structure as the elements of the meta-
analysis object (objectMA). This new element can be added to a objectMA that has been
created previously:
> newObjectMA2 <- newObjectMA

> newObjectMA2[[5]] <- newElem

8
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> head(newObjectMA2[[5]][[1]])

newSample1 newSample2 newSample3 newSample4 newSample5 newSample6

100859927 5.867690 8.148252 7.286897 4.320073 4.188687 4.831881

8086 7.437004 7.414434 8.624650 4.734439 4.728559 6.021235

8212 6.794553 5.592231 6.694514 4.868330 4.250491 6.869983

65985 7.185822 7.400363 7.039580 3.653294 4.666798 4.662232

729522 7.233054 7.053966 8.092146 4.775042 4.159061 3.952524

13 7.653159 6.935909 8.491360 6.360632 5.251608 4.621853

> newObjectMA2[[5]][[2]]

[1] 1 1 1 0 0 0

Moreover, an advantage of this function is that it can be used to create one by one all the
elements and finally join all of them to create the meta-analysis object.

3 Performing Meta-analysis
DExMA package contains the main gene expression meta-analysis methods:

• Meta-analysis based on effect size combination: Fixed Effects Model (FEM) and Ran-
dom Effects Model (REM).

• Meta-analysis based on P-value combination: Fisher’s method, Stouffer’s method,
Wilkonson’s method (maxP) and Tippet’s method (minP).

These methods can be applied directly, but it is advisable to apply some previous DExMA
function to ensure the results are accurate.

3.1 Gene annotation and quality controls
Before performing the meta-analysis, all the genes must be in the same annotation and a
quality control should be done in order to obtain reliable results [1]. DExMA provides some
useful functions to help the user to do it.

3.1.1 Setting all the datasets in the same annotation

All genes must be in the same annotation in order to perform the meta-analysis successfully
and avoid incorrect interpretations of the results. In cases where all datasets do not have
the same gene ID, DExMA contains a function called allSameID() that allows to annotated
all the datasets with the same gene ID. Specifically, the function allows to annotate those
datasets that use the Official Gene Symbol, Entrez or Ensembl. The inputs of this function
are:

• objectMA: the meta-analysis object of DExMA package. The result obtained by cre-
ateObjectMA() function should be used.

• initialIDs: a character vector with the current annotation of each dataset. Use avail-
ableIDs function to see the annotations admitted.

• finalID: a character that indicates the final gene ID that all the studies will have.
• organism: a character that indicates the organism that the datasets belong to. Use

avaliableOrganism function to see the organism admitted.
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Here we include an example of how to use this function. In this example we have used
"newObjectMA" that has been created before. The first two expression arrays are annotated
in "entrez", the third expression matrix in "Official Gene Symbol" and the last one in "Official
Gene Symbol" with some synonyms:
> rownames(newObjectMA$Study1$mExpres)[1:20]

[1] "100859927" "8086" "8212" "65985" "729522" "13"

[7] "344752" "126767" "343066" "51166" "79719" "22848"

[13] "14" "15" "16" "57505" "80755" "132949"

[19] "60496" "10157"

> rownames(newObjectMA$Study2$mExpres)[1:20]

[1] "100859927" "8086" "8212" "65985" "729522" "13"

[7] "344752" "126767" "343066" "51166" "79719" "22848"

[13] "14" "15" "16" "57505" "80755" "132949"

[19] "60496" "10157"

> rownames(newObjectMA$Study3$mExpres)[1:20]

[1] "AAA4" "AAAS" "AABT" "AACS" "AACSP1" "AADAC"

[7] "AADACL2" "AADACL3" "AADACL4" "AADAT" "AAGAB" "AAK1"

[13] "AAMP" "AANAT" "AARS1" "AARS2" "AARSD1" "AASDH"

[19] "AASDHPPT" "AASS"

> rownames(newObjectMA$Study4$mExpres)[1:20]

[1] "AAA4" "ADRACALIN" "AABT" "ACSF1" "AACSP1" "AADAC"

[7] "AADACL2" "AADACL3" "AADACL4" "AADAT" "PPKP1" "AAK1"

[13] "AAMP" "AANAT" "AARS1" "AARS2" "AARSD1" "AASDH"

[19] "AASDHPPT" "AASS"

We can use avaliableIDs and avaliableOrganism in order to know how to write in the function
the initialIDs vector and the organism:
> head(avaliableIDs)

[1] "Entrez" "Ensembl" "GeneSymbol"

> avaliableOrganism

[1] "Bos taurus" "Caenorhabditis elegans"

[3] "Canis familiaris" "Danio rerio"

[5] "Drosophila melanogaster" "Gallus gallus"

[7] "Homo sapiens" "Mus musculus"

[9] "Rattus norvegicus" "Arabidopsis thaliana"

[11] "Saccharomyces cerevisiae" "Escherichia coli"

We create the InitialIDs vector:
> annotations <- c("Entrez","Entrez", "GeneSymbol", "GeneSymbol")

Then, we are ready to run the allSameID() function. We are going to annotated all the
datasets in Official Gene Symbol (finalID="GeneSymbol"):
> newObjectMA <- allSameID(newObjectMA, initialIDs = annotations,

+ finalID="GeneSymbol", organism = "Homo sapiens")
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> rownames(newObjectMA$Study1$mExpres)[1:20]

[1] "AAA4" "AAAS" "AABT" "AACS" "AACSP1" "AADAC"

[7] "AADACL2" "AADACL3" "AADACL4" "AADAT" "AAGAB" "AAK1"

[13] "AAMP" "AANAT" "AARS1" "AARS2" "AARSD1" "AASDH"

[19] "AASDHPPT" "AASS"

> rownames(newObjectMA$Study2$mExpres)[1:20]

[1] "AAA4" "AAAS" "AABT" "AACS" "AACSP1" "AADAC"

[7] "AADACL2" "AADACL3" "AADACL4" "AADAT" "AAGAB" "AAK1"

[13] "AAMP" "AANAT" "AARS1" "AARS2" "AARSD1" "AASDH"

[19] "AASDHPPT" "AASS"

> rownames(newObjectMA$Study3$mExpres)[1:20]

[1] "AARS1" "AATF" "ABCC2" "ABCD1P4" "ABCD1P3" "ABCD1P2" "ACAD8"

[8] "AAVS1" "ACAD9" "ABT1" "VSX1" "ABHD5" "AADAT" "ABI3"

[15] "VRK3" "VPS54" "ABAT" "VSIG10" "VRTN" "VPS53"

> rownames(newObjectMA$Study4$mExpres)[1:20]

[1] "AARS1" "AATF" "ABCC2" "ABCD1P4" "ABCD1P3" "ABCD1P2" "ACAD8"

[8] "AAVS1" "ACAD9" "ABT1" "VSX1" "ABHD5" "AADAT" "ABI3"

[15] "VRK3" "VPS54" "ABAT" "VSIG10" "VRTN" "VPS53"

As it can be seen, all the studies are now annotated in Official Gene Symbol.

3.1.2 Logarithm transformation

To avoid problems with the returned fold-change by the meta-analysis, log2 should be applied
to the gene expression values. We can make use of dataLog() function to check if each
dataset expression values have the log2 applied already. If not, the function will make the
transformation:
> newObjectMA <- dataLog(newObjectMA)

> head(newObjectMA[[1]][[1]])

Sample1 Sample2 Sample3 Sample4

AAA4 5.439524 6.253319 2.926444 4.4304023

AAAS 5.769823 5.971453 1.831349 4.0466288

AABT 7.558708 5.957130 2.365252 3.4352889

AACS 6.070508 7.368602 2.971158 3.7151784

AACSP1 6.129288 5.774229 3.670696 3.9171749

AADAC 7.715065 7.516471 1.349453 0.3390772
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3.1.3 Heterogeneity study

Some heterogeneity between studies may lead to some methods, such as the Fixed Effects
Model, not providing reliable results. Therefore, it is advisable to carry out a study of
heterogeneity to correctly choose the meta-analysis method [1]. The heterogeneityTest()
function shows two ways of measuring heterogeneity.
On the one hand, it returns a QQ-plot of the Cochran’s test [4]. In this plot, if most of the
values are close to the central line, that is, most of the Cochran’s test values are close to the
expected distribution (chi-squared distribution), it can be said that there is homogeneity. In
the case that these values deviate greatly from the expected distribution, it must be assumed
that there is heterogeneity.
On the other hand, I2 measures the percentage of variation across studies due to hetero-
geneity [5]. In the case of gene expression data, an I2 for each gene across datasets would
have to be calculated. As in the case of many genes, it can be difficult to observe all the
I2 values obtained, the heterogeneityTest() function returns the quantiles of the different I2
values calculated. I2 values equal to 0 indicate homogeneity and values less than 0.25 are
usually categorized as low heterogeneity [5]. Therefore, to assume homogeneity in the gene
expression meta-analysis, almost all I2 values must be 0 or at least less than 0.25.
In the example shown below, it is observed that in the QQ-plot of the Cochran’s test, Q-
values deviate considerably from the expected distribution and approximately 10% of the I2

values are greater than 0.25, therefore homogeneity could not be assumed.
> heterogeneityTest(newObjectMA)

[1] "I^2 Quantiles"

0% 5% 10% 15% 20% 25% 30% 35%

0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

40% 45% 50% 55% 60% 65% 70% 75%

0.0000000 0.0000000 0.1752591 0.2680708 0.3501887 0.4094427 0.4568317 0.5363021

80% 85% 90% 95% 100%

0.5844494 0.6185599 0.6678108 0.7165413 0.8389331
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3.2 Imputing missing genes expression values (optional)
Optionally, the missGenesImput() function allows to impute the expression values of the
unmeasured genes. To perform this imputation, the function apply the knn method in the
space of samples (sampleKnn) [2]. Once the function have been applied, it returns the same
objectMA with all the datasets imputed:
> nrow(newObjectMA$Study1[[1]])

[1] 144

> nrow(newObjectMA$Study2[[1]])

[1] 144

> maObject_imput <- missGenesImput(maObject, k =7)

If we observe the number of genes in Study1, once the imputation is performed, we can
observe that it goes from having 144 genes to 175.
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> nrow(maObject_imput$Study1[[1]])

[1] 175

> nrow(maObject_imput$Study2[[1]])

[1] 175

3.3 Performing meta-analysis: metaAnalysisDE()
The metaAnalysisDE() function allows to perform a meta-analysis in only one step, needing
only the meta-analysis object created previously.
This function has as input:

• objectMA: The meta-analysis object of DExMA package. The result obtained by cre-
ateObjectMA function should be used.

• typeMethod: a character that indicates the method to be performed:
• "FEM": Fixed Effects model.
• "REM": Random Effects model.
• "Fisher": Fisher’s method (sum of logarithms of p-values)
• "Stouffer": Stouffer’s method (sum of z-scores)
• "maxP": Wilkinson’s method (maximun of p-values)
• "minP": Tippet’s method (minimun of p-values)

• missAllow: a number between 0 and 1 that indicates the maximum proportion of
missing values allows in a sample. If the sample has more proportion of missing values,
the sample will be eliminated. In the other case, the missing values will be imputed by
using the K-NN algorithm included in impute package [6]. In case the objectMA has
been previously imputed, this element is not necessary.

• proportionData: a number between 0 and 1 that indicates the minimum proportion of
datasets in which a gene must be contained to be included.In case the objectMA has
been previously imputed, this element is not necessary.

• Adjusted p-value from which a gene is considered significant. Default 0.05. This value
only takes you into account in the results generated in rank combination methods.

In the following example, we have applied a Random Effect model to the DExMA object
("newObjectMA") we have been working with so far. In addition we have allowed a 0.3
proportion of missing values in a sample and a gene must have been contained in at least the
50% of studies.
> resultsMA <- metaAnalysisDE(newObjectMA, typeMethod="REM",

+ missAllow=0.3, proportionData=0.50)

[1] "Performing Random Effects Model"

The output of this function is a dataframe with the results of the meta-analysis where rows
are the genes and columns are the different variables provided by the meta-analysis:
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> head(resultsMA)

Com.ES ES.var Qval Qpval tau2 Zval Pval

AAA4 2.359381 0.7981372 6.0473427 0.10932948 1.5664238 2.640944 8.267527e-03

AAAS 2.281224 0.3370171 0.8210328 0.84442992 0.0000000 3.929542 8.510791e-05

AABT 2.493595 0.8816888 6.2077523 0.10192867 1.7585296 2.655635 7.915935e-03

AACS 2.313949 0.5884358 4.6107227 0.20262416 0.8221804 3.016506 2.557062e-03

AACSP1 3.772840 0.5852004 2.0056235 0.57124034 0.0000000 4.931921 8.142482e-07

AADAC 2.697529 1.0092867 6.5349523 0.08829422 2.0628748 2.685090 7.251027e-03

FDR propDataset

AAA4 0.0401893697 1

AAAS 0.0018617356 1

AABT 0.0401893697 1

AACS 0.0178994351 1

AACSP1 0.0001424934 1

AADAC 0.0396540550 1

Moreover, this function can also be applied to the imputed objectMA, but in this case, it is
not necessary to indicate the missAllow and proportionData elements:
> resultsMA_imput <- metaAnalysisDE(maObject_imput, typeMethod="REM",)

[1] "Performing Random Effects Model"

> head(resultsMA_imput)

Com.ES ES.var Qval Qpval tau2 Zval Pval

AAA4 2.359381 0.7981372 6.0473427 0.10932948 1.5664238 2.640944 8.267527e-03

AAAS 2.281224 0.3370171 0.8210328 0.84442992 0.0000000 3.929542 8.510791e-05

AABT 2.493595 0.8816888 6.2077523 0.10192867 1.7585296 2.655635 7.915935e-03

AACS 2.313949 0.5884358 4.6107227 0.20262416 0.8221804 3.016506 2.557062e-03

AACSP1 3.772840 0.5852004 2.0056235 0.57124034 0.0000000 4.931921 8.142482e-07

AADAC 2.697529 1.0092867 6.5349523 0.08829422 2.0628748 2.685090 7.251027e-03

FDR propDataset

AAA4 0.0498902520 1

AAAS 0.0021276978 1

AABT 0.0494745922 1

AACS 0.0279678674 1

AACSP1 0.0001424934 1

AADAC 0.0469973985 1

The variables of the dataframe change from one type of meta-analysis to another. A more
detailed explanation of these results will be addressed in the following sections.

3.3.1 Effects size combination results

The "FEM" and "REM" methods provide a dataframe with the variables:
• Com.ES: combined effect of the gene.
• ES.var: variance of the combined effect of the gene.
• Qval: total variance of the gene.
• Qpval:p-value for the total variance of the gene.
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• tau2: between-study variance of the gene.
• zval: combined effect value for a standard normal. I can be use in order to find out if

the gene is overexpressed (positive value) or underexpressed (negative value).
• Pval: P-value of the meta-analysis for the gene.
• FDR: P-value adjusted of the meta-analysis for the gene.
• Prop.dataset: Proportion of the datasets in which the gene is included.

> resultsES <- metaAnalysisDE(newObjectMA, typeMethod="REM", proportionData=0.5)

[1] "Performing Random Effects Model"

> head(resultsES)

Com.ES ES.var Qval Qpval tau2 Zval Pval

AAA4 2.359381 0.7981372 6.0473427 0.10932948 1.5664238 2.640944 8.267527e-03

AAAS 2.281224 0.3370171 0.8210328 0.84442992 0.0000000 3.929542 8.510791e-05

AABT 2.493595 0.8816888 6.2077523 0.10192867 1.7585296 2.655635 7.915935e-03

AACS 2.313949 0.5884358 4.6107227 0.20262416 0.8221804 3.016506 2.557062e-03

AACSP1 3.772840 0.5852004 2.0056235 0.57124034 0.0000000 4.931921 8.142482e-07

AADAC 2.697529 1.0092867 6.5349523 0.08829422 2.0628748 2.685090 7.251027e-03

FDR propDataset

AAA4 0.0401893697 1

AAAS 0.0018617356 1

AABT 0.0401893697 1

AACS 0.0178994351 1

AACSP1 0.0001424934 1

AADAC 0.0396540550 1

3.3.2 P-value combination results

The "Fisher", "Stouffer", "minP" and "maxP" methods provide a dataframe with the following
variables:

• Stat: Statistical calculated in the method
• Pval: P-value of the meta-analysis for the gene.
• FDR: P-value adjusted of the meta-analysis for the gene.
• AveFC: Average of log Fold-Change values for the gene used in order to find out if the

gene is overexpressedd (positive value) or underexpressed (negative value).
• Prop.dataset: Proportion of the datasets in which the gene is included.

Here we present an example making use of "maxP" method:
> resultsPV <- metaAnalysisDE(newObjectMA, typeMethod="maxP", proportionData=0.5)

[1] "Performing MaxP's method"

> head(resultsPV)

Stat Pval FDR AveFC propDataset

AAA4 0.13754548 3.579194e-04 3.296626e-03 2.831428 1

AAAS 0.07824187 3.747632e-05 6.811215e-04 3.180932 1

AABT 0.27659986 5.853395e-03 2.768497e-02 2.935515 1
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AACS 0.11561455 1.786693e-04 1.737063e-03 3.060848 1

AACSP1 0.01862270 1.202736e-07 1.052394e-05 2.953126 1

AADAC 0.22367842 2.503204e-03 1.510554e-02 3.629187 1

3.4 Visualization of the results: heatmap
Finally, we can represent in a heatmap the significant genes in order to observe how they
are expressed in each of the studies. In makeHeatma() function we have to include both the
object that has been used in the meta-analysis, the result of it and the applied method. In
addition, this package offers three different scaling approaches (scaling) in order to compare
properly thegene expression of the studies in the heatmap:

• "zscor": It calculates a z-score value for each gene, that is, the mean gene expression
from each gene is subtracted from each gene expression value and then it is divided by
the standard deviation.

• "swr": Scaling relative to reference dataset approach [7].
• "rscale": It uses the rescale function of the scales package to scale the gene expresion

[8].
• "none": no scaling approach is applied.

Moreover, in regulation argument, we can choose if we want to represent the overexpressed
or underexpressed genes:

• "up": only up-expressed genes are represented.
• "down: only down-expressed genes are represented
• "all": up-expressed and down-expressed genes are represented.

We can choose the number of significant genes (numSig) that we want to be shown on the
graph and the adjusted p-value from which a gene is considered as significant (fdrSig). In
addition, the genes that are not presented in one sample are represented in gray.
Here we present an example of the heatmap which have been obtained from the result of
applying a random effects model to the object "newObjectMA" and making use of a "zscor"
scaling approach.
> makeHeatmap(objectMA=newObjectMA, resMA=resultsMA, scaling = "zscor",

+ regulation = "all", typeMethod="REM", numSig=40)

[1] "scaling using z-score..."
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4 Additional information
DExMA provides some functions which may be useful for the user, although they are not
essential to perform meta-analysis.

4.1 GEO microarray data download
In addition to using own user data, DExMA package allows to make use of public microarray
data from the NCBI GEO public database [3]. For doing that, we can make use of download-
GEOData() function. This function uses internally GEOquey package in order to download
some files at the same time. This function has an input a character vector (GEOobject) with
the GEO ID of the different datasets that we want to download and a character (directory)
that indicates the directory where GSE Series Matrix files [9] are going to be stored.
> GEOobjects<- c("GSE4588", "GSE10325")

> dataGEO<-downloadGEOData(GEOobjects)
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Once the download process is completed, we get a list of ExpressionSets. This list can be
used as input of createObjectMA() function, although it is advisable to homogenize gene
annotation, in case genes IDs are not Entrez, Official Gene Symbol or Ensembl.

4.2 Using RNA-Seq data
DExMA internally uses limma package in order to assess differential expression. Therefore,
RNA-Seq data must be previously normalized by the user in order to be able to include
correctly theses data in the gene-expression meta-analysis. Since limma is used internally,
we recommend to apply the steps described in the limma user’s guide for the RNA-Seq data
normalization [10], although the users can use the type of normalization they prefer.

4.3 Removing Batch Effects
Before the creation of the objectMA, a batch effect correction can be applied in order to
reduce the effect of covariates that may be affecting to gene expression [1]. Firstly, with
function seeCov(), which internally contains the prince() and prince.plot() functions of the
swamp package [11], we can obtain a visualization of the p-values of each principal component
associated with the categorical covariates. This allows to check which categorical variables
are the ones that are most affecting the expression:
> seeCov(listMatrixEX$Study2, listPhenodatas$Study2)

Sample5 Sample6 Sample7 Sample8 Sample9 Sample10

AA AA C H H H

Levels: AA C H
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The categorical variables that may be causing a batch effect can be corrected by using
the removeBatch() function. The input of this function is the expression matrix and the
phenodata. In addition , We also have to add a formula with the variables for which we
want to correct the gene expression and the name of the variable that contains the cases and
controls groups. Finally, if there is a covariate inside the formula that we want to give greater
importance, we will have the option to indicate in the function (mainCov()). Here we show
an example in which we have corrected the gene expression of the previous study by two of
their covariates:
> listMatrixEX$Study2 <- batchRemove(listMatrixEX$Study2, listPhenodatas$Study2,

+ formula=~gender+race,

+ mainCov = "race", nameGroup="condition")

Coefficients not estimable: batch1 batch2 (Intercept) raceC raceH

> head(listMatrixEX$Study2)

Sample5 Sample6 Sample7 Sample8 Sample9 Sample10

100859927 4.367690 6.648252 5.143704 2.820073 2.688687 2.688687

8086 5.937004 5.914434 5.831974 3.234439 3.228559 3.228559

8212 5.294553 4.092231 2.575022 3.368330 2.750491 2.750491
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4.4 Calculating Effects size
The calculateES() function returns the effects size in each of the studies. Moreover, it
calculates the variance of each of the effects and the proportion of datasets that contain the
gene. The effects size are calculated by making use of the Hedges’ g estimator [1].
> effects <- calculateES(newObjectMA)

> head(effects$ES)

Study1 Study2 Study3 Study4

AAA4 1.448942 2.5008385 1.1221262 6.642233

AAAS 1.506204 2.9643045 2.2593392 2.430575

AABT 2.288894 0.7656633 5.7273196 3.478798

AACS 2.579019 5.3315818 1.8723418 1.207949
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AACSP1 5.705553 5.1083967 2.9008711 3.138604

AADAC 7.515582 2.1970319 0.8345501 3.776154

> head(effects$Var)

Study1 Study2 Study3 Study4

AAA4 1.262429 1.187849 1.157396 4.3432711

AAAS 1.283581 1.398925 1.638077 1.1589745

AABT 1.654879 0.715520 5.100274 1.6751698

AACS 1.831418 3.035480 1.438208 0.7882618

AACSP1 5.069167 2.841310 2.051882 1.4875697

AADAC 8.060497 1.068912 1.087059 1.8549449

4.5 Calculating Individual P-values
Similar to the calculation of effects sizes, the individual p-values of each of the studies and
the log2 fold change of each one can also be calculated by applying pvalueIndAnalysis().
P-value are obtained by assessing differential expression with limma package.
> pvalues <- pvalueIndAnalysis(newObjectMA)

> head(pvalues$p)

Study1 Study2 Study3 Study4

AAA4 0.084586213 0.0124328637 0.137545477 0.0002392007

AAAS 0.078241874 0.0065691298 0.032924671 0.0139623839

AABT 0.031889060 0.2765998575 0.003696266 0.0035646909

AACS 0.024335148 0.0005986238 0.049748561 0.1156145550

AACSP1 0.003718102 0.0007176307 0.018622696 0.0053471186

AADAC 0.001900842 0.0197199607 0.223678418 0.0025641765

> head(pvalues$FC)

Study1 Study2 Study3 Study4

AAA4 2.167998 2.654066 3.118286 3.385361

AAAS 2.931649 2.663952 4.321073 2.807056

AABT 3.857649 1.030831 3.259410 3.594168

AACS 3.376387 2.881147 4.252159 1.733698

AACSP1 2.157823 3.164180 3.998437 2.492064

AADAC 6.771502 2.282112 1.747278 3.715857

5 Session info

R version 4.1.2 (2021-11-01)

Platform: x86_64-apple-darwin17.0 (64-bit)

Running under: macOS Mojave 10.14.6

Matrix products: default

BLAS: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.0.dylib

LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib

locale:
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[1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] Biobase_2.54.0 BiocGenerics_0.40.0 DExMA_1.2.1

[4] DExMAdata_1.2.0

loaded via a namespace (and not attached):

[1] nlme_3.1-153 bitops_1.0-7 matrixStats_0.61.0

[4] bit64_4.0.5 RColorBrewer_1.1-2 httr_1.4.2

[7] GenomeInfoDb_1.30.0 tools_4.1.2 utf8_1.2.2

[10] R6_2.5.1 KernSmooth_2.23-20 DBI_1.1.1

[13] mgcv_1.8-38 colorspace_2.0-2 tidyselect_1.1.1

[16] bit_4.0.4 compiler_4.1.2 xml2_1.3.3

[19] caTools_1.18.2 scales_1.1.1 readr_2.1.1

[22] genefilter_1.76.0 digest_0.6.29 rmarkdown_2.11

[25] GEOquery_2.62.1 XVector_0.34.0 pkgconfig_2.0.3

[28] htmltools_0.5.2 bnstruct_1.0.11 fastmap_1.1.0

[31] limma_3.50.0 rlang_0.4.12 RSQLite_2.2.8

[34] impute_1.68.0 farver_2.1.0 generics_0.1.1

[37] BiocParallel_1.28.2 gtools_3.9.2 swamp_1.5.1

[40] dplyr_1.0.7 RCurl_1.98-1.5 magrittr_2.0.1

[43] GenomeInfoDbData_1.2.7 Matrix_1.3-4 Rcpp_1.0.7

[46] munsell_0.5.0 S4Vectors_0.32.3 fansi_0.5.0

[49] lifecycle_1.0.1 yaml_2.2.1 edgeR_3.36.0

[52] MASS_7.3-54 zlibbioc_1.40.0 plyr_1.8.6

[55] gplots_3.1.1 grid_4.1.2 blob_1.2.2

[58] parallel_4.1.2 snpStats_1.44.0 crayon_1.4.2

[61] lattice_0.20-45 Biostrings_2.62.0 splines_4.1.2

[64] annotate_1.72.0 hms_1.1.1 KEGGREST_1.34.0

[67] locfit_1.5-9.4 knitr_1.36 pillar_1.6.4

[70] igraph_1.2.9 stats4_4.1.2 XML_3.99-0.8

[73] glue_1.5.1 evaluate_0.14 data.table_1.14.2

[76] BiocManager_1.30.16 tzdb_0.2.0 png_0.1-7

[79] vctrs_0.3.8 tidyr_1.1.4 gtable_0.3.0

[82] purrr_0.3.4 amap_0.8-18 assertthat_0.2.1

[85] cachem_1.0.6 xfun_0.28 xtable_1.8-4

[88] survival_3.2-13 tibble_3.1.6 pheatmap_1.0.12

[91] AnnotationDbi_1.56.2 memoise_2.0.1 IRanges_2.28.0

[94] sva_3.42.0 ellipsis_0.3.2 BiocStyle_2.22.0
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