Package 'celldex'

October 16, 2021

```
Title Reference Index for Cell Types
Version 1.2.0
Date 2021-05-12
Description Provides a collection of reference expression datasets with curated cell
     type labels, for use in procedures like automated annotation of single-cell
     data or deconvolution of bulk RNA-seq.
License GPL-3
Depends SummarizedExperiment
Imports utils, ExperimentHub, AnnotationHub, AnnotationDbi, S4Vectors,
     DelayedArray, DelayedMatrixStats
Suggests testthat, knitr, rmarkdown, BiocStyle, DT
biocViews ExperimentHub, ExperimentData, ExpressionData,
     SequencingData, RNASeqData
VignetteBuilder knitr
Encoding UTF-8
URL https://github.com/LTLA/celldex
BugReports https://support.bioconductor.org/
RoxygenNote 7.1.0
git_url https://git.bioconductor.org/packages/celldex
git_branch RELEASE_3_13
git_last_commit 4aba059
git_last_commit_date 2021-05-19
Date/Publication 2021-10-16
Author Dvir Aran [aut],
     Aaron Lun [aut, cre, cph],
     Daniel Bunis [aut],
     Jared Andrews [aut],
     Friederike Dündar [aut]
Maintainer Aaron Lun <infinite.monkeys.with.keyboards@gmail.com>
```

2 BlueprintEncodeData

R topics documented:

BlueprintEncodeData	. 2
DatabaseImmuneCellExpressionData	. 3
HumanPrimaryCellAtlasData	
ImmGenData	. 6
MonacoImmuneData	. 7
MouseRNAseqData	. 9
NovershternHematopoieticData	. 10
	13

BlueprintEncodeData

Obtain human bulk RNA-seq data from Blueprint and ENCODE

Description

Download and cache the normalized expression values of 259 RNA-seq samples of pure stroma and immune cells as generated and supplied by Blueprint and ENCODE.

Usage

Index

```
BlueprintEncodeData(
  rm.NA = c("rows", "cols", "both", "none"),
  ensembl = FALSE,
  cell.ont = c("all", "nonna", "none")
)
```

Arguments

rm.NA	String specifying how missing values should be handled. "rows" will remove genes with at least one missing value, "cols" will remove samples with at least one missing value, "both" will remove any gene or sample with at least one
	missing value, and "none" will not perform any removal.
ensembl	Logical scalar indicating whether to convert row names to Ensembl IDs. Genes without a mapping to a non-duplicated Ensembl ID are discarded.
cell.ont	String specifying whether Cell Ontology terms should be included in the colData. If "nonna", all samples without a valid term are discarded; if "all", all samples are returned with (possibly NA) terms; if "none", terms are not added.

Details

This function provides normalized expression values for 259 bulk RNA-seq samples generated by Blueprint and ENCODE from pure populations of stroma and immune cells (Martens and Stunnenberg, 2013; The ENCODE Consortium, 2012). The samples were processed and normalized as described in Aran, Looney and Liu et al. (2019), i.e., the raw RNA-seq counts were downloaded from Blueprint and ENCODE in 2016 and normalized via edgeR (TPMs).

Blueprint Epigenomics contains 144 RNA-seq pure immune samples annotated to 28 cell types. ENCODE contains 115 RNA-seq pure stroma and immune samples annotated to 17 cell types. All together, this reference contains 259 samples with 43 cell types ("label.fine"), manually aggregated into 24 broad classes ("label.main"). The fine labels have also been mapped to the Cell Ontology ("label.ont", if cell.ont is not "none"), which can be used for further programmatic queries.

Value

A SummarizedExperiment object with a "logcounts" assay containing the log-normalized expression values, along with cell type labels in the colData.

Author(s)

Friederike Dündar

References

The ENCODE Project Consortium (2012). An integrated encyclopedia of DNA elements in the human genome. *Nature* 489, pages 57–74.

Martens JHA and Stunnenberg HG (2013). BLUEPRINT: mapping human blood cell epigenomes. *Haematologica* 98, 1487–1489.

Aran D, Looney AP, Liu L et al. (2019). Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. *Nat. Immunol.* 20, 163–172.

Examples

```
ref.se <- BlueprintEncodeData(rm.NA = "rows")</pre>
```

DatabaseImmuneCellExpressionData

Obtain human bulk RNA-seq data from DICE

Description

Download and cache the normalized expression values of 1561 bulk RNA-seq samples of sorted cell populations from the Database of Immune Cell Expression (DICE).

Usage

```
DatabaseImmuneCellExpressionData(
  ensembl = FALSE,
  cell.ont = c("all", "nonna", "none")
)
```

Arguments

Logical scalar indicating whether to convert row names to Ensembl IDs. Genes without a mapping to a non-duplicated Ensembl ID are discarded.

Cell.ont String specifying whether Cell Ontology terms should be included in the colData. If "nonna", all samples without a valid term are discarded; if "all", all samples are returned with (possibly NA) terms; if "none", terms are not added.

Details

This function provides normalized expression values of 1561 bulk RNA-seq samples generated by DICE from pure populations of human immune cells.

TPM normalized values for each cell type were downloaded from https://dice-database.org/downloads. Genes with no reads across samples were removed, and values were log2 normalized after a pseudocount of 1 was added.

The dataset contains 1561 human RNA-seq samples annotated to 5 main cell types ("label.main"):

- B cells
- · Monocytes
- NK cells
- T cells, CD8+
- T cells, CD4+

Samples were additionally annotated to 15 fine cell types ("label.fine"):

- · B cells, naive
- Monocytes, CD14+
- Monocytes, CD16+
- NK cells
- T cells, memory TREG
- T cells, CD4+, naive
- T cells, CD4+, naive, stimulated
- T cells, CD4+, naive Treg
- T cells, CD4+, Th1
- T cells, CD4+, Th1_17
- T cells, CD4+, Th2
- T cells, CD8+, naïve
- T cells, CD8+, naïve, stimulated
- T cells, CD4+, TFH
- T cells, CD4+, Th17

The subtypes have also been mapped to the Cell Ontology ("label.ont", if cell.ont is not "none"), which can be used for further programmatic queries.

Value

A SummarizedExperiment object with a "logcounts" assay containing the log-normalized expression values, along with cell type labels in the colData.

Author(s)

Jared Andrews

References

Schmiedel B et al. (2018). Impact of Genetic Polymorphisms on Human Immune Cell Gene Expression. *Cell* 175, 1701-1715.

Examples

```
ref.se <- DatabaseImmuneCellExpressionData()</pre>
```

HumanPrimaryCellAtlasData

Obtain the HPCA data

Description

Download and cache the normalized expression values of the data stored in the Human Primary Cell Atlas. The data will be downloaded from ExperimentHub, returning a SummarizedExperiment object for further use.

Usage

```
HumanPrimaryCellAtlasData(
  ensembl = FALSE,
  cell.ont = c("all", "nonna", "none")
)
```

Arguments

ensembl Logical scalar indicating whether to convert row names to Ensembl IDs. Genes

without a mapping to a non-duplicated Ensembl ID are discarded.

cell.ont String specifying whether Cell Ontology terms should be included in the colData.

If "nonna", all samples without a valid term are discarded; if "all", all samples

are returned with (possibly NA) terms; if "none", terms are not added.

Details

This function provides normalized expression values for 713 microarray samples from the Human Primary Cell Atlas (HPCA) (Mabbott et al., 2013). These 713 samples were processed and normalized as described in Aran, Looney and Liu et al. (2019).

Each sample has been assigned to one of 37 main cell types ("label.main") and 157 subtypes ("label.fine"). The subtypes have also been mapped to the Cell Ontology ("label.ont", if cell.ont is not "none"), which can be used for further programmatic queries.

Value

A SummarizedExperiment object with a "logcounts" assay containing the log-normalized expression values, along with cell type labels in the colData.

Author(s)

Friederike Dündar

6 ImmGenData

References

Mabbott NA et al. (2013). An expression atlas of human primary cells: inference of gene function from coexpression networks. *BMC Genomics* 14, Article 632.

Aran D, Looney AP, Liu L et al. (2019). Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. *Nat. Immunol.* 20, 163–172.

Examples

```
ref.se <- HumanPrimaryCellAtlasData()</pre>
```

ImmGenData	Obtain mouse bulk expression data from the Immunologic Genome Project
------------	--

Description

Download and cache the normalized expression values of 830 microarray samples of pure mouse immune cells, generated by the Immunologic Genome Project (ImmGen).

Usage

```
ImmGenData(ensembl = FALSE, cell.ont = c("all", "nonna", "none"))
```

Arguments

ensembl	Logical scalar indicating whether to convert row names to Ensembl IDs. Genes without a mapping to a non-duplicated Ensembl ID are discarded.
cell.ont	String specifying whether Cell Ontology terms should be included in the colData. If "nonna", all samples without a valid term are discarded; if "all", all samples are returned with (possibly NA) terms; if "none", terms are not added.

Details

This function provides normalized expression values of 830 microarray samples generated by ImmGen from pure populations of murine immune cells (http://www.immgen.org/). The samples were processed and normalized as described in Aran, Looney and Liu et al. (2019), i.e., CEL files from the Gene Expression Omnibus (GEO; GSE15907 and GSE37448), were downloaded, processed, and normalized using the robust multi-array average (RMA) procedure on probe-level data.

This dataset consists of 20 broad cell types ("label.main") and 253 finely resolved cell subtypes ("label.fine"). The subtypes have also been mapped to the Cell Ontology ("label.ont", if cell.ont is not "none"), which can be used for further programmatic queries.

Value

A SummarizedExperiment object with a "logcounts" assay containing the log-normalized expression values, along with cell type labels in the colData.

MonacoImmuneData 7

Author(s)

Friederike Dündar

References

Heng TS, Painter MW, Immunological Genome Project Consortium (2008). The Immunological Genome Project: networks of gene expression in immune cells. *Nat. Immunol.* 9, 1091-1094.

Aran D, Looney AP, Liu L et al. (2019). Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. *Nat. Immunol.* 20, 163–172.

Examples

```
ref.se <- ImmGenData()</pre>
```

MonacoImmuneData

Obtain bulk RNA-seq data of sorted human immune cells

Description

Download and cache the normalized expression values of 114 bulk RNA-seq samples of sorted immune cell populations that can be found in GSE107011.

Usage

```
MonacoImmuneData(ensembl = FALSE, cell.ont = c("all", "nonna", "none"))
```

Arguments

ensembl Logical scalar indicating whether to convert row names to Ensembl IDs. Genes

without a mapping to a non-duplicated Ensembl ID are discarded.

cell.ont String specifying whether Cell Ontology terms should be included in the colData.

If "nonna", all samples without a valid term are discarded; if "all", all samples

are returned with (possibly NA) terms; if "none", terms are not added.

Details

The dataset contains 114 human RNA-seq samples annotated to 10 main cell types ("label.main"):

- CD8+ T cells
- T cells
- CD4+ T cells
- Progenitors
- B cells
- · Monocytes
- NK cells
- · Dendritic cells
- · Neutrophils

8 MonacoImmuneData

• Basophils

Samples were additionally annotated to 29 fine cell types ("label.fine"):

- Naive CD8 T cells
- Central memory CD8 T cells
- Effector memory CD8 T cells
- Terminal effector CD8 T cells
- MAIT cells
- · Vd2 gd T cells
- Non-Vd2 gd T cells
- Follicular helper T cells
- · T regulatory cells
- Th1 cells
- Th1/Th17 cells
- Th17 cells
- Th2 cells
- Naive CD4 T cells
- Terminal effector CD4 T cells
- · Progenitor cells
- Naive B cells
- Non-switched memory B cells
- · Exhausted B cells
- Switched memory B cells
- Plasmablasts
- · Classical monocytes
- Intermediate monocytes
- Non classical monocytes
- Natural killer cells
- Plasmacytoid dendritic cells
- Myeloid dendritic cells
- · Low-density neutrophils
- · Low-density basophils

The subtypes have also been mapped to the Cell Ontology ("label.ont", if cell.ont is not "none"), which can be used for further programmatic queries.

Value

A SummarizedExperiment object with a "logcounts" assay containing the log-normalized expression values, along with cell type labels in the colData.

Author(s)

Jared Andrews

MouseRNAseqData 9

References

Monaco G et al. (2019). RNA-Seq Signatures Normalized by mRNA Abundance Allow Absolute Deconvolution of Human Immune Cell Types *Cell Rep.* 26, 1627-1640.

Examples

```
ref.se <- MonacoImmuneData()</pre>
```

MouseRNAseqData	Obtain mouse bulk expression data of sorted cell populations (RNA-
	seq)

Description

Download and cache the normalized expression values of 358 bulk RNA-seq samples of sorted cell populations that can be found at GEO.

Usage

```
MouseRNAseqData(ensembl = FALSE, cell.ont = c("all", "nonna", "none"))
```

Arguments

ensembl	Logical scalar indicating whether to convert row names to Ensembl IDs. Genes without a mapping to a non-duplicated Ensembl ID are discarded.
cell.ont	String specifying whether Cell Ontology terms should be included in the colData. If "nonna", all samples without a valid term are discarded; if "all", all samples
	are returned with (possibly NA) terms; if "none", terms are not added.

Details

This dataset was contributed by the Benayoun Lab that identified, downloaded and processed data sets on GEO that corresponded to sorted cell types (Benayoun et al., 2019).

The dataset contains 358 mouse RNA-seq samples annotated to 18 main cell types ("label.main"):

- Adipocytes
- Astrocytes
- B cells
- · Cardiomyocytes
- Dendritic cells
- Endothelial cells
- · Epithelial cells
- Erythrocytes
- Fibroblasts
- · Granulocytes
- Hepatocytes
- Macrophages

- Microglia
- · Monocytes
- Neurons
- NK cells
- Oligodendrocytes
- · T cells

These are split further into 28 subtypes ("label.fine"). The subtypes have also been mapped to the Cell Ontology ("label.ont", if cell.ont is not "none"), which can be used for further programmatic queries.

Value

A SummarizedExperiment object with a "logcounts" assay containing the log-normalized expression values, along with cell type labels in the colData.

Author(s)

Friederike Dündar

References

Benayoun B et al. (2019). Remodeling of epigenome and transcriptome landscapes with aging in mice reveals widespread induction of inflammatory responses. *Genome Res.* 29, 697-709.

Code at https://github.com/BenayounLaboratory/Mouse_Aging_Epigenomics_2018/tree/master/FigureS7_CIBERSORT/RNAseq_datasets_for_Deconvolution/2017-01-18

Examples

```
ref.se <- MouseRNAseqData()</pre>
```

 ${\tt Novershtern Hematopoietic Data}$

Obtain bulk microarray expression for sorted hematopoietic cells

Description

Download and cache the normalized expression values of 211 bulk human microarray samples of sorted hematopoietic cell populations that can be found in GSE24759.

Usage

```
NovershternHematopoieticData(
  ensembl = FALSE,
  cell.ont = c("all", "nonna", "none")
)
```

Arguments

ensembl Logical scalar indicating whether to convert row names to Ensembl IDs. Genes

without a mapping to a non-duplicated Ensembl ID are discarded.

cell.ont String specifying whether Cell Ontology terms should be included in the colData.

If "nonna", all samples without a valid term are discarded; if "all", all samples

are returned with (possibly NA) terms; if "none", terms are not added.

Details

The dataset contains 211 human microarray samples annotated to 16 main cell types ("label.main"):

- · Basophils
- · B cells
- CMPs
- · Dendritic cells
- Eosinophils
- · Erythroid cells
- GMPS
- Granulocytes
- HSCs
- · Megakaryocytes
- MEPs
- · Monocytes
- NK cells
- · NK T cells
- CD8+ T cells
- CD4+ T cells

Samples were additionally annotated to 38 fine cell types ("label.fine"):

- · Basophils
- Naive B cells
- Mature B cells class able to switch
- Mature B cells
- Mature B cells class switched
- · Common myeloid progenitors
- Plasmacytoid Dendritic Cells
- Myeloid Dendritic Cells
- Eosinophils
- Erythroid_CD34+ CD71+ GlyA-
- Erythroid_CD34- CD71+ GlyA-
- Erythroid_CD34- CD71+ GlyA+
- Erythroid_CD34- CD71lo GlyA+
- Erythroid_CD34- CD71- GlyA+

- Granulocyte/monocyte progenitors
- Colony Forming Unit-Granulocytes
- Granulocyte (Neutrophilic Metamyelocytes)
- Granulocyte (Neutrophils)
- Hematopoietic stem cells_CD133+ CD34dim
- Hematopoietic stem cell_CD38- CD34+
- Colony Forming Unit-Megakaryocytic
- · Megakaryocytes
- Megakaryocyte/erythroid progenitors
- Colony Forming Unit-Monocytes
- · Monocytes
- Mature NK cells CD56- CD16+ CD3-
- Mature NK cells_CD56+ CD16+ CD3-
- Mature NK cells_CD56- CD16- CD3-
- NK T cells
- · Early B cells
- · Pro B cells
- CD8+ Effector Memory RA
- Naive CD8+ T cells
- CD8+ Effector Memory
- CD8+ Central Memory
- Naive CD4+ T cells
- CD4+ Effector Memory
- CD4+ Central Memory

The subtypes have also been mapped to the Cell Ontology ("label.ont", if cell.ont is not "none"), which can be used for further programmatic queries.

Value

A SummarizedExperiment object with a "logcounts" assay containing the log-normalized expression values, along with cell type labels in the colData.

Author(s)

Jared Andrews

References

Novershtern N et al. (2011). Densely interconnected transcriptional circuits control cell states in human hematopoiesis. *Cell* 144, 296-309.

Examples

ref.se <- NovershternHematopoieticData()</pre>

Index

```
BlueprintEncodeData, 2

colData, 2-12

DatabaseImmuneCellExpressionData, 3

HumanPrimaryCellAtlasData, 5

ImmGenData, 6

MonacoImmuneData, 7

MouseRNAseqData, 9

NovershternHematopoieticData, 10

SummarizedExperiment, 3-6, 8, 10, 12
```