
Package “maskBAD”

Michael Dannemann, Michael Lachmann, Anna Lorenc

May 19, 2021

Abstract

Package “maskBAD” allows to users to identify, inspect and remove probes for which
binding affinity differs between two groups of samples. It works for Affymetrix 3’ IVT and
whole transcript (exon and gene) arrays. When there are SNPs, transcript isoforms or cross
hybrydizing transcripts specific to only one of compared groups, probes’ binding affinities
may differ between groups. Such probes bias estimates of gene expression, introduce false
positives in differential gene expression analysis and reduce the power to detect real expression
differences. Hence they should be identified and removed from the data at preprocessing stage.
For details about impact of BAD (binding affinity difference) probes on differential gene
expression estimates, implemented detection method and its power to improve data quality,
please consult our papers Dannemann, Lorenc et al.: “The effects of probe binding affinity
differences on gene expression measurements and how to deal with them”, Bioinformatics,
2009 ([2]) and Dannemann et al.: “’maskBAD’ - a package to detect and remove Affymetrix
probes with binding affinity differences”, BMC Bioinformatics 2012 ([1]).

1 Introduction

The “maskBAD” package implements functions to detect and remove probes with different binding
affinity (BAD) in Affymetrix array expression data. Identification and removal of BAD probes
removes spurious gene expression differences and helps recover true ones. BAD probes are prevalent
in comparisons of genetically distinct samples, like belonging to different strains or species, but
systematic qualitative differences in transcriptome might introduce them also when samples differ
by treatment, health status or tissue type. Masking therefore should be a routine step in data
preprocessing. In this package we introduce functions that allow to identify, inspect and remove
BAD probes and show how it can be integrated in a standard gene expression analysis pipeline.

2 Identification of BAD probes

Detection of BAD (binding affinity difference) probes is done on an AffyBatch object, usually
prepared with ReadAffy() from package affy. We’ll use 100 random probe sets from human and
chimpanzee expression dataset ([3]), each with 10 individuals, available with the package.

> ## data available by loading data(AffyBatch)

> newAffyBatch

AffyBatch object

size of arrays=640x640 features (24 kb)

cdf=newCdf (100 affyids)

number of samples=20

number of genes=100

annotation=hgu95av2

notes=

1

> exmask <- mask(newAffyBatch,ind=rep(1:2,each=10),verbose=FALSE,useExpr=F)

The scoring of probes is performed with the function mask and is based on the algorithm
presented in Dannemann et. al ([2]). Briefly, for a given probe, its signal is proportional to
the amount of RNA in the sample and its binding affinity. When one target is measured with
several probes (a probe set), as on Affymetrix arrays, the probes’ signals are correlated for each
sample. BAD probes correlation differs between groups, hence comparison of probes’ pairwise
correlations between those groups allows to identify of BAD probes. Function mask() detects
probes differing in binding affinity between groups of samples defined by argument ind. The
masking algorithm workes on a gene/probe set basis as the expression signal for the same transcript
should be correlated among probes. Therefore, to identify BAD probes use probe sets defined at
transcript/gene level.
The method works properly only for probe sets with signal above background in both groups. By
default (use.expr=TRUE option) only probe sets with mas5calls() “P” in at least 90% of samples
from both groups are considered in BAD detection. Another desired set of probe sets might be
specified by the parameter exprlist.

2.1 Evaluation of the mask and choice of cutoff

For human-chimpanzee, with assumption of sequence divergence 1%, we’ll expect naively ∼22% of
probes comprise a SNP. To filter out lower 22% of quality scores, we have to put a cutoff at 0.029.

> quantile(exmask[[1]]$quality.score,0.22)

22%

0.02922448

Manual inspection of borderline cases with plotProbe() might help to decide about the cutoff.
It plots signal intensity of a probe against all other probes from the same probe set.

> ## add rownames containing x and y coordinates of each probe

> rownames(exmask[[1]]) <-apply(exmask[[1]][,c("x","y")],1,

+ function(x)paste(x[1],x[2],sep="."))

> ## filtering for probes around the choosen cutoff

> probesToSee = rownames(exmask[[1]][exmask[[1]]$quality.score<0.03

+ & exmask[[1]]$quality.score >0.028,])

> ## select a random probe and plot it against

> ## all other probes of its probe set

> plotProbe(affy=newAffyBatch,probeset=as.character(exmask[[1]][probesToSee[1],"probeset"]),

+ probeXY=probesToSee[1],scan=TRUE,ind=rep(1:2,each=10),

+ exmask=exmask$probes,names=FALSE)

2.2 Including external data

Mask might be calibrated with a subset of probes with known BAD status (called later on external
mask), for example probes with target sequences known in both compared groups. External mask
contains x and y coordinates and probe set assignement for the probes, along with their BAD status
coded as 0/1 (BAD probe/not BAD probe). For a given cutoff, compare BAD status according to
expression-based mask and given by external mask. Here we use the object sequenceMask - the
information whether the probe sequence is affected by a SNP between the groups (0) or not (1) .

> head(exmask$probes)

x y quality.score probeset

399.559 399 559 0.139886115 1000_at

2

544.185 544 185 0.485398831 1000_at

530.505 530 505 0.704649407 1000_at

617.349 617 349 0.008627547 1000_at

459.489 459 489 0.072944350 1000_at

408.545 408 545 0.342924723 1000_at

> head(sequenceMask)

x y affy id match

340 291 575 1195_s_at 0

788 617 349 1000_at 0

1134 6 591 1024_at 0

1624 15 427 1015_s_at 0

2305 26 515 1270_at 0

2563 31 541 1015_s_at 0

> rownames(sequenceMask) <- paste(sequenceMask$x,sequenceMask$y,sep="_")

> rownames(exmask$probes)<- paste(exmask$probes$x,exmask$probes$y,sep="_")

> cutoff=0.029

> table((exmask$probes[rownames(sequenceMask),"quality.score"]>cutoff)+0,

+ sequenceMask$match)

0 1

0 93 151

1 79 859

Here, 952 probes are concordant between masks, whereas 79 probes with known SNP are not
detected by expression-based mask.

With overlapExprExtMasks() expression mask may be compared with any other designation of
BAD probes along a range of cutoffs. Type 1 (fraction of external mask not BAD probes, identified
as BAD by expression mask) and type 2 (fraction of external mask BAD probes, not detected as
BAD in expression mask) errors are plotted with their binomial confidence intervals.

> head(exmask$probes[,1:3])

x y quality.score

399_559 399 559 0.139886115

544_185 544 185 0.485398831

530_505 530 505 0.704649407

617_349 617 349 0.008627547

459_489 459 489 0.072944350

408_545 408 545 0.342924723

> head(sequenceMask[,c(1,2,4)])

x y match

291_575 291 575 0

617_349 617 349 0

6_591 6 591 0

15_427 15 427 0

26_515 26 515 0

31_541 31 541 0

The function overlapExprExtMasks() applied on our example data, produces a plot like shown
in Figure 1.

3

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Overlap expression based mask − external mask

Type 1

Ty
pe

 2

4.4e−115.3e−050.0021
0.0096

0.022
0.043

0.067
0.097
0.14

0.19
0.24

0.31
0.37

0.45
0.54

0.66
0.76

0.83
0.89
0.94

0.99

Figure 1: Overlap of expression-based mask and external mask (red line), with binomial confidence
intervals (dashed lines). Several cutoff levels are marked on the plot.

> overlapExSeq <- overlapExprExtMasks(exmask$probes[,1:3],

+ sequenceMask[,c(1,2,4)],verbose=FALSE,

+ cutoffs=quantile(exmask$probes[,3],seq(0,1,0.05)))

The cutoff depends on the goal of masking. SFPs detection needs tighter control of type 2 than
type 1 error - low cutoff values. Removal of differential expression bias needs higher cutoff. The
distribution of quality scores for probes declared in external mask as BAD and not BAD may be
compared with Wilcoxon rank sum test and Kolomogornov-Smirnow test for several cutoff levels.
When those distributions do not differ (high p-values on 2), cutoff is too high.

> overlapTests <- overlapExprExtMasks(exmask$probes[,1:3],verbose=FALSE,

+ sequenceMask[,c(1,2,4)],

+ wilcox.ks=T,sample=100)

When no information about sequence divergence between the groups is available, a cutoff might
be suggested by the distribution of quality scores for the mask. On Figure 3, an excess of probes
with low quality scores is obvious. Assuming a uniform distribution of quality scores for probes
not different between groups, a cutoff should be set so that the remaining distribution is uniform
- like.

3 Removal of BAD probes and estimation of expression values

3.1 Removal of BAD probes

To remove probes from affybatch, use prepareMaskedAffybatch(). It produces an affybatch

object (without the masked probes) and an according CDF environment. When one probe appears

4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Kolmogorov−Smirnov Test

Quality score cutoff

p
va

lu
e

(K
ol

m
og

or
ov

−
S

m
ir

no
v

Te
st

)

4.
4e

−
11

2.
4e

−
07

7.
9e

−
06

0.
00

01
3

0.
00

07
1

0.
00

21

0.
00

4

0.
00

79

0.
01

2

0.
01

7

0.
02

2

0.
02

9

0.
03

8

0.
04

7

0.
05

8

0.
06

7

0.
08

0.
09

1

0.
1

0.
12

0.
14

0.
16

0.
18

0.
21

0.
22

0.
24

0.
28 0.

3

0.
32

0.
34

0.
37 0.

4

0.
43

0.
46 0.

5

0.
54 0.

6

0.
65

0.
68

0.
73

0.
76 0.

8

0.
83

0.
85

0.
88

0.
89

0.
91

0.
93

0.
95

0.
96

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Wilcoxon Rank Sum Test

Quality score cutoff

p
va

lu
e

(W
ilc

ox
on

 R
an

k
S

um
 T

es
t)

4.
4e

−
11

2.
4e

−
07

7.
9e

−
06

0.
00

01
3

0.
00

07
1

0.
00

21

0.
00

4

0.
00

79

0.
01

2

0.
01

7

0.
02

2

0.
02

9

0.
03

8

0.
04

7

0.
05

8

0.
06

7

0.
08

0.
09

1

0.
1

0.
12

0.
14

0.
16

0.
18

0.
21

0.
22

0.
24

0.
28 0.

3

0.
32

0.
34

0.
37 0.

4

0.
43

0.
46 0.

5

0.
54 0.

6

0.
65

0.
68

0.
73

0.
76 0.

8

0.
83

0.
85

0.
88

0.
89

0.
91

0.
93

0.
95

0.
96

Figure 2: Kolmogorow-Smirnov-Test (upper panel) and Wilcoxon-Rank-Sum-Test (lower panel)
comparing distributions of quality scores of BAD and not BAD probes. For low cutoffs, two dis-
tributions are different (red - actual tests; gray - tests on bootstraped data, to estimate variance).

5

mask quality score

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

25
0

Figure 3: Probes’ quality scores.

in several probe sets (as is a case for some custom annotations) and it is detected as BAD in one
probe set only, it will be nevertheless removed from all probe sets it appears. With cdftable

argument, prepareMaskedAffybatch() allows also to remove any list of probes.

> affyBatchAfterMasking <-

+ prepareMaskedAffybatch(affy=newAffyBatch,exmask=exmask$probes,

+ cutoff=quantile(exmask[[1]]$quality.score,0.22))

Inferring mismatch positions from perfect match

Renaming columns: probeset x y as probeset px py

Regular run: more than NA probe per grouping

Made list.

Making env

finished making CDF!

> newAffyBatch

AffyBatch object

size of arrays=640x640 features (24 kb)

cdf=newCdf (100 affyids)

number of samples=20

number of genes=100

annotation=hgu95av2

notes=

> affyBatchAfterMasking

6

$newAffyBatch

AffyBatch object

size of arrays=640x640 features (24 kb)

cdf=new_cdf (100 affyids)

number of samples=20

number of genes=100

annotation=hgu95av2

notes=

$newCdf

<environment: 0x561f306fb430>

Note changed number of genes (probe sets) in masked affybatch.

3.2 Expression estimation with rma

For the new affybatch expression values might be estimated as usual. New affybatch object
has a masked cdf declared, instead of a standard one.

> cdfName(affyBatchAfterMasking[[1]])

[1] "new_cdf"

Therefore it is important to save new cdf for further use and make it available in the workspace
(with a name matching cdfName slot of masked affybatch) whenever a function to estimate
expression is called.

> new_cdf=affyBatchAfterMasking[[2]]

> head(exprs(rma(affyBatchAfterMasking[[1]])))

Background correcting

Normalizing

Calculating Expression

a_c1a.CEL a_c1b.CEL a_c1c.CEL a_c1d.CEL a_c1e.CEL a_c1f.CEL a_c2a.CEL

1000_at 8.519381 8.239144 8.698188 8.426627 8.213712 8.631725 8.702705

1001_at 4.926438 4.926092 4.976691 5.100733 5.071768 4.901918 4.899042

1002_f_at 3.994510 3.957382 4.015966 4.146419 4.027846 4.028062 3.938472

1003_s_at 6.156051 6.242018 6.284055 6.408501 6.484892 6.239529 5.993723

1004_at 5.491737 5.487617 5.606666 5.861494 5.653364 5.564533 5.545361

1005_at 6.606239 6.125861 6.718311 6.343611 6.174270 6.464771 5.276121

a_c2b.CEL a_c2c.CEL a_c2d.CEL a_h1a.CEL a_h1b.CEL a_h1c.CEL a_h1d.CEL

1000_at 8.147788 8.531981 8.406286 8.617236 8.265444 8.821593 8.607421

1001_at 5.082391 5.025381 5.166789 4.935324 4.966834 4.984837 5.063387

1002_f_at 4.085803 3.981629 3.984972 4.155437 4.396664 4.026082 4.319549

1003_s_at 6.178582 6.249877 6.329526 6.465071 6.704101 6.283548 6.401511

1004_at 5.559185 5.647424 5.666993 5.935005 5.918048 5.894887 5.806115

1005_at 5.237686 5.070708 5.382761 4.831896 5.298492 5.073494 4.665798

a_h1e.CEL a_h1f.CEL a_h2a.CEL a_h2b.CEL a_h2c.CEL a_h2d.CEL

1000_at 8.344701 8.542945 8.607421 8.156907 8.882432 8.567411

1001_at 5.308487 4.971850 4.911928 4.815596 4.822864 5.187153

1002_f_at 4.511715 4.240136 3.977734 4.016085 3.964241 4.185346

1003_s_at 6.747904 6.560276 6.206139 6.275659 6.210961 6.311143

1004_at 6.409215 6.004868 5.643354 5.551346 5.601732 5.835371

1005_at 5.680619 5.317797 5.036664 5.414302 4.848811 4.793108

7

3.3 Expression estimation with gcrma

Normalization and expression estimates with gcrma() require probe affinities. Those should be
computed with standard cdf. Then both affybatch object and probe affinities object should be
filtered with the mask.

> library(gcrma)

> library(hgu95av2probe)

> affy.affinities=compute.affinities("hgu95av2",verbose=FALSE)

> affy.affinities.m=prepareMaskedAffybatch(affy=affy.affinities,

+ exmask=exmask$probes,cdfName="MaskedAffinitesCdf")

Inferring mismatch positions from perfect match

Renaming columns: probeset x y as probeset px py

Regular run: more than NA probe per grouping

Made list.

Making env

finished making CDF!

To calculate expression values, just use both masked objects (make sure that a cdf with name
matching cdf slot of masked affyBatch is accessible!).

> head(exprs(gcrma(affyBatchAfterMasking[[1]],affy.affinities.m)))

Adjusting for optical effect....................Done.

Normalizing

Calculating Expression

a_c1a.CEL a_c1b.CEL a_c1c.CEL a_c1d.CEL a_c1e.CEL a_c1f.CEL a_c2a.CEL

1000_at 8.634916 8.358381 8.796348 8.549656 8.423818 8.733339 8.771972

1001_at 5.846012 5.845099 5.895825 5.982687 5.989225 5.821090 5.813759

1002_f_at 5.249379 5.206399 5.273889 5.380924 5.271458 5.265842 5.193669

1003_s_at 6.663292 6.720045 6.750878 6.852030 6.921729 6.700775 6.548312

1004_at 6.181949 6.167532 6.273633 6.458531 6.284642 6.262856 6.222565

1005_at 6.984931 6.588212 7.071891 6.788985 6.807228 6.902829 6.077073

a_c2b.CEL a_c2c.CEL a_c2d.CEL a_h1a.CEL a_h1b.CEL a_h1c.CEL a_h1d.CEL

1000_at 8.394478 8.649110 8.534103 8.713059 8.384302 8.905719 8.721932

1001_at 5.982168 5.928388 6.013410 5.856875 5.855905 5.881186 5.956344

1002_f_at 5.323003 5.253987 5.225674 5.386190 5.636114 5.265202 5.553035

1003_s_at 6.667764 6.724276 6.773942 6.892581 7.056563 6.739612 6.906102

1004_at 6.213381 6.283493 6.307053 6.507925 6.546897 6.487002 6.475916

1005_at 6.046712 5.928464 6.171188 5.813974 6.096748 5.925406 5.679128

a_h1e.CEL a_h1f.CEL a_h2a.CEL a_h2b.CEL a_h2c.CEL a_h2d.CEL

1000_at 8.467408 8.657795 8.721932 8.343586 8.929597 8.677108

1001_at 6.232725 5.881665 5.825770 5.759558 5.768511 6.070740

1002_f_at 5.603963 5.516864 5.233100 5.253987 5.213435 5.418177

1003_s_at 7.192853 6.996384 6.675245 6.745539 6.720009 6.769744

1004_at 6.895957 6.569566 6.299328 6.119514 6.234432 6.440966

1005_at 6.509646 6.098351 5.886391 6.187611 5.805249 5.720689

3.4 Exon and gene arrays

Exon and gene arrays require setting useExpr=FALSE, as those arrays do not contain MM probes
and mas5calls() - based definition of expressed genes is not applicable. As computing time in-
creases with number of probe sets, we recommend to use a subset of probe sets (specified with
exprlist) for exon arrays.

8

References

[1] Michael Dannemann, Michael Lachmann, and Anna Lorenc. ’maskBAD’ - a package to de-
tect and remove affymetrix probes with binding affinity differences. BMC Bioinformatics,
13(1):56+, April 2012.

[2] Michael Dannemann, Anna Lorenc, Ines Hellmann, Philipp Khaitovich, and Michael Lach-
mann. The effects of probe binding affinity differences on gene expression measurements and
how to deal with them. Bioinformatics (Oxford, England), 25(21):2772–2779, November 2009.

[3] Philipp Khaitovich, Bjoern Muetzel, Xinwei She, Michael Lachmann, Ines Hellmann, Janko
Dietzsch, Stephan Steigele, Hong-Hai H. Do, Gunter Weiss, Wolfgang Enard, Florian Heissig,
Thomas Arendt, Kay Nieselt-Struwe, Evan E. Eichler, and Svante Pääbo. Regional patterns of
gene expression in human and chimpanzee brains. Genome Research, 14(8):1462–1473, August
2004.

9

	Introduction
	Identification of BAD probes
	Evaluation of the mask and choice of cutoff
	Including external data

	Removal of BAD probes and estimation of expression values
	Removal of BAD probes
	Expression estimation with rma
	Expression estimation with gcrma
	Exon and gene arrays

