
The genomeIntervals package

Julien Gagneur

20 June 2009

1 Introduction

Genomic intervals arise in many contexts, such as genome sequence annota-
tions (exons, introns, promoters, etc.) or experimental results of genomic stud-
ies (transcripts, ChIP-on-chip enriched regions, etc.). Often, operations over
collections of genomic intervals — such as merging, overlap or non-overlap de-
tection, or the computation of distances between intervals — are needed. The
genomeIntervals package provides tools for this. It relies on the package inter-
vals, which works with general numerical intervals, and provide wrappers for
most of its functions, making them easy to use in a genomic context.

2 Genome intervals classes

We think of genomic sequences as sequences of nucleotides. These intervals are
mathematically represented as intervals over the integers, Z, with all possible
types of left and right closure permitted. (See the example which follows.)

The S4 class Genome_intervals represents a collection of genomic inter-
vals by extending the class Intervals_full from the intervals package. Each
genome interval has a seq_name that represents its chromosome or, more gen-
erally, its sequence of origin. The S4 class Genome_intervals_stranded repre-
sents genomic intervals which are strand specific.

Below, we load and show the Genome_intervals_stranded object i, a toy
example provided with the dataset gen_ints.

> library(genomeIntervals)

> data("gen_ints")

> i

Object of class Genome_intervals_stranded

7 base intervals and 0 inter-base intervals(*):

i.gene.1 chr01 + [1, 2]

i.gene.2 chr01 + (2, 5)

i.gene.3 chr02 - [11, 12)

i.gene.4 chr02 - [8, 9)

i.gene.5 chr02 - [5, 10]

i.gene.6 chr02 + [4, 12]

i.gene.7 chr03 + [2, 6)

1

annotation:

seq_name inter_base strand

1 chr01 FALSE +

2 chr01 FALSE +

3 chr02 FALSE -

4 chr02 FALSE -

5 chr02 FALSE -

6 chr02 FALSE +

7 chr03 FALSE +

Genome_intervals can have rownames (e.g., "i.gene.1"), which behave in
the same way as matrix rownames: they are not mandatory and need not be
unique or be supplied for all rows.

The left and right end points of each interval can be accessed and modified
using standard column subsetting. Their closure status can be accessed and
modified similarly, using the closed accessor.

> i[,1]

i.gene.1 i.gene.2 i.gene.3 i.gene.4 i.gene.5 i.gene.6 i.gene.7

1 2 11 8 5 4 2

> i[,2]

i.gene.1 i.gene.2 i.gene.3 i.gene.4 i.gene.5 i.gene.6 i.gene.7

2 5 12 9 10 12 6

> closed(i)

[,1] [,2]

[1,] TRUE TRUE

[2,] FALSE FALSE

[3,] TRUE FALSE

[4,] TRUE FALSE

[5,] TRUE TRUE

[6,] TRUE TRUE

[7,] TRUE FALSE

> closed(i)[2,2] <- FALSE

Closure status can be adjusted quickly for all intervals in an object by sup-
plying only two values. In this case, the two values are assumed to correspond
to the left and right end points. (This is not R’s standard recycling behavior,
but is far more useful here.)

> i2 <- i

> closed(i2) <- c(TRUE, FALSE)

> i2

Object of class Genome_intervals_stranded

7 base intervals and 0 inter-base intervals(*):

i.gene.1 chr01 + [1, 2)

2

i.gene.2 chr01 + [2, 5)

i.gene.3 chr02 - [11, 12)

i.gene.4 chr02 - [8, 9)

i.gene.5 chr02 - [5, 10)

i.gene.6 chr02 + [4, 12)

i.gene.7 chr03 + [2, 6)

annotation:

seq_name inter_base strand

1 chr01 FALSE +

2 chr01 FALSE +

3 chr02 FALSE -

4 chr02 FALSE -

5 chr02 FALSE -

6 chr02 FALSE +

7 chr03 FALSE +

Sequence name and strand data can be accessed and modified with the
seq_name and strand accessors:

> seqnames(i)

[1] chr01 chr01 chr02 chr02 chr02 chr02 chr03

Levels: chr01 chr02 chr03

> strand(i)

[1] + + - - - + +

Levels: + -

> strand(i)[2] <- "-"

Objects can be combined using c. Subsetting by row returns objects of the
same class as the original object. Below we use the Genome_intervals_stranded
object j, also provided with the dataset gen_ints.

> j

Object of class Genome_intervals_stranded

5 base intervals and 0 inter-base intervals(*):

j.gene.1 chr01 + [1, 2)

j.gene.2 chr01 + (5, 10]

j.gene.3 chr01 - [4, 6)

j.gene.4 chr02 + [12, 15]

j.gene.5 chr02 - [8, 9)

annotation:

seq_name inter_base strand

1 chr01 FALSE +

2 chr01 FALSE +

3 chr01 FALSE -

4 chr02 FALSE +

5 chr02 FALSE -

3

> c(i[1:3,], j[1:2,])

Object of class Genome_intervals_stranded

5 base intervals and 0 inter-base intervals(*):

i.gene.1 chr01 + [1, 2]

i.gene.2 chr01 - (2, 5)

i.gene.3 chr02 - [11, 12)

j.gene.1 chr01 + [1, 2)

j.gene.2 chr01 + (5, 10]

annotation:

seq_name inter_base strand

1 chr01 FALSE +

2 chr01 FALSE -

3 chr02 FALSE -

4 chr01 FALSE +

5 chr01 FALSE +

The slot annotation is a data.frame that stores seq_name, strand and the
inter_base logical vector (explained later). Additional columns may be added
for extra, user-defined annotation of the intervals. Subsetting annotated objects
does what it should:

> annotation(i)

seq_name inter_base strand

1 chr01 FALSE +

2 chr01 FALSE -

3 chr02 FALSE -

4 chr02 FALSE -

5 chr02 FALSE -

6 chr02 FALSE +

7 chr03 FALSE +

> annotation(i)$myannot = rep(c("my", "annot"), length=nrow(i))

> annotation(i[2:3,])

seq_name inter_base strand myannot

2 chr01 FALSE - annot

3 chr02 FALSE - my

Columns of the slot annotation can be directly accessed and modified via
the [[and the $ operators.

> i$myannot

[1] "my" "annot" "my" "annot" "my" "annot" "my"

> i[["myannot"]]

[1] "my" "annot" "my" "annot" "my" "annot" "my"

4

The close_intervals method returns a representation which is adjusted
to have closed left and right end points, standardizing results. Note that
close_intervals does not change the content of the intervals, only their rep-
resentation. The companion methods open_intervals and adjust_closure,
also imported from the package intervals, permit the other transformations.

> close_intervals(i)

Object of class Genome_intervals_stranded

7 base intervals and 0 inter-base intervals(*):

i.gene.1 chr01 + [1, 2]

i.gene.2 chr01 - [3, 4]

i.gene.3 chr02 - [11, 11]

i.gene.4 chr02 - [8, 8]

i.gene.5 chr02 - [5, 10]

i.gene.6 chr02 + [4, 12]

i.gene.7 chr03 + [2, 5]

annotation:

seq_name inter_base strand myannot

1 chr01 FALSE + my

2 chr01 FALSE - annot

3 chr02 FALSE - my

4 chr02 FALSE - annot

5 chr02 FALSE - my

6 chr02 FALSE + annot

7 chr03 FALSE + my

We define the size of a genomic interval to be the number of bases it contains.

> size(i)

i.gene.1 i.gene.2 i.gene.3 i.gene.4 i.gene.5 i.gene.6 i.gene.7

2 2 1 1 6 9 4

Constructing a Genome_intervals or a Genome_intervals_stranded from
scratch is done by a call to new providing the matrix of end points, the matrix
of closures (or faster a single value as shown below) and the annotation data
frame. For Genome_intervals_stranded, make sure the strand column of the
annotation data frame is a factor with two levels.

> new(

+ "Genome_intervals_stranded",

+ matrix(c(1, 2, 2, 5), ncol = 2),

+ closed = TRUE,

+ annotation = data.frame(

+ seq_name = factor(c("chr01","chr02")),

+ inter_base = FALSE,

+ strand = factor(c("+", "+"), levels=c("+", "-"))

+)

+)

5

Object of class Genome_intervals_stranded

2 base intervals and 0 inter-base intervals(*):

chr01 + [1, 2]

chr02 + [2, 5]

annotation:

seq_name inter_base strand

1 chr01 FALSE +

2 chr02 FALSE +

3 Overlap and set operations

3.1 Overlap

The interval_overlap method identifies, for each interval of the from object,
all overlapping intervals from the to object. It works by seq_name and (if
applicable) strand.

> interval_overlap(from=i, to=j)

[[1]]

[1] 1

[[2]]

[1] 3

[[3]]

integer(0)

[[4]]

[1] 5

[[5]]

[1] 5

[[6]]

[1] 4

[[7]]

integer(0)

3.2 Set operations

The interval-union, obtained by a call to interval_union, is defined as the
union of all intervals of a Genome_intervals object, computed by strand and
sequence name. Note that the output of interval_union does not include row
names or any extra annotation beyond sequence name and strand, since the
union process typically combines intervals, making old annotation inappropriate.

> interval_union(i)

6

Object of class Genome_intervals_stranded

5 base intervals and 0 inter-base intervals(*):

chr01 + (0, 3)

chr02 + (3, 13)

chr03 + (1, 6)

chr01 - (2, 5)

chr02 - (4, 12)

annotation:

seq_name inter_base strand

1 chr01 FALSE +

2 chr02 FALSE +

3 chr03 FALSE +

4 chr01 FALSE -

5 chr02 FALSE -

The intersection between intervals of two (or more) Genome_intervals ob-
jects can be obtained by using interval_intersection; the complement of
a Genome_intervals object can be obtained by using interval_complement.
(Note: interval_complement currently resorts to -Inf and Inf for outer end
points. This function will be improved in a future release to utilize known
chromosome extents.)

> interval_intersection(i,j)

Object of class Genome_intervals_stranded

4 base intervals and 0 inter-base intervals(*):

chr01 + [1, 1]

chr01 - [4, 4]

chr02 - [8, 8]

chr02 + [12, 12]

annotation:

inter_base seq_name strand

1 FALSE chr01 +

2 FALSE chr01 -

3 FALSE chr02 -

4 FALSE chr02 +

> interval_complement(j[1:2,])

Object of class Genome_intervals_stranded

4 base intervals and 0 inter-base intervals(*):

chr01 + (-Inf, 0]

chr01 + [2, 5]

chr01 + [11, Inf)

chr02 + [-Inf, Inf]

annotation:

seq_name inter_base strand

1 chr01 FALSE +

7

2 chr01 FALSE +

3 chr01 FALSE +

4 chr02 FALSE +

4 Distance

The function distance_to_nearest gives the distance from each from interval
to the nearest to interval. The absolute distance is returned; signed distance
(reporting whether the nearest is in 5’ or 3’ direction, or producing a result for
both directions) is left for a future release.

> distance_to_nearest(i,j)

[1] 0 0 3 0 0 0 NA

Note that the distance to nearest of a from interval equals 0 if and only if
at least one of the to intervals overlaps with it.

5 Inter-base intervals

It is sometimes useful to define positions between two nucleotides — to represent,
for example, an insertion point or an enzyme restriction site. (The GFF format
provides support for such positions.) To deal with this, we consider two types
of positions along genomic sequences. The base positions are directly at the
nucleotides; all examples shown so far in this vignette deal with base positions.
The inter-base positions, on the other hand, fall between two consecutive nu-
cleotides. Specifically, we define an inter-base position at i to lie between bases
i and i + 1. We then consider two types of genomic intervals: base intervals
(composed of consecutive base positions) and inter-base intervals (consecutive
inter-bases).

The object k of the data set gen_ints contains both base and inter-base
intervals. Inter-base intervals are indicated in the display with an asterisk.
The inter-base status of a given interval can be retrieved and modified using
the inter_base accessor function. In the next example, inter-base intervals
represent two insertion points, between bases 1 and 2, and between bases 8 and
9.

> k

Object of class Genome_intervals_stranded

3 base intervals and 2 inter-base intervals(*):

k.site.1 chr01 + [1, 2) *

k.gene.1 chr01 + (5, 10]

k.gene.2 chr01 - [4, 6)

k.gene.3 chr02 + [12, 15]

k.site.2 chr02 - [8, 9) *

annotation:

seq_name inter_base strand

1 chr01 TRUE +

8

2 chr01 FALSE +

3 chr01 FALSE -

4 chr02 FALSE +

5 chr02 TRUE -

> inter_base(k)

[1] TRUE FALSE FALSE FALSE TRUE

> k[inter_base(k),]

Object of class Genome_intervals_stranded

0 base intervals and 2 inter-base intervals(*):

k.site.1 chr01 + [1, 2) *

k.site.2 chr02 - [8, 9) *

annotation:

seq_name inter_base strand

1 chr01 TRUE +

5 chr02 TRUE -

Because size is defined as the number of bases an interval contains, size is
by definition 0 for all inter-base intervals.

> size(k)

k.site.1 k.gene.1 k.gene.2 k.gene.3 k.site.2

0 5 2 4 0

Base and inter-base intervals can overlap:

> interval_overlap(j,k)

[[1]]

integer(0)

[[2]]

[1] 2

[[3]]

[1] 3

[[4]]

[1] 4

[[5]]

integer(0)

The distance between a base and the inter-base on either side is defined to
be 0.5. Thus, distances from one base to another base, or from one inter-base
to another inter-base, are integer valued; distances from a base to an inter-base,
on the other hand, are half-integers. Note that overlapping intervals of any type
are at distance 0 from each other.

9

> distance_to_nearest(j,k)

[1] 0.5 0.0 0.0 0.0 0.5

Set operations are computed for the base and the inter-base intervals inde-
pendently, preserving the distinction between the two interval types:

> interval_union(k)

Object of class Genome_intervals_stranded

3 base intervals and 2 inter-base intervals(*):

chr01 + (5, 11)

chr01 + (0, 2) *

chr02 + (11, 16)

chr01 - (3, 6)

chr02 - (7, 9) *

annotation:

seq_name inter_base strand

1 chr01 FALSE +

2 chr01 TRUE +

3 chr02 FALSE +

4 chr01 FALSE -

5 chr02 TRUE -

> interval_intersection(k,j)

Object of class Genome_intervals_stranded

3 base intervals and 0 inter-base intervals(*):

chr01 + [6, 10]

chr01 - [4, 5]

chr02 + [12, 15]

annotation:

inter_base seq_name strand

1 FALSE chr01 +

2 FALSE chr01 -

3 FALSE chr02 +

> interval_complement(k[1:2,])

Object of class Genome_intervals_stranded

3 base intervals and 3 inter-base intervals(*):

chr01 + (-Inf, 5]

chr01 + [11, Inf)

chr01 + (-Inf, 0] *

chr01 + [2, Inf) *

chr02 + [-Inf, Inf]

chr02 + [-Inf, Inf] *

annotation:

10

seq_name inter_base strand

1 chr01 FALSE +

2 chr01 FALSE +

3 chr01 TRUE +

4 chr01 TRUE +

5 chr02 FALSE +

6 chr02 TRUE +

6 Reading and handling GFF files

Files in the GFF3 format can be loaded by the function readGFF3. The compan-
ion functions parseGffAttributes and getGffAttribute provide parsing facil-
ities for GFF attributes. To demonstrate these functions, the package genomeIn-
tervals comes with a simplified GFF file derived from the yeast genome database
SGD (http://yeastgenome.org).

> libPath <- installed.packages()["genomeIntervals", "LibPath"]

> filePath <- file.path(

+ libPath,

+ "genomeIntervals",

+ "example_files"

+)

> gff <- readGff3(

+ file.path(filePath, "sgd_simple.gff"),

+ isRightOpen=FALSE,quiet=TRUE

+)

> idpa = getGffAttribute(gff, c("ID", "Parent"))

> head(idpa)

ID Parent

[1,] "chrI" NA

[2,] "TEL01L-TR" NA

[3,] "TEL01L" NA

[4,] "TEL01L-XR" NA

[5,] "YAL069W" NA

[6,] NA "YAL069W"

7 Session information

� R version 4.1.0 (2021-05-18), x86_64-pc-linux-gnu

� Running under: Ubuntu 20.04.2 LTS

� Matrix products: default

� BLAS: /home/biocbuild/bbs-3.13-bioc/R/lib/libRblas.so

� LAPACK: /home/biocbuild/bbs-3.13-bioc/R/lib/libRlapack.so

� Base packages: base, datasets, grDevices, graphics, methods, parallel,
stats, utils

11

� Other packages: BiocGenerics 0.38.0, genomeIntervals 1.48.0,
intervals 0.15.2

� Loaded via a namespace (and not attached): GenomeInfoDb 1.28.0,
GenomeInfoDbData 1.2.6, GenomicRanges 1.44.0, IRanges 2.26.0,
RCurl 1.98-1.3, S4Vectors 0.30.0, XVector 0.32.0, bitops 1.0-7,
compiler 4.1.0, stats4 4.1.0, tools 4.1.0, zlibbioc 1.38.0

12

