
Using the Streamer classes to count genomic

overlaps with summarizeOverlaps

Nishant Gopalakrishnan, Martin Morgan

May 19, 2021

1 Introduction

This vignette illustrates how users can make use of the functionality provided by
the Producer , Consumer and Stream classes in the Streamer package to process
data in a streaming fashion. The users have the option of quickly being able
to create their own class to stream process data by inheriting from the classes
provided by the Streamer package.

This example illustrates a simple BamInput class that inherits from the Pro-
ducer class and a CountGOverlap class that inherits from the Consumer class.
These classes allows us to count the number of hits in a BAM file corresponding
to the ranges specified by the user and return the hits in a streaming manner
on a per sequence basis. Finally, the results for each sequence is collated and
reordered using a helper function so they appear in the same order as the ranges
provided by the user. The classes that we are going to develop in this example
make use of the reference class system available in R.

We first load the GenomicAlignments and Streamer packages.

> library(GenomicAlignments)

> library(Streamer)

2 BAMInput class

The BAMInput class will be used to read gapped alignments from a file specified
by the user in a streaming manner. i.e reads will be read one sequence at a time.

The two inputs specified by the user are

� file: a character string specifying the file from which alignments are to be
read.

� ranges: the ranges from which alingments are to be

Like the design of the other classes in the Streamer package, the BamInput
class will have an initialize and a yield method. The initialize method

1

will be used to initialize the fields of the BamInput class and is called automat-
ically when objects are instantiated from this class.

The yield method does not take any inputs. Each call to the yield method
returns a GAlignments object for a single sequence within the ranges specified
by the user until all the sequences have been read from the BAM file at which
point, an empty GAlignments object will be returned.

> .BamInput <-

+ setRefClass("BamInput",

+ contains="Producer",

+ fields=list(

+ file="character",

+ ranges="GRanges",

+ .seqNames="character"))

> .BamInput$methods(

+ yield=function()

+ {

+ "yield data from .bam file"

+ if (verbose) msg("BamInput$.yield()")

+ if(length(.self$.seqNames))

+ {

+ seq <- .self$.seqNames[1]

+ .self$.seqNames <- .self$.seqNames[-1]

+ idx <- as.character(seqnames(.self$ranges)) == seq

+ param <- ScanBamParam(which=.self$ranges[idx],

+ what=character())

+ aln <- readGAlignments(.self$file, param=param)

+ seqlevels(aln) <- seq

+ } else {

+ aln <- GAlignments()

+ }

+ list(aln)

+ })

>

The constructor for the BamInput class takes the file and ranges as input and
returns and instance of the BamInput class.

> BamInput <- function(file, ranges,...)

+ {

+ .seqNames <- names(scanBamHeader(file)[[1]]$target)

+ .BamInput$new(file=file, ranges=ranges, .seqNames=.seqNames, ...)

+ }

>

2

3 CountGOverlap class

The second class we are going to develop is a Consumer class that processes the
data obtained from the BamInput class. The class calls the summarizeOver-

laps method with the GAlignments object, user supplied ranges and additional
arguments to control the behaviour of the summarizeOverlaps method.

The CountGOverlap class has an initialize method and a yield method.
The initialize method initializes the class with the options to be passed in to
the countGenomicOverlaps method as well as some variables for keeping track
of the order of the hits to be returned by the CountGOverlap class.

The yield method returns a DataFrame with the number of hits. The
rownames of the result returned correspond to the order of the results in the
original ranges supplied by the user. (These are subsequently used to reorder
the results for the hits after collating results for all the sequences)

> .CountGOverlap <-

+ setRefClass("CountGOverlap",

+ contains="Consumer",

+ fields=list(ranges="GRanges",

+ mode="character",

+ ignore.strand="logical"))

> .CountGOverlap$methods(

+ yield=function()

+ {

+ "return number of hits"

+ if (verbose) msg(".CountGOt$yield()")

+ aln <- callSuper()[[1]]

+ df <- DataFrame(hits=numeric(0))

+ if(length(aln))

+ {

+ idx <- as.character(seqnames(.self$ranges)) == levels(rname(aln))

+ which <- .self$ranges[idx]

+ olap <- summarizeOverlaps(which, aln, mode=.self$mode,

+ ignore.strand=.self$ignore.strand)

+ df <- as(assays(olap)[[1]], "DataFrame")

+ dimnames(df) <- list(rownames(olap), seqlevels(aln))

+ }

+ df

+ })

> CountGOverlap <-

+ function(ranges,

+ mode = c("Union", "IntersectionStrict",

+ "IntersectionNotEmpty"),

+ ignore.strand = FALSE, ...)

+ {

+ values(ranges)$pos <- seq_len(length(ranges))

3

+ .CountGOverlap$new(ranges=ranges, mode=mode,

+ ignore.strand=ignore.strand, ...)

+ }

>

4 Stream with BamInput and CountGOverlap

Instances of the BamInput and CountGOverlap classes can be created using their
respective constructors and can subsequently be hooked up to form a stream
using the Stream function provided by the Streamer package. For our example
we shall make use of a BAM file available in the Rsamtools package and create a
GenomicRanges object for the ranges that we are interested. A Stream can then
be created by passing these objects as the arguments to the Stream function.

A call to the yield function of the Stream class will yield the results ob-
tained by calling yield first on the BamInput class and subsequently on the
CountGOverlap class for the first sequence in the ranges provided.

> galn_file <- system.file("extdata", "ex1.bam", package="Rsamtools")

> gr <-

+ GRanges(seqnames =

+ Rle(c("seq2", "seq2", "seq2", "seq1"), c(1, 3, 2, 4)),

+ ranges = IRanges(rep(10,1), width = 1:10,

+ names = head(letters,10)),

+ strand = Rle(strand(rep("+", 5)), c(1, 2, 2, 3, 2)),

+ score = 1:10,

+ GC = seq(1, 0, length=10))

> bam <- BamInput(file = galn_file, ranges = gr)

> olap <- CountGOverlap(ranges=gr, mode="IntersectionNotEmpty")

> s <- Stream(bam, olap)

> yield(s)

DataFrame with 4 rows and 1 column

seq1

<integer>

g 0

h 0

i 0

j 32

>

5 Collate results

Each call to the yield function of the stream process data for one sequence. It
would be convenient to have a function that processed data for all the sequences

4

in the ranges provided and collated the results so that they are ordered correctly.
(same order as the ranges provided). We proceed to create this helper over-

lapCounter function that takes a BAMInput and CountGOverlap class objects
as inputs.

> overlapCounter <- function(pr, cs) {

+ s <- Stream(pr, cs)

+ len <- length(levels(seqnames(pr$ranges)))

+ lst <- vector("list", len)

+ for(i in 1:len) {

+ lst[[i]] <- yield(s)

+ names(lst[[i]]) <- "Count"

+ }

+ do.call(rbind, lst)[names(cs$ranges), ,drop=FALSE]

+ }

> bam <- BamInput(file = galn_file, ranges = gr)

> olap <- CountGOverlap(ranges=gr, mode="IntersectionNotEmpty")

> overlapCounter(bam, olap)

DataFrame with 10 rows and 1 column

Count

<integer>

a 0

b 0

c 0

d 0

e 0

f 87

g 0

h 0

i 0

j 32

5

	Introduction
	BAMInput class
	CountGOverlap class
	Stream with BamInput and CountGOverlap
	Collate results

