Package 'vissE'

October 14, 2021

Title Visualising Set Enrichment Analysis Results

Version 1.0.0

Description This package enables the interpretation and analysis of results from a gene set enrichment analysis using network-based and text-mining approaches. Most enrichment analyses result in large lists of significant gene sets that are difficult to interpret. Tools in this package help build a similarity-based network of significant gene sets from a gene set enrichment analysis that can then be investigated for their biological function using text-mining approaches.

biocViews Software, GeneExpression, GeneSetEnrichment, NetworkEnrichment, Network

License GPL-3

Encoding UTF-8

LazyDataCompression bzip2

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.1

Depends R (>= 4.1)

Imports igraph, methods, plyr, ggplot2, ggnewscale, scico, RColorBrewer, tm, ggwordcloud, GSEABase, reshape2, grDevices, ggforce, msigdb, Matrix, ggrepel, textstem

Suggests testthat, org.Hs.eg.db, org.Mm.eg.db, ggpubr, singscore, knitr, rmarkdown, prettydoc, BiocStyle

URL https://davislaboratory.github.io/vissE

BugReports https://github.com/DavisLaboratory/vissE/issues

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/vissE

git_branch RELEASE_3_13

git_last_commit 1a90b74

git_last_commit_date 2021-05-19

Date/Publication 2021-10-14

Author Dharmesh D. Bhuva [aut, cre] (<https://orcid.org/0000-0002-6398-9157>)

Maintainer Dharmesh D. Bhuva <bhuva.d@wehi.edu.au>

R topics documented:

bhuvad_theme	2
characteriseGeneset	
computeMsigNetwork	4
computeMsigOverlap	4
computeMsigWordFreq	5
getMsigBlacklist	6
hgsc	6
mem_mat_hs	7
mem_mat_mm	7
plotGeneStats	8
plotMsigNetwork	9
plotMsigWordcloud	10
	12

Index

bhuvad_theme

Custom theme

Description

Custom theme

Usage

 $bhuvad_theme(rl = 1.1)$

Arguments

rl

a numeric, scaling factor to apply to text sizes

Value

a ggplot2 theme

```
p1 = ggplot2::ggplot()
p1 + bhuvad_theme()
```

characteriseGeneset Functionally characterise a list of genes

Description

This function can be used to perform a network-based enrichment analysis of a list of genes. The list of genes are characterised based on their similarity with gene sets from the MSigDB. A network of similar gene sets is retrieved using this function.

Usage

```
characteriseGeneset(
  gs,
  thresh = 0.2,
  measure = c("ovlapcoef", "jaccard"),
  gscolcs = c("h", "c2", "c5")
)
```

Arguments

gs	a GeneSet object, representing the list of genes that need to be characterised.
thresh	a numeric, specifying the threshold to discard pairs of gene sets.
measure	a character, specifying the similarity measure to use: jaccard for the Jaccard Index and ovlapcoef for the Overlap Coefficient.
gscolcs	a character, listing the MSigDB collections to use as a background (defaults to h, c2, and c5). Collection types can be retrieved using msigdb::listCollections().

Value

an igraph object, containing gene sets that are similar to the query set. The network contains relationships between results of the query too.

```
library(GSEABase)
data(hgsc)
#create a geneset using one of the Hallmark gene sets
mySet <- GeneSet(
  geneIds(hgsc[[2]]),
  setName = 'MySet',
  geneIdType = SymbolIdentifier()
)
#characterise the custom gene set</pre>
```

```
plotMsigNetwork(ig)
```

computeMsigNetwork Compute a network using computed gene set overlap

Description

Computes an igraph object using information on gene sets and gene sets computed using the computeMsigOverlap() function.

Usage

```
computeMsigNetwork(genesetOverlap, msigGsc)
```

Arguments

geneset0verlap	a data.frame, containing results of an overlap analysis computed using the computeMsigOverlap()
	function.
msigGsc	a GeneSetCollection object, containing gene sets used to compute overlap.

Value

an igraph object

Examples

data(hgsc)
ovlap <- computeMsigOverlap(hgsc)
ig <- computeMsigNetwork(ovlap, hgsc)</pre>

computeMsigOverlap Compute gene set overlap

Description

Compute overlap between gene sets from a GeneSetCollection using the Jaccard index or the overlap coefficient. These values can then be used to compute a network of gene set overlaps.

Usage

```
computeMsigOverlap(
  msigGsc1,
  msigGsc2 = NULL,
  thresh = 0.15,
  measure = c("jaccard", "ovlapcoef")
)
```

Arguments

msigGsc1	a GeneSetCollection object.
msigGsc2	a GeneSetCollection object or NULL if pairwise overlaps are to be computed.
thresh	a numeric, specifying the threshold to discard pairs of gene sets.
measure	a character, specifying the similarity measure to use: jaccard for the Jaccard Index and ovlapcoef for the Overlap Coefficient.

Value

a data.frame, containing the overlap structure of gene sets represented as a network in the simple interaction format (SIF).

Examples

data(hgsc)
ovlap <- computeMsigOverlap(hgsc)</pre>

computeMsigWordFreq Compute word frequencies for a single MSigDB collection

Description

Compute word frequencies for a single MSigDB collection

Usage

```
computeMsigWordFreq(
  msigGsc,
  measure = c("tfidf", "tf"),
  rmwords = getMsigBlacklist()
)
```

Arguments

msigGsc	a GeneSetCollection object, containing gene sets from the MSigDB. The GSEABase::getBroadSets() function can be used to parse XML files downloaded from MSigDB.
measure	a character, specifying how frequencies should be computed. "tf" uses term frequencies and "tfidf" (default) applies inverse document frequency weights to term frequencies.
rmwords	a character vector, containing a blacklist of words to discard from the analysis.

Value

a list, containing two data.frames summarising the results of the frequency analysis on gene set names and short descriptions.

Examples

```
data(hgsc)
freq <- computeMsigWordFreq(hgsc, measure = 'tfidf')</pre>
```

getMsigBlacklist Blacklist words for MSigDB gene set text mining

Description

List of words to discard when performing text mining MSigDB gene set names and short descriptions.

Usage

```
getMsigBlacklist(custom = c())
```

Arguments

custom a character vector, containing list of words to add onto existing blacklist.

Value

a character vector, containing list of blacklist works

Examples

```
getMsigBlacklist('blacklist')
```

hgsc

The Hallmark collection from the MSigDB

Description

The molecular signatures database (MSigDB) is a collection of over 25000 gene expression signatures. Signatures in v7.2 are divided into 9 categories. The Hallmarks collection contains gene expression signatures representing molecular processes that are hallmarks in cancer development and progression.

Usage

hgsc

mem_mat_hs

Format

A GeneSetCollection object with 50 GeneSet objects representing the 50 Hallmark gene expression signatures.

References

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., ... & Mesirov, J. P. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences, 102(43), 15545-15550.

Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdóttir, H., Tamayo, P., & Mesirov, J. P. (2011). Molecular signatures database (MSigDB) 3.0. Bioinformatics, 27(12), 1739-1740.

Liberzon, A., Birger, C., Thorvaldsdóttir, H., Ghandi, M., Mesirov, J. P., & Tamayo, P. (2015). The molecular signatures database hallmark gene set collection. Cell systems, 1(6), 417-425.

mem_mat_hs

Binary membership matrix for the Human MSigDB

Description

This object stores the Human molecular signatures database (MSigDB) in binary format as a membership matrix. Gene signatures are along the rows and Entrez IDs are along the columns.

Usage

mem_mat_hs

Format

A dgCMatrix (sparse) object, with gene sets along the rows and Entrez IDs along the columns.

mem_mat_mm

Binary membership matrix for the Mouse MSigDB

Description

This object stores the Mouse molecular signatures database (MSigDB) in binary format as a membership matrix. Gene signatures are along the rows and Entrez IDs are along the columns.

Usage

```
mem_mat_mm
```

Format

A dgCMatrix (sparse) object, with gene sets along the rows and Entrez IDs along the columns.

```
plotGeneStats
```

Description

This function plots gene statistics against gene frequencies for any given cluster of gene sets. The plot can be used to identify genes that are over-represented in a cluster of gene-sets (identified based on gene-set overlaps) and have a strong statistic (e.g. log fold-chage or p-value).

Usage

```
plotGeneStats(
  geneStat,
  msigGsc,
  groups,
  statName = "Gene-level statistic",
  topN = 5
)
```

Arguments

geneStat	a named numeric, containing the statistic to be displayed. The vector must be named with either gene Symbols or Entrez IDs depending on annotations in msigGsc.
msigGsc	a GeneSetCollection object, containing gene sets from the MSigDB. The GSEABase::getBroadSets() function can be used to parse XML files downloaded from MSigDB.
groups	a named list, of character vectors or numeric indices specifying node groupings. Each element of the list represent a group and contains a character vector with node names.
statName	a character, specifying the name of the statistic.
topN	a numeric, specifying the number of genes to label. The top genes are those with the largest count and statistic.

Value

a ggplot object, plotting the gene-level statistic against gene frequencies in the cluster of gene sets.

```
library(GSEABase)
```

```
data(hgsc)
groups <- list('g1' = 1:25, 'g2' = 26:50)
#create statistics
allgenes = unique(unlist(geneIds(hgsc)))
gstats = rnorm(length(allgenes))</pre>
```

plotMsigNetwork

```
names(gstats) = allgenes
#plot
plotGeneStats(gstats, hgsc, groups)
```

plotMsigNetwork *Plot a gene set overlap network*

Description

Plots a network of gene set overlap with overlap computed using the computeMsigOverlap() and a graph created using computeMsigNetwork().

Usage

```
plotMsigNetwork(
    ig,
    markGroups = NULL,
    genesetStat = NULL,
    nodeSF = 1,
    edgeSF = 1,
    lytFunc = igraph::layout_with_graphopt,
    lytParams = list()
)
```

Arguments

ig	an igraph object, containing a network of gene set overlaps computed using computeMsigNetwork().
markGroups	a named list, of character vectors or numeric indices specifying node groupings. Each element of the list represent a group and contains a character vector with node names. Up to 12 groups can be visualised in the plot.
genesetStat	a numeric, statistic to project onto the nodes. These could be p-values, log fold- changes or gene set score from a singscore-based analysis.
nodeSF	a numeric, indicating the scaling factor to apply to node sizes.
edgeSF	a numeric, indicating the scaling factor to apply to edge widths.
lytFunc	a function, that computes layouts and returns a matrix with 2 columns specifying the x and y coordinates of nodes. Layout functions in the igraph package can be used here.
lytParams	a named list, containing additional parameters to be passed on to the layout function.

Value

a ggplot2 object

Examples

```
data(hgsc)
ovlap <- computeMsigOverlap(hgsc)
ig <- computeMsigNetwork(ovlap, hgsc)
groups <- list('g1' = c(1, 9), 'g2' = c(5, 6))
plotMsigNetwork(ig, markGroups = groups)</pre>
```

plotMsigWordcloud Compute and plot word frequencies for multiple MSigDB collections

Description

Given a gene set collection, this function computes the word frequency of gene set names from the Molecular Signatures Database (MSigDB) collection (split by _). Word frequencies are also computed using short descriptions attached with each gene set object.

Usage

```
plotMsigWordcloud(
   msigGsc,
   groups,
   measure = c("tf", "tfidf"),
   rmwords = getMsigBlacklist(),
   type = c("Name", "Short")
)
```

Arguments

msigGsc	a GeneSetCollection object, containing gene sets from the MSigDB. The GSEABase::getBroadSets() function can be used to parse XML files downloaded from MSigDB.
groups	a named list, of character vectors or numeric indices specifying node groupings. Each element of the list represent a group and contains a character vector with node names.
measure	a character, specifying how frequencies should be computed. "tf" uses term frequencies and "tfidf" (default) applies inverse document frequency weights to term frequencies.
rmwords	a character vector, containing a blacklist of words to discard from the analysis.
type	a character, specifying the source of text mining. Either gene set names (Name) or descriptions (Short) can be used.

Value

a ggplot object.

10

plotMsigWordcloud

```
data("hgsc")
groups <- list('g1' = 1:10, 'g2' = 11:20)
plotMsigWordcloud(hgsc, groups, rmwords = getMsigBlacklist())</pre>
```

Index

* datasets hgsc, 6 mem_mat_hs, 7 mem_mat_mm, 7 bhuvad_theme, 2 characteriseGeneset, 3 computeMsigNetwork, 4 computeMsigNetwork(), 9 computeMsigOverlap, 4 computeMsigOverlap(), 4, 9 computeMsigWordFreq, 5 getMsigBlacklist, 6 GSEABase::getBroadSets(), 5, 8, 10 hgsc, 6 mem_mat_hs, 7

mem_mat_mm, 7
msigdb::listCollections(), 3

plotGeneStats, 8
plotMsigNetwork, 9
plotMsigWordcloud, 10