
Package ‘FunChIP’
October 14, 2021

Type Package

Title Clustering and Alignment of ChIP-Seq peaks based on their shapes

Version 1.18.0

Date 2016-07-04

Depends R (>= 3.2), GenomicRanges

Imports shiny, fda, doParallel, GenomicAlignments, Rcpp, methods,
foreach, parallel, GenomeInfoDb, Rsamtools, grDevices,
graphics, stats, RColorBrewer

Author Alice Parodi [aut, cre], Marco Morelli [aut, cre], Laura M. Sangalli [aut], Piercesare Sec-
chi [aut], Simone Vantini [aut]

Maintainer Alice Parodi <alicecarla.parodi@polimi.it>

biocViews StatisticalMethod, Clustering, ChIPSeq

Description Preprocessing and smoothing of ChIP-Seq peaks and efficient implementation of the k-
mean alignment algorithm to classify them.

NeedsCompilation yes

LinkingTo Rcpp

License Artistic-2.0

LazyData TRUE

git_url https://git.bioconductor.org/packages/FunChIP

git_branch RELEASE_3_13

git_last_commit 4981a2b

git_last_commit_date 2021-05-19

Date/Publication 2021-10-14

R topics documented:
FunChIP-package . 2
bending_index . 3
choose_k . 4
cluster_peak . 5

1

2 FunChIP-package

compute_fragments_length . 9
distance_peak . 10
GR100 . 12
peaks . 12
pileup_peak . 15
plot_peak . 16
silhouette_plot . 18
smooth_peak . 20
summit_peak . 23

Index 24

FunChIP-package Clustering and Alignment of ChIP-Seq peaks based on their shapes

Description

Efficient implementation of the k-mean alignment algorithm to classify spline-smoothed ChIP-Seq
peaks.

Details

Package: FunChIP
Type: Package
Version: 0.99.4
Date: 2016-07-07
License: GPL-3

Author(s)

Alice Parodi, Marco J. Morelli, Laura M. Sangalli, Piercesare Secchi, Simone Vantini

References

Sangalli, L.M., Secchi, P., Vantini, S., Vitelli, V., 2010. "K-mean alignment for curve clustering".
Computational Statistics and Data Analysis, 54, 1219-1233.

See Also

pileup_peak,smooth_peak,summit_peak,distance_peak,cluster_peak,choose_k,plot_peak

bending_index 3

bending_index The elbow rule to define the proper number of clusters.

Description

Given a GRanges object with metadata columns related to the classification performed with the
cluster_peak method, this function quantifies the elbow rule. See Details for a short presentation of
the method and the Vignette of the package for a complete defintion of the index.

Usage

bending_index(object, plot.graph.k = FALSE)

Arguments

object GRanges object. It must contain the metadata columns associated to the clas-
sification to be analyzed. Specifically it must contain the cluster_NOshift
metadata (and the correspondent set of distances distance_NOshift) if the
user wants to compute the bending index for the non aligned peaks and/or the
cluster_shift metadata (and the correspondent set of distances distance_shift)
if the user wants to compute the bending index for the classification with align-
ment.

plot.graph.k logical. If TRUE the graph of the global distance between the data and corre-
sponding center of the cluster, varying the number of clusters is plotted. Dis-
tances are normalized with the total number of peaks n. These are the distances
uesd to compute the bending index, as presented in Details. If object contains
both the results with and without the classification, two lines are drown to show,
beside the variation of the distance with an increase of k, also the decrease of the
global distance introduced by the alignment procedure. If a single classification
is stored in the object, only one line is drawn. Default is FALSE.

Details

This function consists of the computation for each feasible value of k (from 2 to K ??? 1, with K the
maximum number of clusters) of an index that quantifies the magnitude of the elbow. As higher is
this index, as the correspondent value of k is meaningful. Specifically it is computed as the distance
of the point in k of the global distance function (normalized with the maximum value it assumes)
from the line passing by the point in k ??? 1 and in k + 1. For further details, see the Vignette.

Value

The function returns

• a data.frame (or a list with two data.frames, in case of object with classification with and
without alignment) containing the bending index for different values of the parameter k.

• if plot.graph.k = TRUE the graphical representation of the distances (normalized with the
total number of peaks n), varying the classification type and the number of clusters.

4 choose_k

Author(s)

Alice Parodi, Marco J. Morelli, Laura M. Sangalli, Piercesare Secchi, Simone Vantini

Examples

load the data
data(peaks)

compute the bending index
index <- bending_index(peaks.data.cluster, plot.graph.k = FALSE)
from the analysis of this results, a choice of k=3 for
the classification with shift and k=2 for the classification
without shift is suggested.

choose_k Choice of the final classification of peaks

Description

Selection of the final classification of the peaks, given the desired number of clusters and the pres-
ence or absence of the alignment procedure chosen. This choice is usually driven by the graph
returned by cluster_peak.

Usage

S4 method for signature 'GRanges'
choose_k(object, k = NULL, shift.peak = NULL, cleaning = TRUE)

Arguments

object GRanges object. It must contain the metadata columns associated to the chosen
classification. Further details are provided in shift.peak.

k integer. Number of chosen clusters.

shift.peak logical. If TRUE, the clustering with alignment is chosen, if FALSE, the clas-
sification without alignment is selected. If shift.peak = TRUE, object must
contain the metadata columns labels_shift, coef_shift, dist_shift; if
shift.peak = FALSE it must contain the columns labels_NOshift and dist_NOshift.

cleaning logical. If TRUE, all metadata columns generated by FunChIP on the GRanges
object are removed, and one new column containing the classification result is
added: cluster. If FALSE, the metadata columns generated by FunChIP are
kept. Default is TRUE. See Value for further details on the metadata column
added.

cluster_peak 5

Details

The choice of the optimal number of clusters and the presence of alignment can be guided by the
graph plotted in the cluster_peak method. In particular, for the optimal number of clusters k the
distance significantly decreases with respect to the lower values of k, and negligibly increases with
respect to higher values of k (elbow in the line). The introduction of the alignment leads to better
clustering of the data if if the global distance is significantly lowered. registration.

Value

if cleaning = FALSE, the GRanges object with a new metadata column:

• cluster integer. The label correspondent to the classification chosen

If cleaning = TRUE, all the metadata columns added through all the analysis are removed and
object is returned with just the metadata column cluster

Author(s)

Alice Parodi, Marco J. Morelli, Laura M. Sangalli, Piercesare Secchi, Simone Vantini

See Also

cluster_peak

Examples

load the data
data(peaks)

k = 3 clusters with the alignment
with integer shifts are chosen

peaks.classified <- choose_k(peaks.data.cluster, k = 3,
shift.peak = TRUE, cleaning = FALSE)

cluster_peak Clustering the peaks with the k-mean alignment algorithm

Description

It classifies and aligns the peaks stored in the GRanges object. The method applies the k-mean
alignment algorithm with shift of the peaks and distance based on the convex combination of the
Lp distances between the spline-smoothed peaks and their derivatives. The order p can be one of 1,
2 and∞.

6 cluster_peak

Usage

S4 method for signature 'GRanges'
cluster_peak(object, parallel = FALSE, num.cores = NULL,

n.clust = NULL, seeds = NULL, shift.peak = NULL, weight = NULL,
subsample.weight = 100, alpha = 1, p = 1, t.max = 0.5,
plot.graph.k = TRUE, verbose = TRUE, rescale = FALSE)

Arguments

object GRanges object of length N . It must contain the metadata columns spline,
spline_der, width_spline, computed by smooth_peak.

parallel logical. If TRUE, the clustering for different values of the parameter k in n.clust
are run in parallel. Default is FALSE.

num.cores integer. If parallel is TRUE, it indicates the number of cores used in the paral-
lelization. If NULL (default), the number of cores is automatically identified.

n.clust integer vector (or scalar). Number of clusters in which the data set is divided
(possibly one, if n.clust is a scalar). For each value of the vector, the cpp
function kmean_function is called.

seeds vector. Indices of the initial centers of the clusters, needed to initialize the k-
mean procedure. The k-mean alignment, like all the k-mean-like algorithms, is
dependent on the choice of the initial centers of the clusters, and each initial-
ization of the seeds can generate slightly different results. The values must be
included in 1, . . . , N . The length of the vector must be equal to the maximum
number of clusters analyzed (max(n.clust)), otherwise it is truncated to this
value, or the missing values are randomly generated. If NULL (default), the seeds
are detected as the most central values (i.e. peaks with minimum distance from
the others) of the set of peaks. If seeds='random', the centers are randomly
generated.

shift.peak logical. It indicates whether the alignment via a translation of the abscissae is
performed (shift.peak = TRUE) or not (shift.peak = FALSE). If no value is
provided (shift.peak = NULL, default), both analyses are performed.

weight real. Weight w of the distance function (see Details for the definitions of the
distance function), needed to make the distance between splines and derivatives
comparable. If no value is provided (default is NULL), it is computed as the
median of the ratio between the pairwise distances of the data (d0(i, j)) and of
the derivatives (d1(i, j))

w = median
d0(i, j)

d1(i, j)

with i, j = 1 : . . . N .
subsample.weight

integer value. Number of data points used to define the weight, if not assigned.
Using all the peaks to define the weight can be computationally expensive and
therefore a subsampling is suggested. If subsample.weight=NULL all the data
will be used. Default is 100, which is a reasonable trade off between running
time and reliability of the estimation.

cluster_peak 7

alpha real value between 0 and 1. Value of the convex weight α of the distance to
balance the distance between data and derivatives. See details for the definition.
Default is 1.

p integer value in {0, 1 , 2}. Order of the Lp distance used. In particular p = 0
stands for the L∞ distance, p = 1 for L1 and p = 2 for L2

t.max real value. It tunes the maximum shift allowed. In particular the maximum shift
at each iteration is computed as

max_shift = t.max ∗ range(object)

and the optimum registration coefficient will be identified between - max_shift
and + max_shift. range(object) is the maximum amplitude of the peaks. De-
fault is 0.5.

plot.graph.k logical. If TRUE the graph of the average distance between the data and cor-
responding center of the cluster, varying the number of clusters is plotted. If
align=NULL, both the analysis with and without alignment are performed, two
lines are drown to show the decrease of the global distance introduced by the
alignment procedure. Default is TRUE

verbose logical. If TRUE, some parameters of the algorithm and the progress of the it-
erations are shown, if FALSE no information is provided. Default is TRUE, but
consider to set the parameter to FALSE in case of parallel runs, to avoid the over-
lap of their outputs.

rescale logical. If TRUE clustering is performed on scaled peaks. For the definition of
scaled peaks see smooth_peak.

Details

See [Sangalli et al., 2010] and the package vignette for the complete description of the algorithm.
The algorithm is completely defined once we fix the family of the warping function for the alignment
and the distance function. In this function we focus only on the specific case of

• warping functions: shifts with integer coefficients

h(t) = t+ c,

with c an integer value;

• distance: convex combination of the Lp distance between data and derivatives. The distance
between f and g is

d(f, g) = (1− α)‖f − g‖p + α w‖f ′ − g′‖p

The choice of ‖·‖p corresponds to the value of p in input. In particular p = 0 stands for ‖·‖L∞ ,
p = 1 for ‖ · ‖L1 and p = 2 for ‖ · ‖L2

Value

the GRanges object with new metadata columns:

• if align is TRUE or NULL, i.e. the clustering with alignment is performed the following meta-
data columns are added:

8 cluster_peak

– cluster_shift: for each peak, a vector of length equal to the maximum number of cho-
sen clusters, containing at each position k the label of the cluster the peak is assigned to,
when the total number of clusters is k and alignment is performed during the clustering.
If k is not present in the n.clust vector, the corresponding value is NA.

– coef_shift: for each peak, a vector of length equal to the maximum number of chosen
clusters, containing at each position k the shift coefficient assigned to the peak, when the
total number of clusters is k and alignment is performed during clustering. If k is not
present in the vector n.clust the corresponding value is NA.

– dist_shift: for each peak, a vector of length equal to the maximum number of chosen
clusters, containing at each position k the distance of the specific peak from the corre-
sponding center of the cluster, when the total number of clusters is k and alignment is
performed during clustering. If k is not present in the vector n.clust the corresponding
value is NA.

• if shift.peak is FALSE or NULL, i.e. clustering is performed without alignment, the following
metadata columns are added:

– cluster_NOshift: for each peak, a vector of length equal to the maximum number of
chosen clusters, containing at each position k the label of the cluster the peak is assigned
to, when the total number of clusters is k and no alignment is performed during clustering.
If k is not present in the vector n.clust the corresponding value is NA.

– dist_NOshift: for each peak, vector of length equal to the maximum number of chosen
cluster, containing at each position k the distance of the peak from the corresponding
center of the cluster , when the total number of clusters is k and no alignment is performed
during clustering. If k is not present in the vector n.clust the corresponding value is NA.

Author(s)

Alice Parodi, Marco J. Morelli, Laura M. Sangalli, Piercesare Secchi, Simone Vantini

References

Sangalli, L. M., Secchi, P., Vantini, S. and Vitelli, V., 2010. K-mean alignment for curve clustering.
Computational Statistics and Data Analysis, 54 1219 - 1233.

See Also

choose_k

Examples

load the data
data(peaks)

cluster and align the data as a
function of the
number of cluster (from 1 to 5)
with and without alignment.
The automathically generated plot
can be used to detect the
optimal number of clusters and the

compute_fragments_length 9

classification method to be used
(with or without alignment)

clustered_peaks <- cluster_peak (peaks.data.summit, parallel = FALSE ,
n.clust = 1:5, shift.peak = NULL,
weight = 1, alpha = 1, p = 2,
plot.graph.k = TRUE, verbose = TRUE)

compute_fragments_length

Computing the length of the fragments in the .bam file.

Description

Given a .bam file and GRanges object, it computes the positive and negative coverage for each
GRanges element, estimates the distance between positive and negative peaks, and finally the frag-
ment length d, i.e. the sum of the length of the reads and the distance between positive and negative
peaks. See Details and the package vignette for the description of the method.

Usage

compute_fragments_length(object, bamf, min.d = 0, max.d = 200)

Arguments

object GRanges object of length N .

bamf Path to the .bam file used to compute the coverage function. The associated
.bam.bai index file must also be present.

min.d integer. Minimum value for the distance between positive and negative peaks.
Default is 0.

max.d integer. Maximum value for the distance between positive and negative peaks.
Default is 200.

Details

Given a set of n = 1, . . . N regions, characterized by their positive and negative coverages, the
function computes the distance between the positive peak fn+ and the negative peak, shifted by δ
fδn−:

D(fn+, f
δ
n−) =

‖fn+ − fδn−‖2L2

width(union(fn+, fδn−))

The function computes the dpn minimizing the distance between postive and negative peaks

dpn = argminδ∈[min.d,max.d]

N∑
n=1

D(fn+, f
δ
n−)

10 distance_peak

The function returns both the plot of the global distance vs the fragment length d = dpn + r, where
r is the length of the reads, and the optimum value for d. r is also estimated from the .bam file as
the average of the read lengths.

Value

optimum value of the parameter d, to be used in the pileup_peak method.

Author(s)

Alice Parodi, Marco J. Morelli, Laura M. Sangalli, Piercesare Secchi, Simone Vantini

Examples

load the data
GRanges object

data(GR100)

import the .bam file

bamf <- system.file("extdata", "test.bam", package="FunChIP",
mustWork=TRUE)

compute the estimated fragment length

d <- compute_fragments_length(GR[1:10], bamf, min.d = 0, max.d = 200)

distance_peak Computing distance matrices among spline-smoothed peaks and
among their derivatives.

Description

Given a metric (L1, L2 or L∞), it computes the pairwise distance among the spline approximation
of the peaks and among their derivatives. If summit is provided, peaks are centered around the
summit to compute the distances.

Usage

distance_peak(object, p = 1, rescale = FALSE)

Arguments

object GRanges object of length N . It has to contain the metadata columns spline,
spline_der, width_spline.

p integer. It must assume values in {0,1,2}. They correspond respectively to the
L∞, L1 and L2 norm. See details for the definition of the norms.

rescale logical. If TRUE the distance among scaled peaks is computed. For the definition
of scaled peaks see smooth_peak.

distance_peak 11

Details

This function computes the pairwise distance of a set of N peaks. Given the spline-smoothed
peaks si and their derivatives s′i (i = 1, . . . , N), it returns two matrices dist_matrix_d0 and
dist_matrix_d1 whose elements (i, j), with i, j = 1, . . . , N , are

dist_matrix_d0(i, j) = ‖si − sj‖p dist_matrix_d1(i, j) = ‖s′i − s′j‖p

.

In particular, in order to define the distance between two functions f and g:

• define a common domain U , given by the union of the domains of f and g. If a function is
not defined on the whole domain, it is extended with 0’s on the missing parts. The value of 0
is chosen because the background of the peaks has been removed during the definition of the
splines, and hence they can now be continuously extended with 0’s.

• choose the order of the norm p. Given the function f defined on U we have:

‖f‖0 = ‖f‖L∞ = maxx∈U |f(x)|

,

‖f‖1 = ‖f‖L1 =

∫
U

|f(x)|dx

,

‖f‖2 = ‖f‖L2 =

√∫
U

(f(x))2dx

.

Value

list with two components

dist_matrix_d0

N x N matrix of the pairwise distances between the splines.
dist_matrix_d2

N x N matrix of the pairwise distances between the derivatives of splines.

Author(s)

Alice Parodi, Marco J. Morelli, Laura M. Sangalli, Piercesare Secchi, Simone Vantini

Examples

load the data
data(peaks)

Compute the pairwise
L2 distance between the peaks
dist_matrices <- distance_peak(peaks.data.summit, p = 2)

12 peaks

GR100 Peaks of a ChIP-seq experiment

Description

The data-set GR100 contains 100 enriched regions on chromosome 18 of the transcription factor
c-Myc on murine cells, obtained by calling peaks with MACS [Zhang et al., 2008] on a ChIP-Seq
experiment. The genomic coordinates of the peaks are stored in the GRanges object GR100.

Usage

data("GR100")

Format

GRanges object with 100 ranges and 0 metadata columns.

References

Zhang et al., 2008. Model-based Analysis of ChIP-Seq (MACS). Genome Biology, vol. 9 (9) pp.
R137.

Examples

data(GR100)
GR

peaks Coverage of a ChIP-Seq experiment

Description

It contains a data-set used in all the examples of the FunChIP, together with all the metadata columns
generated in the intermediate steps.

Usage

data("peaks")

peaks 13

Format

Several data-set are included

• peaks.data: a GRanges object with 10 ranges and 1 metadata column:

– counts. A vector for each range, with length equal to the width of the range, containing
the coverage of the range, i.e. the base-level read counts. It can be computed with the
pileup_peak method.

• peaks.data.smooth: a GRanges object with 10 ranges and 6 metadata columns:

– counts. As in peaks.data.
– spline. A vector for each range, containing the evaluation of the spline approximation

of the peak for each genomic base. It can be computed with the smooth_peak method.
– spline_der. A vector for each range, containing the evaluation of the derivatives of the

spline approximation of the peak for each genomic base. It can be computed with the
smooth_peak method.

– width_spline. Integer. The number of evaluated points of the spline approximation, i.e.
the number of non-zero points, for each range. It can be computed with the smooth_peak
method.

– start_spline. Integer. The starting point of the spline approximation. It could be
smaller than start(object) since the approximation can increase the values at the bor-
der to make the curve smooth. It can be computed with the smooth_peak method.

– end_spline. Integer. The end point of the spline approximation. It could be larger than
end(object) since the approximation can increase the values at the border to make the
curve smooth. It can be computed with the smooth_peak method.

• peaks.data.smooth.scaled: a GRanges object with 10 ranges and, beside the 6 metadata columns
of peaks.data.smooth, 2 more coumns

– spline_rescaled. A vector for each range, containing the evaluation of the scaled spline
approximation on the common grid of all the peaks.

– spline_der_rescaled. A vector for each range, containing the evaluation of the deriva-
tives of the scaled spline approximation on the common grid.

• peaks.data.summit: a GRanges object with 10 ranges and 7 metadata columns:

– counts. As peaks.data.
– spline. As peaks.data.smooth.
– spline_der. As peaks.data.smooth.
– width_spline. As peaks.data.smooth.
– start_spline. As peaks.data.smooth.
– end_spline. As peaks.data.smooth.
– summit_spline. The distance from the starting point of the spline of the maximum point

(integer) of the spline (or the summit of the peak), for each range. It can be computed
with the summit_peak method

• peaks.data.summit.scaled: a GRanges object with 10 ranges and, beside the 7 metadata columns
of peaks.data.summit, 3 more coumns

– spline_rescaled. As peaks.data.smooth.scaled.
– spline_der_rescaled. As peaks.data.smooth.scaled.

14 peaks

– summit_spline_rescaled. The distance from the starting point of the scaled spline of
the maximum point (integer) of the scaled spline (or the summit of the peak), for each
range. It can be computed with the summit_peak method setting to TRUE the rescale
argument.

• peaks.data.cluster: a GRanges object with 10 ranges and 12 metadata columns:

– counts. As peaks.data.
– spline. As peaks.data.smooth.
– spline_der. As peaks.data.smooth.
– width_spline. As peaks.data.smooth.
– start_spline. As peaks.data.smooth.
– end_spline. As peaks.data.smooth.
– summit_spline. As peaks.data.summit.
– cluster_NOshift. A vector of length 5 for each range, containing the label of the cluster

assigned to the peak in case of clustering without alignment. For example, the second
element of the vector is the label of the corresponding peak when the k-mean alignment
algorithm is run with 2 clusters. It can be computed with the cluster_peak method with
n.clust = 1:5 and shift.peak=FALSE.

– dist_NOshift. A vector of length 5 for each range, containing the distance from the
center of the cluster assigned to the peak in case of clustering without alignment. For
example, the second element of the vector is the distance of the corresponding peak from
center of the corresponding cluster when the k-mean alignment algorithm is run with
2 clusters. It can be computed with the cluster_peak method with n.clust = 1:5 and
shift.peak=FALSE.

– cluster_shift. A vector of length 5 for each range, containing the label of the clus-
ter assigned to the peak in case of clustering with alignment. For example, the second
element of the vector is the label of the corresponding peak when the k-mean alignment
algorithm is run with 2 clusters. It can be computed with the cluster_peak method with
n.clust = 1:5 and shift.peak=TRUE.

– coef_shift. A vector of length 5 for each range, containing the optimal shift coefficient
of the peak. For example, the second element of the vector is the shift coefficient of the
corresponding peak when the k-mean alignment algorithm is run with 2 clusters. It can
be computed with the cluster_peak method with n.clust = 1:5 and shift.peak=TRUE.

– dist_shift. A vector of length 5 for each range, containing the distance from the cen-
ter of the cluster assigned to the peak in case of clustering with alignment. For exam-
ple, the second element of the vector is the distance of the corresponding peak from the
center of the corresponding cluster when the k-mean alignment algorithm is run with
2 clusters. It can be computed with the cluster_peak method with n.clust = 1:5 and
shift.peak=TRUE.

• peaks.data.cluster.scaled: a GRanges object with 10 ranges and, beside the 12 metadata columns
of peaks.data.cluster, 3 more coumns

– spline_rescaled. As peaks.data.smooth.scaled.
– spline_der_rescaled. As peaks.data.smooth.scaled.
– summit_spline_rescaled. As peaks.data.summit.scaled.

It is computed from peaks.data.summit.scaled with the cluster_peak method setting rescale
= TRUE.

pileup_peak 15

• peaks.data.classified: a GRanges object with 10 ranges and 13 metadata columns:

– counts. As peaks.data.
– spline. As peaks.data.smooth.
– spline_der. As peaks.data.smooth.
– width_spline. As peaks.data.smooth.
– start_spline. As peaks.data.smooth.
– end_spline. As peaks.data.smooth.
– summit_spline. As peaks.data.summit.
– cluster_NOshift. As peaks.data.cluster.
– dist_NOshift. As peaks.data.cluster.
– cluster_shift. As peaks.data.cluster.
– coef_shift. As peaks.data.cluster..
– dist_shift. As peaks.data.cluster.
– cluster. Integer. The index of the final label assigned, for each range. It can be com-

puted with the choose_k with k = 3 and shift.peak = TRUE.

• peaks.data.classified.scaled: a GRanges object with 10 ranges and, beside the 13 metadata
columns of peaks.data.classified, 3 more coumns

– spline_rescaled. As peaks.data.smooth.scaled.
– spline_der_rescaled. As peaks.data.smooth.scaled.
– summit_spline_rescaled. As peaks.data.summit.scaled.

It is computed from peaks.data.cluster.scaled with the choose_k method setting rescale
= TRUE.

Examples

data(peaks)

pileup_peak Computing read counts on a GRanges object.

Description

Given a GRanges object and the path of a .bam file, it creates the corresponding pileup, containing
the read counts on each nucleotide of the peaks of the GRanges object. Reads can be extended
to a length d, which is an estimate of the length of the sequencing fragment. See the function
compute_fragments_length for details. For each peak this method creates a vector containing these
counts, i.e. the coverage function for the extended reads along the whole peak.

Usage

S4 method for signature 'GRanges'
pileup_peak(object, bamf = NULL, d = NULL)

16 plot_peak

Arguments

object GRanges object containing the genomic coordinates of the peaks.

bamf Path to the .bam file used to compute the coverage function. The associated
.bam.bai index file must also be present.

d integer. Total length of the fragments. Positive and negative reads are extended
in their 3’ direction. Default is NULL; this value can be estimated by com-
pute_fragments_length.

Value

the GRanges object with the new metadata column counts containing the coverage functions of
the peaks.

Author(s)

Alice Parodi, Marco J. Morelli, Laura M. Sangalli, Piercesare Secchi, Simone Vantini

Examples

load the data
GRanges object

data(GR)

import the .bam file

bamf <- system.file("extdata", "test.bam", package="FunChIP",
mustWork=TRUE)

extract the first 10 peaks of the GRange
and compute the corresponding read counts
with fragment length 160.

peaks <- pileup_peak(GR[1:10], bamf, d = 160)

plot_peak Plotting the peaks.

Description

It plots the peaks both as counts and splines (if provided). Peaks are centered around their summit.
If the clustering has been performed, peaks can be aligned and divided in cluster, shown in different
panels.

plot_peak 17

Usage

S4 method for signature 'GRanges'
plot_peak(object, index = 1:length(object),
line.plot = "spline", col = NULL,
shift = NULL, k = NULL, cluster.peak = FALSE, rescale = FALSE,
lwd= 2, cex.axis = 1, cex.lab = 1, cex.main = 1)

Arguments

object GRanges object of length N . It must contain the metadata column counts.
If it contains the metadata column summit_spline, peaks are plotted centered
around their summits (i.e. the 0 of the abscissa is fixed as the summit of the
peak). If summit is not provided peaks are not centered.

index vector. Indices of the peaks to be plotted. Default is 1:length(object) to plot
all the peaks.

line.plot string. Type of plot. If 'spline' (default), the spline approximation of the
peaks is plotted. If 'counts', only the raw data are plotted. If 'both', both the
raw data and the approximation spline are plotted.

col vector. Colors used to plot the peaks. If NULL, the rainbow color palette is used.
If it has a single value, all the peaks are plotted with the same color. If it is a
vector shorter than N , only the first element of col is used. Default is NULL.

shift logical. This parameter controls the abscissae of the plotted peaks, and plays two
different roles, depending on the cluster.peak parameter. \ If cluster.peak
is FALSE, shift = TRUE means that peaks are plotted aligned around the summit_spline
point. The GRanges object must contain the results of the summit_peak method.
If cluster.peak is FALSE and shift = FALSE, peaks are plotted with no center-
ing around the summit. If cluster.peak is FALSE and shift = NULL (default),
peaks are centered, if the metadata column summit_spline is present in object,
otherwise they are plotted with the original abscissae, with no centering around
the summit. \ If cluster.peak = TRUE, the parameter shift sets the clustering
result to be plotted. If TRUE the shift results are plotted, otherwise the results
associated to NOshift clustering are presented.

k integer. If cluster.peak = TRUE, results corresponding to k number of clusters
are plotted. It must be set to a value included in the n.clust parameter of the
correspondent object.

cluster.peak logical. It FALSE, object contains the set of peaks to be plotted without clas-
sification (centered or not around the summit). If TRUE, the plot_peak method
plots the result of the classification associated to shift and k parameters; in
this case, object must be the output of the cluster_peak and must contain the
correspondent classification. Default is FALSE.

rescale logical. If TRUE the scaled peaks are plotted. Default is FALSE. If rescale
= TRUE only spline approximations can be shown, then line.plot must be
'spline'.

lwd, cex.axis, cex.lab, cex.main

Optional graphical parameters.

18 silhouette_plot

Value

Graphical method to graphically represent data. No output returned,

Author(s)

Alice Parodi, Marco J. Morelli, Laura M. Sangalli, Piercesare Secchi, Simone Vantini

Examples

load the data
data(peaks)

First example:
plot of the spline approximation
of the first 10 peaks
centered around their summit

plot_peak(peaks.data.summit, index = 1:10,
shift = TRUE)

Second example:
plot of the peaks
divided in the k=3
and shift = TRUE clusters
obtained with the cluster_peak method
plot_peak(peaks.data.cluster,
shift = TRUE, k = 3, cluster.peak = TRUE)

silhouette_plot Return the silhouette index for clustered peaks

Description

It computes the silhouette index for peaks stored in a GRanges object and classified with the clus-
ter_peak method. If the two classifications with a and without alignment are provided, this method
computes the index for both these classifications.

Usage

silhouette_plot(object, p = 1,
weight = NULL, alpha = 1,
rescale = FALSE, t.max = 0.5)

silhouette_plot 19

Arguments

object GRanges object. It must contain the metadata columns associated to the clas-
sification to be analyzed. Specifically it must contain the cluster_NOshift
metadata if the user wants to compute the silhouette index for the non aligned
peaks and/or the cluster_shift metadata if the user wants to compute the in-
dex for the classification with alignment.

p integer value in {0, 1 , 2}. Order of the Lp distance used. In particular p = 0
stands for the L∞ distance, p = 1 for L1 and p = 2 for L2. Default is 1.

weight real. Weight w of the distance function (see Details for the definition of the
distance function), needed to make the distance between splines and derivatives
comparable. It has no Default since it must be the same weight used to define
the distance for the classification.

alpha real value between 0 and 1. Value of the convex weight α of the distance to
balance the distance between data and derivatives. See details for the definition.
Default is 1.

t.max real value. It tunes the maximum shift allowed. In particular the maximum shift
at each iteration is computed as

max_shift = t.max ∗ range(object)

and the optimum registration coefficient will be identified between - max_shift
and + max_shift. range(object) is the maximum amplitude of the peaks. De-
fault is 0.5.

rescale logical. If TRUE clustering is performed on scaled peaks. For the definition of
scaled peaks see smooth_peak.

Details

See [Rousseeuw, 1987] for the detailed definition of the index. Specifically, for the peak i it is
computed as

s(i) =
a(i)− b(i)

max(a(i), b(i))

with a(i) the average dissimilarity of peak i with all other data within the same cluster and b(i) the
lowest average dissimilarity of i to any other cluster, of which i is not a member.

Value

The function returns

• the list of the silhouette indeces for the two classifications (if provided in the GRanges object)
and for all the choices of the number of clusters

• the graphical representation of the silhouette index, varying the number of clusters and the
classification. The average silhouette index is also presented.

Author(s)

Alice Parodi, Marco J. Morelli, Laura M. Sangalli, Piercesare Secchi, Simone Vantini

20 smooth_peak

References

Peter J. Rousseeuw (1987). Silhouettes: a Graphical Aid to the Interpretation and Validation of
Cluster Analysis. Computational and Applied Mathematics. 20: 53???65.

Examples

load the data
data(peaks)

computes the silhouette index and
shows the graph
sil <- silhouette_plot(peaks.data.cluster, p=2, weight = 1, alpha = 1,

rescale = FALSE, t.max = 2)

smooth_peak Spline smoothing of the peak

Description

It approximates the read counts associated to every peak with a suitable B-spline function, so that
a smoothing representation of the peaks is obtained. The first derivative of the spline is also com-
puted. To obtain a smooth representation, the peak is extended and new initial and final points are
identified. See the Vignette of the FunChIP package for a graphical representation of the spline
approximation.

Usage

S4 method for signature 'GRanges'
smooth_peak(object, n.breaks = 100, subsample = TRUE,

subsample.data = 100, order = 4,
lambda = (10^(seq(-5,5, by = 0.5))),
GCV.derivatives = TRUE , plot.GCV = FALSE, rescale = FALSE)

Arguments

object GRanges object. It must contain the metadata column counts.

n.breaks integer. Number of breaks, or knots, for the B-spline basis domain definition.
Default is 100.

subsample logical. If TRUE, only a random subset (of size fixed by the parameter subsample.data)
is used to identify the optimal value of lambda for the penalization via cross-
validation. If subsample=FALSE, all the peaks of the GRanges data will be
used. To contain running times, it is suggested to maintain the default value
subsample = TRUE.

subsample.data integer. Number of data used for the cross-validation (if subsample.data is
TRUE). Default value is 100. If subsample = FALSE, all data points will be used
and subsample.data is ignored.

smooth_peak 21

order integer. Order of the B-spline basis used for the smoothing. The order is one
higher than the degree of the spline. Default is 4 (cubic splines).

lambda vector (or single value). Contains all the possible values of the smoothing pa-
rameter to be considered for the final choice. If a single value is provided, this
will be automatically chosen for the smoothing. Default value is 10seq(-5,5,by=0.5)

to analyze a sufficiently wide set of values. See details below.
GCV.derivatives

logical. If TRUE the Generalized Cross Validation index (GCV) on the derivatives
is considered as criteria to identify λ, otherwise the GCV is computed on the
data. Default is TRUE.

plot.GCV logical. If TRUE, the plot of the GCV of the data and derivatives is shown as a
function of λ. Default value is FALSE.

rescale logical. If TRUE scaled peaks are also provided. From the spline approximation
of the peak a new curve is defined. It is obtained scaling both the abscissa
grid and the values of the coverages of the splines. All the scaled peaks have a
common grid of width equal to the minimum width of the origninal splines and
area equal to 1. Default is FALSE.

Details

It creates a piece-wise polynomial of fixed order s approximating the data (B-spline expansion,
Ramsay and Silverman, 2005). Given the point wise defined function f : (x, f(x)), the smooth_peak
method returns the evaluation of s on the x grid (s(x)) minimizing, for a fixed λ,

ERR(λ) = ‖f − s‖2L2 + λ‖s′′‖2L2

, with s′′ being the second derivative of the function s and ‖s‖L2 the L2 norm of the function, i.e.
the integral on the domain of s of s2.

The choice of λ is crucial for the definition of the spline, and it can be selected by minimizing the
Generalized Cross-Validation index

GCV (λ) =
nSSE

(n− df(λ))2

, with SSE the error computed as
SSE = ‖f − s‖2L2

, if GCV.derivatives = FALSE, or

SSE = ‖∇f − s′‖2L2

, if GCV.derivatives = TRUE, and df(λ) is the number of the degrees of freedom of the basis
expansion automatically computed from s. For further details on the cross-validation procedure
and on the computation of the number of degrees of freedom see Ramsay and Silverman, 2005.

If plot.GCV is TRUE, the plot of the GCV index as a function of λ is presented, which can be used
to identify the optimal value of the parameter. If the plot is decreasing in λ, one could consider to
increase the allowed values of λ to find the minimum of the curve.

22 smooth_peak

Value

the GRanges object with new metadata columns:

• width_spline integer. Value containing the width of the smoothed peak, i.e. the number of
non-zero values of the spline approximation. This value is not necessarily equal to the original
width of the peak, as the approximation can stretch outside the original width of the peak: to
ensure smoothness some 0 values can be introduced at the edges of the region.

• spline vector. Evaluation of the spline on the grid of size width_spline.

• spline_der vector. Evaluation of the derivatives of the spline on the grid of size width_spline.

• start_spline integer. Genomic coordinate of the initial point of the spline approximation.

• end_spline integer. Genomic coordinate of the final point of the spline approximation.

If rescale is TRUE two more metadata columns are added:

• spline_rescaled vector. Evaluation of the scaled peaks functions on a grid of width equal
to the minimum of width_spline.

• spline_der_rescaled vector. Evaluation of the derivatives of the scaled peaks on a grid of
width equal to the minimum of width_spline.

Author(s)

Alice Parodi, Marco J. Morelli, Laura M. Sangalli, Piercesare Secchi, Simone Vantini

References

Ramsay, J.O., Silverman, B.W., 2005. Functional Data Analysis, 2nd ed. Springer, New York, NY.

Examples

load the data
data(peaks)

it computes the spline approximation
of the pealks given the
GRange with the metadata counts.
It is obtained by the pileup_peak method

Default paramters are used: GCV is
computed on the derivatives.

peaks.spline <- smooth_peak(peaks.data, lambda = 10^(-4:6),
subsample.data = 50, GCV.derivatives = TRUE)

peaks.spline.scaled <- smooth_peak(peaks.data, lambda = 10^(-4:6),
subsample.data = 50, GCV.derivatives = TRUE, rescale = TRUE)

summit_peak 23

summit_peak Finding the summits of the peaks of the GRanges object

Description

It identifies the summit of the peak and stores it in a new metadata column.

Usage

S4 method for signature 'GRanges'
summit_peak(object, summit = NULL, rescale = FALSE)

Arguments

object GRanges object of length N . If summit is not provided, object must contain
the metadata column spline.

summit vector of length N . It contains the x coordinate of the summit of the peaks, i.e.
the distance of the summit from the starting position of the spline approximation
of peak (distance from start_spline). If summit is NULL the summit of each
peak is identified as the maximum point of the spline.

rescale logical. If TRUE the distance among scaled peaks is computed. For the definition
of scaled peaks see smooth_peak.

Value

the GRanges object with the new metadata column summit_spline. In case of rescale = TRUE an
extra metadata column summit_spline_rescaled is added, containing the summit of the scaled
peak.

Author(s)

Alice Parodi, Marco J. Morelli, Laura M. Sangalli, Piercesare Secchi, Simone Vantini

Examples

load the data
data(peaks)

Computing the summits of the peaks from
the spline-smoothed approximation.

peaks.spline.summit <- summit_peak(peaks.data.smooth)

Index

∗ datasets
GR100, 12
peaks, 12

bending_index, 3

choose_k, 2, 4, 8, 15
choose_k,GRanges-method (choose_k), 4
choose_k-method (choose_k), 4
cluster_peak, 2–5, 5, 14, 17, 18
cluster_peak,GRanges-method

(cluster_peak), 5
cluster_peak-method (cluster_peak), 5
compute_fragments_length, 9, 15, 16

distance_peak, 2, 10

FunChIP, 4, 12, 20
FunChIP (FunChIP-package), 2
FunChIP-package, 2

GR (GR100), 12
GR100, 12
GRanges, 3–7, 9, 10, 12–20, 22, 23

peaks, 12
pileup_peak, 2, 10, 13, 15
pileup_peak,GRanges-method

(pileup_peak), 15
pileup_peak-method (pileup_peak), 15
plot_peak, 2, 16
plot_peak,GRanges-method (plot_peak), 16
plot_peak-method (plot_peak), 16

silhouette_plot, 18
smooth_peak, 2, 6, 7, 10, 13, 19, 20, 23
smooth_peak,GRanges-method

(smooth_peak), 20
smooth_peak-method (smooth_peak), 20
summit_peak, 2, 13, 14, 17, 23

summit_peak,GRanges-method
(summit_peak), 23

summit_peak-method (summit_peak), 23

24

	FunChIP-package
	bending_index
	choose_k
	cluster_peak
	compute_fragments_length
	distance_peak
	GR100
	peaks
	pileup_peak
	plot_peak
	silhouette_plot
	smooth_peak
	summit_peak
	Index

