survAnalysis {CancerSubtypes} | R Documentation |
Survival analysis is a very common tool to explain and validate the cancer subtype identification result. It provides the significance testing and graphical display for the verification of the survival patterns between the identified cancer subtypes.
survAnalysis( mainTitle = "Survival Analysis", time, status, group, distanceMatrix = NULL, similarity = TRUE )
mainTitle |
A character will display in the result plot. |
time |
A numeric vector representing the survival time (days) of a set of samples. |
status |
A numeric vector representing the survival status of a set of samples. 0=alive/censored, 1=dead. |
group |
A vector represent the cluster label for a set of samples. |
distanceMatrix |
A data matrix represents the similarity matrix or dissimilarity matrix between samples. |
similarity |
A logical value. If TRUE, the distanceMatrix is a similarity distance matrix between samples. Otherwise a dissimilarity distance matrix between samples |
The log-rank test p-value
Xu,Taosheng taosheng.x@gmail.com,Thuc Le Thuc.Le@unisa.edu.au
data(GeneExp) data(miRNAExp) data(time) data(status) data1=FSbyCox(GeneExp,time,status,cutoff=0.05) data2=FSbyCox(miRNAExp,time,status,cutoff=0.05) GBM=list(GeneExp=data1,miRNAExp=data2) ### SNF result analysis result1=ExecuteSNF(GBM, clusterNum=3, K=20, alpha=0.5, t=20) group1=result1$group distanceMatrix1=result1$distanceMatrix p_value1=survAnalysis(mainTitle="GBM_SNF",time,status,group1, distanceMatrix=distanceMatrix1,similarity=TRUE) ### WSNF result analysis data(Ranking) ####Retrieve there feature ranking for genes gene_Name=rownames(data1) index1=match(gene_Name,Ranking$mRNA_TF_miRNA.v21_SYMBOL) gene_ranking=data.frame(gene_Name,Ranking[index1,],stringsAsFactors=FALSE) index2=which(is.na(gene_ranking$ranking_default)) gene_ranking$ranking_default[index2]=min(gene_ranking$ranking_default,na.rm =TRUE) ####Retrieve there feature ranking for genes miRNA_ID=rownames(data2) index3=match(miRNA_ID,Ranking$mRNA_TF_miRNA_ID) miRNA_ranking=data.frame(miRNA_ID,Ranking[index3,],stringsAsFactors=FALSE) index4=which(is.na(miRNA_ranking$ranking_default)) miRNA_ranking$ranking_default[index4]=min(miRNA_ranking$ranking_default,na.rm =TRUE) ###Clustering ranking1=list(gene_ranking$ranking_default ,miRNA_ranking$ranking_default) result2=ExecuteWSNF(datasets=GBM, feature_ranking=ranking1, beta = 0.8, clusterNum=3, K = 20,alpha = 0.5, t = 20, plot = TRUE) group2=result2$group distanceMatrix2=result2$distanceMatrix p_value2=survAnalysis(mainTitle="GBM_WSNF",time,status,group2, distanceMatrix=distanceMatrix2,similarity=TRUE)