
Stability ranking with the staRank package

Juliane Siebourg

October 27, 2020

Stability ranking can be used to obtain variable rankings that are highly reproducible. Such rankings are
needed for robust variable selection on univariate data. In most biological experiments several replicate
measurement for a variable of interest, e.g. a gene, are available. An obvious way to combine and
prioritize these values is to take their average or median. Other procedures like a t-test or rank sum test
deliver a statistic that also accounts for the variance in the data. Stability ranking provides a way of
ranking measured elements based on one of the methods above and combining it with a bootstrapping
routine to estimate the stability with which an element occurs within the top k set of the ranking. The
final ranking orders the elements accoring to this stability. The theory behind the procedure is described
in [1]. Stability selection in general is described in [2]. This file contains two example stability analysis
that show how the staRank package should be used. In a first toy example, stability selection using all
available base ranking methods is performed on simulated data. In a second example, an RNAi dataset
on Salmonella infection [3] is analyzed.

Simulation example

First we create an artificial dataset of p genes (rows) with n replicate measurement values (columns).
For each gene the effects are drawn from a normal distribution and their replicate variance is drawn from
a gamma distribution.

> # sample parameters for data

> p<-20 # genes

> n<-4 # replicates

> trueEffects<-rnorm(p,0,5) # gene effect

> s<-rgamma(p,shape=2.5,rate=0.5) # sample variance

> # draw n replicate values of a gene

> simData <- matrix(0,nr=p,nc=n,

+ dimnames=list(paste("Gene",c(1:p)),paste("Replicate",c(1:n))))

> for(i in 1:p){

+ simData[i,]<-replicate(n,rnorm(1,mean=trueEffects[i],sd=s[i]))

+ }

Now stability ranking can be performed on the dataset, to find top scoring genes that are highly re-
producible. Stability ranking can be applied using different base ranking methods. Implemented in the
package are the mean, median and the test statistics of the rank sum test (Mann-Whitney test), t-test
and RSA [4].

> # load the stability ranking package

> library(staRank)

> # implemented ranking methods

> method<-c('mean','median','mwtest','ttest','RSA')

The ranking is performed calling the main function stabilityRanking. Here this is done using the
default settings but for different base methods.

> stabilityList<-list()

> stabilityList[['mean']]<-stabilityRanking(simData,method='mean')

1

> stabilityList[['median']]<-stabilityRanking(simData,method='median')

> stabilityList[['mwtest']]<-stabilityRanking(simData,method='mwtest')

> stabilityList[['ttest']]<-stabilityRanking(simData,method='ttest')

> stabilityList[['RSA']]<-stabilityRanking(simData,method='RSA')

The stability ranking proceedure can also be used with any external ranking method. This means
stabilityRanking can be called on rankings directly. All that is needed is a named vector of the
original ranking and a matrix containing sample rankings. In the following this is demonstrated by
performing a mean ranking on the data and on bootstrap samples of it.

> # 1. create a ranking

> extRanking <- sort(apply(simData,1,mean))

> # 2. create 100 sample rankings

> sampleRankings<-matrix(NA,nr=nrow(simData),nc=100)

> for(i in 1:100){

+ sampleRankings[,i]<-

+ apply(simData,1,function(x){mean(sample(x,length(x),replace=TRUE))})

+ }

> rownames(sampleRankings)<-rownames(simData)

> sampleRankings<-sampleRankings[names(extRanking),]

> # 3. run stabilityRanking

> stabilityList[['externalMean']]<-

+ stabilityRanking(extRanking,sampleRankings,method='externalMean')

In this case the parameter method is only needed for identification.

We can now examine the results of the procedure. The function returns an object of type RankSummary.
This contains three different rankings of the data. The base, stability and averaged ranking. The
averaged ranking is also an aggregated ranking that averages the rank of a variable over all samples.

> #results for the mean ranking

> baseRank(stabilityList$mean)

Gene 18 Gene 19 Gene 13 Gene 10 Gene 17 Gene 14

-15.6111326 -12.2208620 -7.9097433 -1.8254773 -1.7473269 -1.1459189

Gene 4 Gene 8 Gene 15 Gene 6 Gene 2 Gene 16

-0.6258728 -0.5382658 1.1107324 2.1342636 2.1964025 2.9819957

Gene 5 Gene 20 Gene 3 Gene 1 Gene 7 Gene 11

3.7851368 5.9521591 6.1883471 7.3588396 7.5875529 8.6615898

Gene 9 Gene 12

10.0798754 12.9037322

> stabRank(stabilityList$mean)

Gene 18 Gene 13 Gene 19 Gene 17 Gene 10 Gene 8 Gene 14 Gene 4 Gene 6 Gene 15

1.0 2.5 2.5 4.0 5.0 6.5 6.5 8.5 8.5 10.5

Gene 16 Gene 5 Gene 3 Gene 20 Gene 2 Gene 1 Gene 7 Gene 11 Gene 9 Gene 12

10.5 12.0 13.5 13.5 15.0 16.5 16.5 18.0 19.5 19.5

> avrgRank(stabilityList$mean)

Gene 18 Gene 19 Gene 13 Gene 17 Gene 10 Gene 14 Gene 8 Gene 4 Gene 15 Gene 6

1.22 1.94 2.87 5.50 6.02 6.37 7.32 8.21 8.50 10.15

Gene 2 Gene 16 Gene 5 Gene 20 Gene 3 Gene 1 Gene 7 Gene 11 Gene 9 Gene 12

10.80 11.35 12.36 14.39 14.48 16.37 16.71 17.58 18.04 19.82

This can be summarized in a matrix with getRankmatrix(stabilityList$mean).

For comparison of the three rankings we also compute their correlation using Spearman’s rank correlation
coefficient.

> rankCor(stabilityList[['mean']])

stability base average

stability 1.0000000 0.9739951 0.9785183

base 0.9739951 1.0000000 0.9969925

average 0.9785183 0.9969925 1.0000000

Another value that is returned is a vector containing the sizes of the stable sets per cutoff. This gives
information about how stable the base ranking itself is.

> stableSetSize(stabilityList[['mean']])

[1] 0 1 3 3 3 3 4 5 7 7 7 9 11 12 12 14 15 17 18 20

We can for example compare this property for all the base ranking methods.

> # plot the stable genes per cutoff k* for each method

> mCol<-rainbow(5)

> name_out<-c('Mean','Median','Rank sum','t-test','RSA')

> plot(1,type='n',xlim=c(0,p),ylim=c(0,p),xlab='k*',ylab='stable genes')

> abline(0,1,col='lightgray')

> for(i in 5:1){

+ lines(stableSetSize(stabilityList[[i]]),lwd=2,col=mCol[i])

+ }

> legend('topleft',name_out,col=mCol,lwd=2)

0 5 10 15 20

0
5

10
15

20

k*

st
ab

le
 g

en
es

Mean
Median
Rank sum
t−test
RSA

Figure 1: Stable set sizes for each cutoff using different ranking methods on the toy example.

The gray diagonal in this plot indicates perfect stability.

Stability ranking of an RNAi dataset

The package contains an RNAi screen on human cells under Salmonella infection. Briefly, in HeLa
cells all genes were knocked-down individually by RNA interference. Subsequently they were infected
with Salmonella. The cells were imaged with a microscope and from the images several features were
extracted (for details see original paper [3]). After loading the data we select all genes where the infection
on average decreased more than one standard deviation. Then we run stability ranking on this selection,
for mean, rank sum test and RSA as base ranking methods.

> #load the data set

> data(salmonellaInfection)

> data<-as.matrix(salmonellaInfection)

> down<-rownames(data[which(apply(data,1,mean)<=-1),])

> data<-data[down,]

> salmonellaStability<-list()

> salmonellaStability[['mean']]<-stabilityRanking(data,method='mean')

> salmonellaStability[['mwtest']]<-stabilityRanking(data,method='mwtest')

> salmonellaStability[['RSA']]<-stabilityRanking(data,method='RSA')

The correlation shows that the stability ranking leads to a more diverged result.

> rankCor(salmonellaStability$mwtest)

stability base average

stability 1.0000000 0.7997028 0.7675219

base 0.7997028 1.0000000 0.9675864

average 0.7675219 0.9675864 1.0000000

Plotting the data points and their mean values according to their ranking shows the differences of the
methods. For this we first gather all rankings in a matrix.

> # gather all rankings in a matrix

> rankings<-lapply(salmonellaStability,getRankmatrix)

> rankings<-Reduce(cbind,lapply(rankings,function(x){x[down,]}))

Then, for each gene the three data points and and their mean are plotted at their position in the ranking
(x-axis).

> # plot data according to rankings

> par(mfrow=c(1,5),mar=c(4,4,2,2))

> range<-range(data)

> for(m in c(2,3,1,4,8)){

+ plot(1,type='n',xlim=c(0,length(down)), ylim=range,main='',

+ ylab='infection score', xlab=paste(colnames(rankings)[m],'rank'))

+ orderedData<-data[order(rankings[,m]),]

+ for(j in 1:3){

+ points(orderedData[,j],pch=20,cex=0.5)

+ }

+ points(apply(orderedData,1,mean),col='red',pch=20,cex=0.5)

+ }

One can observe that the overall variance in this dataset is quite high, resulting from the fact, that
different siRNAs were used for each gene. This also becomes obvisous when looking at the stable set
sizes of the original rankings.

> # plot the stable genes per cutoff k* for each method

> mCol<-rainbow(3)

> name_out<-c('Mean','Rank sum','RSA')

> plot(1,type='n',xlim=c(0,length(down)),ylim=c(0,length(down)),

+ xlab='k*',ylab='stable genes')

> abline(0,1,col='lightgray')

> for(i in 1:3){

+ lines(stableSetSize(salmonellaStability[[i]]),lwd=2,col=mCol[i])

+ }

> legend('topleft',name_out,col=mCol,lwd=2)

0 100 250

−
10

−
8

−
6

−
4

−
2

0
2

mean_base rank

in
fe

ct
io

n
sc

or
e

0 100 250

−
10

−
8

−
6

−
4

−
2

0
2

mean_averaged rank

in
fe

ct
io

n
sc

or
e

0 100 250

−
10

−
8

−
6

−
4

−
2

0
2

mean_stability rank

in
fe

ct
io

n
sc

or
e

0 100 250
−

10
−

8
−

6
−

4
−

2
0

2

mwtest_stability rank

in
fe

ct
io

n
sc

or
e

0 100 250

−
10

−
8

−
6

−
4

−
2

0
2

RSA_base rank

in
fe

ct
io

n
sc

or
e

Figure 2: The infection data plotted according to a ranking (x-axis). Black dots are infection values,
plotted columnwise per gene, red dots are their mean.

0 50 100 150 200 250 300 350

0
50

10
0

15
0

20
0

25
0

30
0

35
0

k*

st
ab

le
 g

en
es

Mean
Rank sum
RSA

Figure 3: Stable sets of rankings on the salmonella infection data.

Within the top 10% of the ranking (35 genes) only 5 are stable. Calling summary on a RankSummary

object we can quickly access the top 1, 10 and 50% cutoffs and stable set sizes.

> summary(salmonellaStability$mean)

Length Class Mode

1 RankSummary S4

References

[1] Siebourg J., Merdes G., Misselwitz B., Hardt W.-D.and Beerenwinkel N. Stability of gene rankings
from RNAi screens. Bioinformatics, 2012, doi: 10.1093/bioinformatics/bts192

[2] Meinshausen N. and Bühlman P. Stability selection. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 2010

[3] Misselwitz B. et al., RNAi screen of Salmonella invasion shows role of COPI in membrane targeting
of cholesterol and Cdc42. Molecular Systems Biology, 2011

[4] Koenig R. et al., A probability-based approach for the analysis of large-scale RNAi screens. Nature
Methods, 2007

