Shilin Zhao¹

¹zhaoshilin@gmail.com

October 27, 2020

Abstract

In this vignette, we demonstrated the application of RnaSeqSampleSize as an sample size estimation tool for RNA-seq data. A user friendly web interface is also provided at http://cqs.mc.vanderbilt.edu/shiny/RnaSeqSampleSize/ for researchers not familiar with R.

RnaSeqSampleSize package provides the following features:

- Estimation of sample size or power by single read count and dispersion;
- Estimation of sample size or power by prior real data;
- Visualization of sample size and power by power curves;
- Optimization by power or sample size matrix;

Contents

1	Intro	duction	3
2	Usei	friendly web interface	3
3	Examples		3
	3.1	3.1.1 Power estimation	4 4 4
	3.2	3.2.1 Power estimation with datasets in RnaSeqSample-SizeData package3.2.2 Sample size estimation with datasets in RnaSeqSam-	5 5 7
	3.3	Power curve visualization	9
	3.4	Optimization by power or sample size matrix	0

1 Introduction

Sample size estimation is the most important issue in the design of RNA sequencing experiments. However, thousands of genes are quantified and tested for differential expression simultaneously in RNA-seq experiments. The false discovery rate for statistic tests should be controlled. At the same time, the thousands of genes have widely distributed read counts and dispersions, which were often estimated by experience or set at the most conservative values in previous sample size estimation methods. As a result, the estimated sample size will be inaccurate or over-estimated.

To solve these issues, we developed a sample size estimation method based on the distributions of gene read counts and dispersions from real data. Datasets from the user's preliminary experiments or the Cancer Genome Atlas (TCGA) can be used as reference. The read counts and their related dispersions will be selected randomly from the reference based on their distributions, and from that, the power and sample size will be estimated and summarized.

2 User friendly web interface

A user friendly web interface for *RnaSeqSampleSize* package is provided at http://cqs.mc.vanderbilt.edu/shiny/RnaSeqSampleSize/. Most of the functions in Examples section can be performed in this website.

3 Examples

First we will load the *RnaSeqSampleSize* package.

```
library(RnaSeqSampleSize)

## Loading required package: RnaSeqSampleSizeData

## Loading required package: edgeR

## Loading required package: limma
```

3.1 Estimation of sample size or power by single read count and dispersion

3.1.1 Power estimation

For example, if we are estimating the power of finding significant genes for RNAseq data with specified sample size, and we have the following parameters:

- Number of samples in each group: 63;
- Minimal fold change between two groups: 2;
- Minimal average read counts: 5;
- Maximal dispersion: 0.5;
- False discovery rate: 0.01;

As a result, the estimated power is 0.8 by est_power function. It means that we have 80% probability to find the significant genes with 63 samples in each group.

```
example(est_power)

##

## est_pw> n<-63; rho<-2; lambda0<-5; phi0<-0.5; f<-0.01

##

## est_pw> est_power(n=n, rho=rho, lambda0=lambda0, phi0=phi0, f=f)

## [1] 0.8
```

3.1.2 Sample size estimation

For example, if we are estimating the sample size for RNA-seq data to achieve desired power of finding significant genes, and we have the following parameters:

- Desired power of finding significant genes: 0.8;
- Minimal fold change between two groups: 2;
- Minimal average read counts: 5;
- Maximal dispersion: 0.5;
- False discovery rate: 0.01;

As a result, the estimated sample size is 63 by sample_size function. It means that if we want to have 80% probability to find the significant genes, we need 63 samples in each group.

```
example(sample_size)

##

## smpl_s> power<-0.8; rho<-2; lambda0<-5; phi0<-0.5; f<-0.01

##

## smpl_s> sample_size(power=power, f=f, rho=rho, lambda0=lambda0, phi0=phi0)

## [1] 63
```

3.2 Estimation of sample size or power by reference data

3.2.1 Power estimation with datasets in RnaSeqSampleSizeData package

RnaSeqSampleSizeData package contains the read counts and dispersion distribution from some real datasets and can be used as prior data for sample size or power estimation. They can be called with following names:

```
## [1] "TCGA_BLCA" "TCGA_BRCA" "TCGA_CESC" "TCGA_COAD" "TCGA_HNSC" "TCGA_KIRC"
## [7] "TCGA_LGG" "TCGA_LUAD" "TCGA_LUSC" "TCGA_PRAD" "TCGA_READ" "TCGA_THCA"
## [13] "TCGA_UCEC"
```

For example, if we are estimating the power of finding significant genes for RNAseq data with specified sample size, and we have the following parameters:

- Number of samples in each group: 65;
- Minimal fold change between two groups: 2;
- Prior data: TCGA READ data, stored in RnaSeqSampleSizeData package, can be used with name TCGA_READ;
- False discovery rate: 0.01;

Here we demonstrated the power estimation by prior data in three different situations.

 If we are intesested in all genes, we can use repNumber parameter to specify random number of genes to perform power estimation;

Please note here the parameter repNumber was very small (5) to make the example code faster. We suggest repNumber should be at least set as 100 in real analysis.

• If we are only intesested in a list of genes, we can use selectedGenes parameter to specify the list of genes to perform power estimation;

```
#Power estimation based on some interested genes.
#We use storeProcess=TRUE to return the details for all selected genes.
selectedGenes < -names(TCGA_READ$pseudo.counts.mean)[c(1,3,5,7,9,12:30)]
powerDistribution<-est_power_distribution(n=65, f=0.01, rho=2,</pre>
                        distributionObject="TCGA_READ",
                        selectedGenes=selectedGenes,
                        storeProcess=TRUE)
str(powerDistribution)
## List of 3
## $ power
              : num [1:24] 0.8161 0.0547 0.9781 0.9785 0.979 ...
              : Named num [1:24] 43 36 2000 260 1950 ...
## ..- attr(*, "names")= chr [1:24] "A1BG" "A2BP1" "A2M" "A4GALT" ...
## $ dispersion: num [1:24] 0.6 2.3 0.4 0.5 0.1 1.3 0.4 0.1 0.4 0.1 ...
mean(powerDistribution$power)
## [1] 0.8098202
```

 If we are only intesested a specified pathway, we can use pathway and species parameters to specify the genes in a pathway to perform power estimation.

As a result, we use est_power_distribution function and find the estimated power is 0.91 for random genes, 0.81 for specified gene list, and 0.77 for genes in Glycolysis and Gluconeogenesis (pathway 00010) pathway.

3.2.2 Sample size estimation with datasets in RnaSeqSampleSize-Data package

For example, if we are estimating the sample size for RNA-seq data to achieve desired power of finding significant genes, and we have the following parameters:

- Desired power of finding significant genes: 0.8;
- Minimal fold change between two groups: 2;
- Prior data: TCGA READ data, stored in RnaSeqSampleSizeData package, can be used with name TCGA_READ;
- False discovery rate (FDR): 0.01;

As a result, we use *sample_size_distribution* function and find the estimated sample size is 41 for random genes.

```
sample_size_distribution(power=0.8, f=0.01, distributionObject="TCGA_READ", repNumber=5, showMessage=TRUE)

## x= 1 f(x)= -0.8

## x= 33 f(x)= -0.00924530341197649

## x= 65 f(x)= 0.163626484085386

## x= 49 f(x)= 0.108827720333138

## x= 41 f(x)= 0.0600959786943839

## x= 37 f(x)= 0.0283791045000938

## x= 35 f(x)= 0.0104298166964502

## x= 34 f(x)= 0.000691127329005781

## [1] 34
```

Please note here the parameter repNumber was very small (5) to make the example code faster. We suggest repNumber should be at least set as 100 in real analysis.

3.2.3 Sample size or power estimation with user's prior dataset

For example, if the user has a RNA-seq data with 10000 genes and 10 samples as prior dataset:

```
# Generate a 10000*10 RNA-seg data as prior dataset
set.seed(123)
dataMatrix <- matrix(sample(0:3000, 1e+05, replace = TRUE), nrow = 10000, ncol = 10)
colnames(dataMatrix) <- c(paste0("Control", 1:5), paste0("Treatment", 1:5))</pre>
row.names(dataMatrix) <- paste0("gene", 1:10000)</pre>
head(dataMatrix)
##
         Control1 Control2 Control3 Control4 Control5 Treatment1 Treatment2
## gene1
             2462
                                 421
                                           219
                                                    2344
                                                               1636
                         56
                                                                           1486
## gene2
             2510
                       1353
                                 1606
                                           591
                                                     251
                                                                538
                                                                           2230
## gene3
             2226
                       2680
                                 269
                                          2668
                                                     170
                                                               2976
                                                                            625
## gene4
              525
                        461
                                1948
                                          1589
                                                    1315
                                                               1580
                                                                           1915
## gene5
                                                                           2498
              194
                       2048
                                 259
                                          1761
                                                    2564
                                                               1862
## gene6
                       2678
                                2364
                                                     704
             2985
                                          2111
                                                               2629
                                                                           1852
##
         Treatment3 Treatment4 Treatment5
## gene1
               1961
                           1924
                                       1412
## gene2
                382
                           2764
                                       1491
## gene3
                1685
                           2100
                                       1248
## gene4
                1280
                            228
                                        441
## gene5
                2947
                                       1761
                           1093
## gene6
                 353
                            783
                                       1097
```

Then we are estimating the power of finding significant genes for RNA-seq data with specified sample size, and we have the following parameters:

- Number of samples in each group: 65;
- Minimal fold change between two groups: 2;
- Prior data: User's prior dataset with 10000 genes and 10 samples;
- False discovery rate: 0.01;

We will use est_count_dispersion to estitamete the gene read count and dispersion distribution of user's prior dataset. And then est_power_distribution function will be used to estimate power.

```
## [1] 0.7925584
```

As a result, we can find the estimated power is 0.91. Please note here the parameter repNumber was very small (5) to make the example code faster. We suggest repNumber should be at least set as 100 in real analysis.

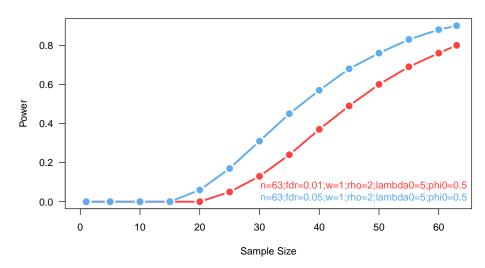
3.3 Power curve visualization

For example, if we are going to compare the power of finding significant genes for different false discovery rate, and we have the following parameters:

- Number of samples in each group: 63;
- Minimal fold change between two groups: 2;
- Minimal average read counts: 5;
- Maximal dispersion: 0.5;
- False discovery rate: 0.01 and 0.05;

```
result1 <- est_power_curve(n = 63, f = 0.01, rho = 2, lambda0 = 5, phi0 = 0.5)
result2 <- est_power_curve(n = 63, f = 0.05, rho = 2, lambda0 = 5, phi0 = 0.5)
plot_power_curve(list(result1, result2))
```

Power Curve



As a result, the relation between power and sample size can be estimated by est_power_curve function and the power curves can be generated by plot_power_curve function.

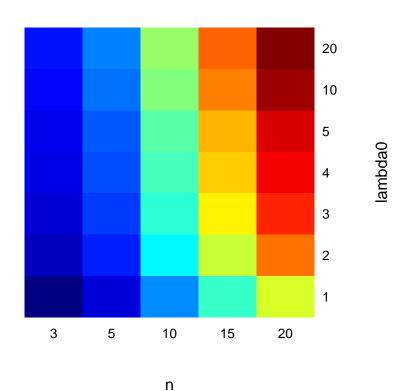
3.4 Optimization by power or sample size matrix

0.1

0.4

For example, if the budget is limited, we need to balance the number of replications and sequence depth. We can use the optimize_parameter function to find the relation between sample size, read counts, and estimated power. And then the optimized parameters can be determined.

Optimization for Power Estimation



As a result, the estimated power distribution indicates that the number of replications plays a more significant role in determining the power than the number of read counts.