How to use the MiPP Package

Mat Soukup, HyungJun Cho, and Jae K. Lee October 27, 2020

Contents

1	Introduction	1
2	Misclassification-Penalized Posteriors (MiPP)	1
3	Examples	2
	3.1 Acute Leukemia Data	4
	3.2 Colon Cancer Data	4
	3.3 Sequential selection	-

1 Introduction

The *MiPP* package is designed to sequentially add genes to a classification gene model based upon the Misclassification-Penalized Posteriors (MiPP) as discussed in Section 2. The construction of the model is based upon a training data set and the estimated actual performance of the model is based upon an independent data set. When no clear distinction between the training and independent data sets exists, the cross-validation technique is used to estimate actual performance. For the detailed algorithms, see Soukup, Cho, and Lee (2005) and Soukup and Lee (2004). The *MiPP* package employs libraries *MASS* for LDA/QDA (linear/quadratic discrimant analysis) and *e1071* for SVM (support vector machine). Users should install the *e1071* package from the main web page of R (http://www.r-project.org/).

2 Misclassification-Penalized Posteriors (MiPP)

In the above section, estimated actual performance is mentioned a number of times. Classically, the accuracy of a classification model is done by reporting its estimated actual error rate. However, error rate fails to take into account how likely a particular sample belongs to a given class and dichotomizes the data into yes the sample was

correctly classified or no the sample was NOT correctly classified. Although error rate, plays a key role in how well a classification model performs, it fails to take into account all the information that is available from a classification rule.

The Misclassification-Penalized Posteriors (MiPP) takes into account how likely a sample belongs to a given class by using a posterior probability of correct classification. MiPP also adjusts its definition any time a sample is misclassified by subtracting a 1 from the posterior probability of correct classification resulting in a negative value of MiPP. If we define the posterior probability of correct classification using genes \mathbf{x} as $\hat{f}(\mathbf{x})$, MiPP can be calculated as

$$\psi_p = \sum_{correct} \hat{f}(\mathbf{x}) + \sum_{wrong} \left(\hat{f}(\mathbf{x}) - 1 \right). \tag{1}$$

Here, *correct* refers to the subset of samples that are correctly classified and *wrong* refers to the subset of samples that are misclassified. By introducing a random variable that takes into account whether a sample is misclassified or not MiPP can be shown to be the sum of posterior probabilities of correct classification minus the number of misclassified samples. As a result, MiPP increases whenever the sum of posterior probabilities of correction classification increase, the number of misclassified samples decreases, or both of these occur.

We standardize the MiPP score divided by the number of samples in each data set, denoted as sMiPP. Thus, the range of sMiPP is from -1 to 1. Note that as accuracy increases, sMiPP converges to 1.

Some basic properties of MiPP are that the maximum value it can take is equal to the sample size (or sMiPP = 1), and on the flip side, the minimum value is equal to the negation of the sample size (or sMiPP = -1). Under a pure random model, the expected value of MiPP is equal to zero (or sMiPP = 0). The variance is derived and is available from the first author for the two class case, however an explicit value for more than two classes can not be derived analytically. Thus, a bootstrapped estimate is the preferred method of estimating the variance.

3 Examples

3.1 Acute Leukemia Data

This data set has been frequently used for testing various methods in classification and prediction of cancer sub-types. Two distinct subsets of array data for AML and ALL leukemia patients are available: a training set of 27 ALL and 11 AML samples and a test set of 20 ALL and 14 AML samples. The independent set was from adult bone marrow samples, whereas the independent set was from 24 bone marrow samples, 10 from peripheral blood samples, and 4 of the AML samples from adults. Gene expression levels contain probes for 6817 human genes from Affymetrix $^{\text{TM}}$ oligonucleotide microarrays. Note that a subset of genes (713 probe sets) was stored into the MiPP package.

To run *MiPP*, the data can be prepared as follows.

data(leukemia)

```
#IQR normalization
leukemia <- cbind(leuk1, leuk2)
leukemia <- mipp.preproc(leukemia, data.type="MAS4")

#Train set
x.train <- leukemia[,1:38]
y.train <- factor(c(rep("ALL",27),rep("AML",11)))

#Test set
x.test <- leukemia[,39:72]
y.test <- factor(c(rep("ALL",20),rep("AML",14)))</pre>
```

Since two distinct data sets exist, the model is constructed on the training data and evaluated on the test data set as follows.

This sequentially selects genes one gene at a time with the LDA rule (rule="lda") and 5-fold cross-validation (n.fold=5) on the training set. To reduce computing time, it pre-selects the most plausuable 5% out of 713 genes by the two-sample t-test (per-cent.cut=0.05), and then performs gene selection. To utilize all genes without pre-selection, set the argument percent.cut=1. The above command generates the following output.

out\$model

```
Order Gene Tr.ER Tr.MiPP Tr.sMiPP Te.ER Te.MiPP Te.sMiPP Select
1
      1 571 0.0526
                      30.86
                              0.8122 0.1176
                                               23.92
                                                       0.7035
2
        436 0.0000
                      36.89
                              0.9707 0.0294
                                               30.41
                                                       0.8945
3
                                               31.35
      3 366 0.0000
                      37.95
                              0.9988 0.0294
                                                       0.9222
4
      4 457 0.0000
                      38.00
                              0.9999 0.0294
                                               32.14
                                                       0.9453
5
      5 413 0.0000
                      38.00
                              1.0000 0.0294
                                               32.18
                                                       0.9464
      6 635 0.0000
                      38.00
                              1.0000 0.0000
                                               33.75
                                                       0.9927
                                                                  **
      7 648 0.0000
                      38.00
                              1.0000 0.0000
                                               33.57
                                                       0.9874
```

The gene models are evaluated by both train (denoted by **Tr**) and test (denoted by **Te**) sets; however, we select the final model based on the test set independent of the train

set used for gene selection. The gene model with the maximum sMiPP is indicated by one star (*) and the parsimonious model (indicated by **) contains the fewest number of genes with sMiPP greater than or equal to (max sMiPP - 0.01). In this example, the maximum and parsimonious models (indicated by **) are the same. Thus, the final model with sMiPP 0.993 contains genes 571, 436, 366, 457, 413, and 635. Note that genes listed in the output correspond to the column number of the matrices.

3.2 Colon Cancer Data

The colon cancer data set consists of the 2000 genes with the highest minimal intensity across the 62 tissue samples out of the original 6,500⁺ genes. The data set is filtered using the procedures described at the author's web site. The 62 samples consist of 40 colon tumor tissue samples and 22 normal colon tissue samples (Alon *et al.*, 1999). Li *et al.* (2001) identified 5 samples (N34, N36, T30, T33, and T36) which were likely to have been contaminated. As a result, these five samples are excluded from any future analysis; our error rate would be higher if they were included.

Since we are working with a small data set (57 samples), we will be implementing cross-validation techniques. With the lack of a 'true' independent test set, we randomly create a training data set with 38 samples (25 tumor and 13 normal) and an independent data set with 19 samples (12 tumor and 7 normal). Since this is a random creation of the data set, it would be of interest to see what model is selected based upon a different random split of the data. Note that the choice of the sizes of the training and independent test set is somewhat arbitrary, but consistent results were found using a training and test set of sizes 29 (19 tumor and 10 normal) and 28 (18 tumor and 10 normal), respectively. The colon data set of the MiPP package contains only 200 genes as an example. For the colon data with no independent test set, MiPP can be run as follows.

```
data(colon)
x <- mipp.preproc(colon)
y <- factor(c("T", "N", "T", "N", "T", "N", "T", "N", "T", "N",
                        "N", "T",
                                   "N",
                                        "T",
                                              "N".
                                   "T",
                                        "T",
                  "T", "N", "T",
                  "T",
                        "T",
                             "T".
                                        "T",
                                   "T",
                                             "T",
                        "T",
                             "T".
                                   "T".
                                              "N",
                                        "T".
                        "N". "N".
                                   "T".
                                        "T".
                                             "T", "T", "N",
       "T". "N"))
```

```
#Deleting comtaminated chips x \leftarrow x[,-c(51,55,45,49,56)] y \leftarrow y[-c(51,55,45,49,56)]
```

This divides the whole data into two groups for training (two-third) and testing (one-third) (p.test = 1/3) and performs the forward gene selection as done with the acute leukemia data. Splitting of the data set into training and independent dat set and then selecting a model for a given split are repeated 20 times (n.split=20). This generates the following output.

out\$model

1	1	1	29 0.0263	34.75	0.9144 0.1579	13.38	0.7042	
2	1	2	36 0.0263	35.95	0.9461 0.0000	18.35	0.9659	
3	1	3	30 0.0000	37.89	0.9972 0.0000	18.88	0.9939	**
4	1	4	177 0.0000	38.00	0.9999 0.0000	18.98	0.9990	
5	1	5	18 0.0000	38.00	1.0000 0.0000	18.96	0.9979	
6	1	6	185 0.0000	38.00	1.0000 0.0000	19.00	1.0000	
7	1	7	49 0.0000	38.00	1.0000 0.0000	19.00	1.0000	
8	1	8	163 0.0000	38.00	1.0000 0.0000	19.00	1.0000	
9	1	9	91 0.0000	38.00	1.0000 0.0000	19.00	1.0000	
10	1	10	78 0.0000	38.00	1.0000 0.0000	19.00	0.9999	
11	1	11	148 0.0000	38.00	1.0000 0.0000	19.00	1.0000	
12	1	12	95 0.0000	38.00	1.0000 0.0000	19.00	1.0000	*
13	2	1	163 0.0789	30.22	0.7952 0.1053	14.39	0.7574	
14	2	2	177 0.0000	37.12	0.9767 0.0000	18.65	0.9818	
15	2	3	29 0.0000	37.76	0.9936 0.0000	18.98	0.9988	**
16	2	4	36 0.0000	37.97	0.9991 0.0000	18.99	0.9996	
17	2	5	28 0.0000	37.96	0.9991 0.0000	18.99	0.9997	
18	2	6	185 0.0000	37.98	0.9995 0.0000	18.99	0.9997	*
19	2	7	182 0.0000	37.98	0.9995 0.0000	18.98	0.9987	
20	2	8	65 0.0000	37.99	0.9998 0.0000	18.99	0.9993	
21	2	9	84 0.0000	37.99	0.9999 0.0000	18.99	0.9994	
22	2	10	18 0.0000	37.99	0.9999 0.0000	18.99	0.9995	
23	2	11	102 0.0000	38.00	0.9999 0.0000	18.99	0.9993	
24	2	12	76 0.0000	38.00	0.9999 0.0000	18.99	0.9996	

.

.

206	20	1	30 0.0263	35.31	0.9291 0.1579	12.39	0.6522	
207	20	2	78 0.0263	36.35	0.9566 0.0526	16.54	0.8704	
208	20	3	36 0.0000	38.00	0.9999 0.0000	18.86	0.9924	**
209	20	4	51 0.0000	38.00	1.0000 0.0526	17.05	0.8974	
210	20	5	18 0.0000	38.00	1.0000 0.0526	16.93	0.8911	
211	20	6	177 0.0000	38.00	1.0000 0.1053	15.32	0.8062	
212	20	7	28 0.0000	38.00	1.0000 0.1053	15.03	0.7911	
213	20	8	102 0.0000	38.00	1.0000 0.1579	13.38	0.7040	
214	20	9	182 0.0000	38.00	1.0000 0.1053	14.81	0.7794	
215	20	10	148 0.0000	38.00	1.0000 0.1053	14.98	0.7883	
216	20	11	84 0.0000	38.00	1.0000 0.1579	13.35	0.7027	
217	20	12	141 0.0000	38.00	1.0000 0.1053	14.86	0.7821	

For each split, the parsimonious model identified (denoted as **) is evaluated by an independent 100 splits (n.split.eval=100) generating the following output.

out\$model.eval

	Split	G1	G2	G3	G4	G5	G6	G7	G8	G9	G10	G11	G12	mean ER	mean Mi	PP mean sMiPP
S1	1	29	36	30	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.022631	18.03	0.9487025
S2	2	163	177	29	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.004210	18.70	0.9840302
S3	3	30	36	185	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.000000	18.91	0.9951495
S4	4	29	102	177	36	84	NA	NA	NA	NA	NA	NA	NA	0.010526	18.51	0.9743218
S5	5	91	177	29	36	NA	NA	NA	NA	NA	NA	NA	NA	0.006842	18.62	0.9798232
S6	6	49	78	185	177	29	NA	NA	NA	NA	NA	NA	NA	0.015789	18.33	0.9646823
S7	7	29	78	91	30	51	102	36	18	76	141	NA	NA	0.006842	18.73	0.9857517
S8	8	30	36	185	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.000000	18.91	0.9951495
S9	9	30	36	78	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.000000	18.88	0.9938337
S10	10	29	185	177	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.006315	18.67	0.9826242
S11	. 11	29	177	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.014736	18.08	0.9517509
S12	2 12	30	36	177	185	NA	NA	NA	NA	NA	NA	NA	NA	0.000000	18.97	0.9986411
S13	3 13	30	36	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.000526	18.76	0.9874807
S14	14	49	185	141	65	102	18	30	36	163	95	91	29	0.008947	18.62	0.9799060
S15	15	163	177	185	29	NA	NA	NA	NA	NA	NA	NA	NA	0.005263	18.73	0.9860384
S16	16	49	91	185	78	NA	NA	NA	NA	NA	NA	NA	NA	0.013684	18.32	0.9643648
S17	17	163	29	49	36	148	91	84	30	18	185	141	182	0.027894	17.85	0.9396381
S18	18	29	177	163	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.004210	18.69	0.9840302
S19	19	29	36	185	91	NA	NA	NA	NA	NA	NA	NA	NA	0.020526	18.15	0.9551247
S20	20	30	78	36	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.000000	18.88	0.9938337

```
5% ER 50% ER 95% ER 5% sMiPP 50% sMiPP 95% sMiPP
    0.10526316
                    0
                            0 0.8083084 0.9898493 0.9969918
S1
                     0
S2
    0.05263158
                            0 0.9083072 0.9949838 0.9996731
S3
    0.0000000
                     0
                            0 0.9858440 0.9965600 0.9990983
   0.05263158
                     0
                            0 0.8829518 0.9965193 0.9996263
S5
    0.05263158
                     0
                            0 0.8964819 0.9946817 0.9993379
S6
    0.05263158
                     0
                            0 0.8906567 0.9925318 0.9998255
S7
    0.05263158
                     0
                            0 0.9074560 0.9992884 0.9999863
S8
                     0
                            0 0.9858440 0.9965600 0.9990983
    0.00000000
S9
    0.0000000
                     0
                            0 0.9856433 0.9947618 0.9987210
S10 0.05263158
                     0
                            0 0.8974827 0.9959758 0.9989191
                            0 0.8655241 0.9726538 0.9902048
S11 0.05526316
                     0
S12 0.00000000
                     0
                            0 0.9968295 0.9991665 0.9998100
S13 0.00000000
                     0
                            0 0.9744228 0.9896188 0.9954914
                            0 0.8777725 0.9992962 0.9999910
S14 0.05526316
                     0
S15 0.05263158
                            0 0.9071621 0.9976359 0.9997154
                     0
                            0 0.8896781 0.9860472 0.9983609
S16 0.05263158
                     0
S17 0.10526316
                     0
                            0 0.7931386 0.9778348 0.9995296
                            0 0.9083072 0.9949838 0.9996731
S18 0.05263158
                     0
S19 0.05263158
                     0
                            0 0.8801255 0.9952021 0.9989584
S20 0.00000000
                     0
                            0 0.9856433 0.9947618 0.9987210
```

3.3 Sequential selection

Good classifying (masked) genes may be masked by other better classifying (masking) genes, so the masked genes may be discovered if the masking genes are not present. Therefore, it is worth selecting gene models after removing genes selected in the previous runs. This sequential selection can be performed by manually removing the genes selected in the previous runs. For users' convenience, the *MiPP* package enables one to perform such a sequential selection process automatically many times.

For the acute leukemia data with an independent test set, the sequntial analysis can be performed by the following arguments in the mipp.seq function:

```
out <- mipp.seq(x=x.train, y=y.train, x.test=x.test, y.test=y.test, n.seq=3)</pre>
```

The argument n.seq=3 means that the sequential selection is performed 3 times after removing all the genes in the selected gene models. For the colon cancer data with no independent test set, the sequential analysis can be performed by the following arguments:

```
out <- mipp.seq(x=x, y=y, n.seq=3, cutoff.sMiPP=0.7)</pre>
```

By the argument cutoff.sMiPP=0.7, the gene models with 5% sMiPP > 0.7 are selected, so all the genes in the selected models are removed for the next run. All the arguments in the mipp.seq function can also used in the mipp.seq function.

Reference

Soukup M, Cho H, and Lee JK (2005). Robust classification modeling on microarray data using misclassification penalized posterior, *Bioinformatics*, 21 (Suppl): i423-i430.

Soukup M and Lee JK (2004). Developing optimal prediction models for cancer classification using gene expression data, *Journal of Bioinformatics and Computational Biology*, 1(4) 681-694.