
Package ‘tidySummarizedExperiment’
October 27, 2020

Type Package

Title Brings SummarizedExperiment to the Tidyverse

Version 1.0.0

Description
tidySummarizedExperiment is an adapter that abstracts the 'SingleCellExperiment' container
in the form of tibble and allows the data manipulation, plotting and nesting using 'tidyverse'

License GPL-3

Depends R (>= 4.0.0),
SummarizedExperiment

Imports tibble (>= 3.0.4),
dplyr,
magrittr,
tidyr,
ggplot2,
rlang,
purrr,
lifecycle,
methods,
plotly,
utils,
S4Vectors,
tidyselect,
ellipsis,
pillar,
stringr,
cli,
fansi

Suggests BiocStyle,
testthat,
knitr,
markdown

VignetteBuilder knitr

RdMacros lifecycle

Biarch true

biocViews AssayDomain, Infrastructure, RNASeq, DifferentialExpression, GeneExpression, Normal-
ization, Clustering, QualityControl, Sequencing, Transcription, Transcriptomics

Encoding UTF-8

1

2 as_tibble

LazyData true

RoxygenNote 7.1.1

git_url https://git.bioconductor.org/packages/tidySummarizedExperiment

git_branch RELEASE_3_12

git_last_commit 7f722f3

git_last_commit_date 2020-10-27

Date/Publication 2020-10-27

R topics documented:
as_tibble . 2
bind . 3
count . 4
formatting . 5
ggplot . 6
pasilla . 7
plot_ly . 8
tidy . 11
unnest . 12

Index 16

as_tibble Coerce lists, matrices, and more to data frames

Description

‘r lifecycle::badge("maturing")‘

‘as_tibble()‘ turns an existing object, such as a data frame or matrix, into a so-called tibble, a data
frame with class [‘tbl_df‘]. This is in contrast with [tibble()], which builds a tibble from individual
columns. ‘as_tibble()‘ is to [‘tibble()‘] as [base::as.data.frame()] is to [base::data.frame()].

‘as_tibble()‘ is an S3 generic, with methods for: * [‘data.frame‘][base::data.frame()]: Thin wrapper
around the ‘list‘ method that implements tibble’s treatment of [rownames]. * [‘matrix‘][methods::matrix-
class], [‘poly‘][stats::poly()], [‘ts‘][stats::ts()], [‘table‘][base::table()] * Default: Other inputs are
first coerced with [base::as.data.frame()].

Arguments

x A data frame, list, matrix, or other object that could reasonably be coerced to a
tibble.

... Unused, for extensibility.

rownames How to treat existing row names of a data frame or matrix: * ‘NULL‘: remove
row names. This is the default. * ‘NA‘: keep row names. * A string: the name
of a new column. Existing rownames are transferred into this column and the
‘row.names‘ attribute is deleted. Read more in [rownames].

.name_repair see tidyr
For compatibility only, do not use for new code.

bind 3

Value

A tibble

Row names

The default behavior is to silently remove row names.

New code should explicitly convert row names to a new column using the ‘rownames‘ argument.

For existing code that relies on the retention of row names, call ‘pkgconfig::set_config("tibble::rownames"=NA)‘
in your script or in your package’s [.onLoad()] function.

Life cycle

Using ‘as_tibble()‘ for vectors is superseded as of version 3.0.0, prefer the more expressive maturing
‘as_tibble_row()‘ and ‘as_tibble_col()‘ variants for new code.

See Also

[tibble()] constructs a tibble from individual columns. [enframe()] converts a named vector to a
tibble with a column of names and column of values. Name repair is implemented using [vc-
trs::vec_as_names()].

Examples

tidySummarizedExperiment::pasilla %>%
tidy() %>%
as_tibble()

bind Efficiently bind multiple data frames by row and column

Description

This is an efficient implementation of the common pattern of ‘do.call(rbind, dfs)‘ or ‘do.call(cbind,
dfs)‘ for binding many data frames into one.

Arguments

... Data frames to combine.
Each argument can either be a data frame, a list that could be a data frame, or a
list of data frames.
When row-binding, columns are matched by name, and any missing columns
will be filled with NA.
When column-binding, rows are matched by position, so all data frames must
have the same number of rows. To match by value, not position, see [mutate-
joins].

.id Data frame identifier.
When ‘.id‘ is supplied, a new column of identifiers is created to link each row
to its original data frame. The labels are taken from the named arguments to
‘bind_rows()‘. When a list of data frames is supplied, the labels are taken from
the names of the list. If no names are found a numeric sequence is used instead.

add.cell.ids from SummarizedExperiment 3.0 A character vector of length(x=c(x, y)). Ap-
pends the corresponding values to the start of each objects’ cell names.

4 count

Details

The output of ‘bind_rows()‘ will contain a column if that column appears in any of the inputs.

Value

‘bind_rows()‘ and ‘bind_cols()‘ return the same type as the first input, either a data frame, ‘tbl_df‘,
or ‘grouped_df‘.

Examples

`%>%` <- magrittr::`%>%`
library(tibble)
tt <- tidySummarizedExperiment::pasilla %>% tidy()
bind_rows(tt, tt)

num_rows <- nrow(tidySummarizedExperiment::as_tibble(tt))
tt %>% bind_cols(tibble(a=0, num_rows))

count Count observations by group

Description

‘count()‘ lets you quickly count the unique values of one or more variables: ‘df ‘df ‘count()‘ is
paired with ‘tally()‘, a lower-level helper that is equivalent to ‘df switching the summary from
‘n=n()‘ to ‘n=sum(wt)‘.

‘add_count()‘ are ‘add_tally()‘ are equivalents to ‘count()‘ and ‘tally()‘ but use ‘mutate()‘ instead
of ‘summarise()‘ so that they add a new column with group-wise counts.

Usage

count(
x,
...,
wt = NULL,
sort = FALSE,
name = NULL,
.drop = group_by_drop_default(x)

)

Arguments

x A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr).

... <[‘data-masking‘][dplyr_data_masking]> Variables to group by.

wt <[‘data-masking‘][dplyr_data_masking]> Frequency weights. Can be ‘NULL‘
or a variable:
* If ‘NULL‘ (the default), counts the number of rows in each group. * If a
variable, computes ‘sum(wt)‘ for each group.

sort If ‘TRUE‘, will show the largest groups at the top.

formatting 5

name The name of the new column in the output.
If omitted, it will default to ‘n‘. If there’s already a column called ‘n‘, it will
error, and require you to specify the name.

.drop For ‘count()‘: if ‘FALSE‘ will include counts for empty groups (i.e. for levels of
factors that don’t exist in the data). Deprecated in ‘add_count()‘ since it didn’t
actually affect the output.

Value

An object of the same type as ‘.data‘. ‘count()‘ and ‘add_count()‘ group transiently, so the output
has the same groups as the input.

Examples

`%>%` <- magrittr::`%>%`
tidySummarizedExperiment::pasilla %>%

tidy() %>%
count(sample)

formatting Printing tibbles

Description

‘r lifecycle::badge("maturing")‘

One of the main features of the ‘tbl_df‘ class is the printing:

* Tibbles only print as many rows and columns as fit on one screen, supplemented by a summary
of the remaining rows and columns. * Tibble reveals the type of each column, which keeps the user
informed about whether a variable is, e.g., ‘<chr>‘ or ‘<fct>‘ (character versus factor).

Printing can be tweaked for a one-off call by calling ‘print()‘ explicitly and setting arguments like
‘n‘ and ‘width‘. More persistent control is available by setting the options described below.

Arguments

x Object to format or print.

... Other arguments passed on to individual methods.

n Number of rows to show. If ‘NULL‘, the default, will print all rows if less than
option ‘tibble.print_max‘. Otherwise, will print ‘tibble.print_min‘ rows.

width Width of text output to generate. This defaults to ‘NULL‘, which means use
‘getOption("tibble.width")‘ or (if also ‘NULL‘) ‘getOption("width")‘; the lat-
ter displays only the columns that fit on one screen. You can also set ‘op-
tions(tibble.width = Inf)‘ to override this default and always print all columns.

n_extra Number of extra columns to print abbreviated information for, if the width is too
small for the entire tibble. If ‘NULL‘, the default, will print information about
at most ‘tibble.max_extra_cols‘ extra columns.

Value

Nothing

6 ggplot

Package options

The following options are used by the tibble and pillar packages to format and print ‘tbl_df‘ objects.
Used by the formatting workhorse ‘trunc_mat()‘ and, therefore, indirectly, by ‘print.tbl()‘.

* ‘tibble.print_max‘: Row number threshold: Maximum number of rows printed. Set to ‘Inf‘ to
always print all rows. Default: 20. * ‘tibble.print_min‘: Number of rows printed if row number
threshold is exceeded. Default: 10. * ‘tibble.width‘: Output width. Default: ‘NULL‘ (use ‘width‘
option). * ‘tibble.max_extra_cols‘: Number of extra columns printed in reduced form. Default:
100.

• pillar.bold: Use bold font, e.g. for column headers? This currently defaults to FALSE,
because many terminal fonts have poor support for bold fonts.

• pillar.subtle: Use subtle style, e.g. for row numbers and data types? Default: TRUE.

• pillar.subtle_num: Use subtle style for insignificant digits? Default: FALSE, is also affected
by the pillar.subtle option.

• pillar.neg: Highlight negative numbers? Default: TRUE.

• pillar.sigfig: The number of significant digits that will be printed and highlighted, default:
3. Set the pillar.subtle option to FALSE to turn off highlighting of significant digits.

• pillar.min_title_chars: The minimum number of characters for the column title, default:
15. Column titles may be truncated up to that width to save horizontal space. Set to Inf to
turn off truncation of column titles.

• pillar.min_chars: The minimum number of characters wide to display character columns,
default: 0. Character columns may be truncated up to that width to save horizontal space. Set
to Inf to turn off truncation of character columns.

Examples

library(dplyr)
pasilla %>% tidy() %>% print()

ggplot Create a new ggplot from a tidySummarizedExperiment object

Description

‘ggplot()‘ initializes a ggplot object. It can be used to declare the input data frame for a graphic and
to specify the set of plot aesthetics intended to be common throughout all subsequent layers unless
specifically overridden.

Arguments

.data Default dataset to use for plot. If not already a data.frame, will be converted to
one by [fortify()]. If not specified, must be supplied in each layer added to the
plot.

mapping Default list of aesthetic mappings to use for plot. If not specified, must be sup-
plied in each layer added to the plot.

... Other arguments passed on to methods. Not currently used.

environment DEPRECATED. Used prior to tidy evaluation.

pasilla 7

Details

‘ggplot()‘ is used to construct the initial plot object, and is almost always followed by ‘+‘ to add
component to the plot. There are three common ways to invoke ‘ggplot()‘:

The first method is recommended if all layers use the same data and the same set of aesthetics,
although this method can also be used to add a layer using data from another data frame. See the
first example below. The second method specifies the default data frame to use for the plot, but
no aesthetics are defined up front. This is useful when one data frame is used predominantly as
layers are added, but the aesthetics may vary from one layer to another. The third method initializes
a skeleton ‘ggplot‘ object which is fleshed out as layers are added. This method is useful when
multiple data frames are used to produce different layers, as is often the case in complex graphics.

Value

A ggplot

Examples

library(ggplot2)

tidySummarizedExperiment::pasilla %>%
tidy() %>%
tidySummarizedExperiment::ggplot(aes(sample, counts)) +
geom_boxplot()

pasilla Read counts of RNA-seq samples of Pasilla knock-down by Brooks et
al.

Description

A SummarizedExperiment dataset containing the transcriptome information for Drosophila Melanogaster.

Usage

data(pasilla)

Format

containing 14599 features and 7 biological replicates.

Source

https://bioconductor.org/packages/release/data/experiment/html/pasilla.html

https://bioconductor.org/packages/release/data/experiment/html/pasilla.html

8 plot_ly

plot_ly Initiate a plotly visualization

Description

This function maps R objects to [plotly.js](https://plot.ly/javascript/), an (MIT licensed) web-based
interactive charting library. It provides abstractions for doing common things (e.g. mapping data
values to fill colors (via ‘color‘) or creating [animation]s (via ‘frame‘)) and sets some different
defaults to make the interface feel more ’R-like’ (i.e., closer to [plot()] and [ggplot2::qplot()]).

Usage

plot_ly(
data = data.frame(),
...,
type = NULL,
name = NULL,
color = NULL,
colors = NULL,
alpha = NULL,
stroke = NULL,
strokes = NULL,
alpha_stroke = 1,
size = NULL,
sizes = c(10, 100),
span = NULL,
spans = c(1, 20),
symbol = NULL,
symbols = NULL,
linetype = NULL,
linetypes = NULL,
split = NULL,
frame = NULL,
width = NULL,
height = NULL,
source = "A"

)

Arguments

data A data frame (optional) or [crosstalk::SharedData] object.

... Arguments (i.e., attributes) passed along to the trace ‘type‘. See [schema()] for a
list of acceptable attributes for a given trace ‘type‘ (by going to ‘traces‘ -> ‘type‘
-> ‘attributes‘). Note that attributes provided at this level may override other ar-
guments (e.g. ‘plot_ly(x=1:10, y=1:10, color=I("red"), marker=list(color="blue"))‘).

type A character string specifying the trace type (e.g. ‘"scatter"‘, ‘"bar"‘, ‘"box"‘,
etc). If specified, it *always* creates a trace, otherwise

name Values mapped to the trace’s name attribute. Since a trace can only have one
name, this argument acts very much like ‘split‘ in that it creates one trace for
every unique value.

plot_ly 9

color Values mapped to relevant ’fill-color’ attribute(s) (e.g. [fillcolor](https://plot.ly/r/reference#scatter-
fillcolor), [marker.color](https://plot.ly/r/reference#scatter-marker-color), [textfont.color](https://plot.ly/r/reference/#scatter-
textfont-color), etc.). The mapping from data values to color codes may be con-
trolled using ‘colors‘ and ‘alpha‘, or avoided altogether via [I()] (e.g., ‘color=I("red")‘).
Any color understood by [grDevices::col2rgb()] may be used in this way.

colors Either a colorbrewer2.org palette name (e.g. "YlOrRd" or "Blues"), or a vector
of colors to interpolate in hexadecimal "#RRGGBB" format, or a color interpo-
lation function like ‘colorRamp()‘.

alpha A number between 0 and 1 specifying the alpha channel applied to ‘color‘.
Defaults to 0.5 when mapping to [fillcolor](https://plot.ly/r/reference#scatter-
fillcolor) and 1 otherwise.

stroke Similar to ‘color‘, but values are mapped to relevant ’stroke-color’ attribute(s)
(e.g., [marker.line.color](https://plot.ly/r/reference#scatter-marker-line-color) and
[line.color](https://plot.ly/r/reference#scatter-line-color) for filled polygons). If
not specified, ‘stroke‘ inherits from ‘color‘.

strokes Similar to ‘colors‘, but controls the ‘stroke‘ mapping.

alpha_stroke Similar to ‘alpha‘, but applied to ‘stroke‘.

size (Numeric) values mapped to relevant ’fill-size’ attribute(s) (e.g., [marker.size](https://plot.ly/r/reference#scatter-
marker-size), [textfont.size](https://plot.ly/r/reference#scatter-textfont-size), and
[error_x.width](https://plot.ly/r/reference#scatter-error_x-width)). The mapping
from data values to symbols may be controlled using ‘sizes‘, or avoided alto-
gether via [I()] (e.g., ‘size=I(30)‘).

sizes A numeric vector of length 2 used to scale ‘size‘ to pixels.

span (Numeric) values mapped to relevant ’stroke-size’ attribute(s) (e.g., [marker.line.width](https://plot.ly/r/reference#scatter-
marker-line-width), [line.width](https://plot.ly/r/reference#scatter-line-width) for
filled polygons, and [error_x.thickness](https://plot.ly/r/reference#scatter-error_x-
thickness)) The mapping from data values to symbols may be controlled using
‘spans‘, or avoided altogether via [I()] (e.g., ‘span=I(30)‘).

spans A numeric vector of length 2 used to scale ‘span‘ to pixels.

symbol (Discrete) values mapped to [marker.symbol](https://plot.ly/r/reference#scatter-
marker-symbol). The mapping from data values to symbols may be controlled
using ‘symbols‘, or avoided altogether via [I()] (e.g., ‘symbol=I("pentagon")‘).
Any [pch] value or [symbol name](https://plot.ly/r/reference#scatter-marker-symbol)
may be used in this way.

symbols A character vector of [pch] values or [symbol names](https://plot.ly/r/reference#scatter-
marker-symbol).

linetype (Discrete) values mapped to [line.dash](https://plot.ly/r/reference#scatter-line-
dash). The mapping from data values to symbols may be controlled using ‘line-
types‘, or avoided altogether via [I()] (e.g., ‘linetype=I("dash")‘). Any ‘lty‘ (see
[par]) value or [dash name](https://plot.ly/r/reference#scatter-line-dash) may be
used in this way.

linetypes A character vector of ‘lty‘ values or [dash names](https://plot.ly/r/reference#scatter-
line-dash)

split (Discrete) values used to create multiple traces (one trace per value).

frame (Discrete) values used to create animation frames.

width Width in pixels (optional, defaults to automatic sizing).

height Height in pixels (optional, defaults to automatic sizing).

10 plot_ly

source a character string of length 1. Match the value of this string with the source
argument in [event_data()] to retrieve the event data corresponding to a specific
plot (shiny apps can have multiple plots).

Details

Unless ‘type‘ is specified, this function just initiates a plotly object with ’global’ attributes that are
passed onto downstream uses of [add_trace()] (or similar). A [formula] must always be used when
referencing column name(s) in ‘data‘ (e.g. ‘plot_ly(mtcars, x=~wt)‘). Formulas are optional when
supplying values directly, but they do help inform default axis/scale titles (e.g., ‘plot_ly(x=mtcars$wt)‘
vs ‘plot_ly(x=~mtcars$wt)‘)

Value

A plotly

Author(s)

Carson Sievert

References

<https://plotly-r.com/overview.html>

See Also

• For initializing a plotly-geo object: [plot_geo()]

• For initializing a plotly-mapbox object: [plot_mapbox()]

• For translating a ggplot2 object to a plotly object: [ggplotly()]

• For modifying any plotly object: [layout()], [add_trace()], [style()]

• For linked brushing: [highlight()]

• For arranging multiple plots: [subplot()], [crosstalk::bscols()]

• For inspecting plotly objects: [plotly_json()]

• For quick, accurate, and searchable plotly.js reference: [schema()]

Examples

Not run:
plot_ly() tries to create a sensible plot based on the information you
give it. If you don't provide a trace type, plot_ly() will infer one.
plot_ly(economics, x=~pop)
plot_ly(economics, x=~date, y=~pop)
plot_ly() doesn't require data frame(s), which allows one to take
advantage of trace type(s) designed specifically for numeric matrices
plot_ly(z=~volcano)
plot_ly(z=~volcano, type="surface")

plotly has a functional interface: every plotly function takes a plotly
object as it's first input argument and returns a modified plotly object
add_lines(plot_ly(economics, x=~date, y=~ unemploy / pop))

To make code more readable, plotly imports the pipe operator from magrittr
economics %>%

tidy 11

plot_ly(x=~date, y=~ unemploy / pop) %>%
add_lines()

Attributes defined via plot_ly() set 'global' attributes that
are carried onto subsequent traces, but those may be over-written
plot_ly(economics, x=~date, color=I("black")) %>%

add_lines(y=~uempmed) %>%
add_lines(y=~psavert, color=I("red"))

Attributes are documented in the figure reference -> https://plot.ly/r/reference
You might notice plot_ly() has named arguments that aren't in this figure
reference. These arguments make it easier to map abstract data values to
visual attributes.
p <- plot_ly(iris, x=~Sepal.Width, y=~Sepal.Length)
add_markers(p, color=~Petal.Length, size=~Petal.Length)
add_markers(p, color=~Species)
add_markers(p, color=~Species, colors="Set1")
add_markers(p, symbol=~Species)
add_paths(p, linetype=~Species)

End(Not run)

tidy tidy for SummarizedExperiment

Description

tidy for SummarizedExperiment

Usage

tidy(object)

Arguments

object A SummarizedExperiment object

Value

A tidySummarizedExperiment object

Examples

tidySummarizedExperiment::pasilla %>% tidy()

12 unnest

unnest unnest

Description

Given a regular expression with capturing groups, ‘extract()‘ turns each group into a new column.
If the groups don’t match, or the input is NA, the output will be NA.

Maturing
‘pivot_longer()‘ "lengthens" data, increasing the number of rows and decreasing the number of
columns. The inverse transformation is [pivot_wider()]

Learn more in ‘vignette("pivot")‘.

Convenience function to paste together multiple columns into one.

Given either a regular expression or a vector of character positions, ‘separate()‘ turns a single char-
acter column into multiple columns.

Arguments

names_sep If ‘NULL‘, the default, the names will be left as is. In ‘nest()‘, inner names
will come from the former outer names; in ‘unnest()‘, the new outer names will
come from the inner names.
If a string, the inner and outer names will be used together. In ‘nest()‘, the names
of the new outer columns will be formed by pasting together the outer and the
inner column names, separated by ‘names_sep‘. In ‘unnest()‘, the new inner
names will have the outer names (+ ‘names_sep‘) automatically stripped. This
makes ‘names_sep‘ roughly symmetric between nesting and unnesting.

keep_empty See tidyr::unnest
ptype See tidyr::unnest
.drop See tidyr::unnest
.id tidyr::unnest
.preserve See tidyr::unnest
.data A tbl. (See tidyr)
.names_sep See ?tidyr::nest
into Names of new variables to create as character vector. Use ‘NA‘ to omit the

variable in the output.
regex a regular expression used to extract the desired values. There should be one

group (defined by ‘()‘) for each element of ‘into‘.
convert If ‘TRUE‘, will run [type.convert()] with ‘as.is=TRUE‘ on new columns. This

is useful if the component columns are integer, numeric or logical.
NB: this will cause string ‘"NA"‘s to be converted to ‘NA‘s.

cols <[‘tidy-select‘][tidyr_tidy_select]> Columns to pivot into longer format.
names_to A string specifying the name of the column to create from the data stored in the

column names of ‘data‘.
Can be a character vector, creating multiple columns, if ‘names_sep‘ or ‘names_pattern‘
is provided. In this case, there are two special values you can take advantage of:
* ‘NA‘ will discard that component of the name. * ‘.value‘ indicates that com-
ponent of the name defines the name of the column containing the cell values,
overriding ‘values_to‘.

unnest 13

names_prefix A regular expression used to remove matching text from the start of each vari-
able name.

names_sep, names_pattern

If ‘names_to‘ contains multiple values, these arguments control how the column
name is broken up.
‘names_sep‘ takes the same specification as [separate()], and can either be a
numeric vector (specifying positions to break on), or a single string (specifying
a regular expression to split on).
‘names_pattern‘ takes the same specification as [extract()], a regular expression
containing matching groups (‘()‘).
If these arguments do not give you enough control, use ‘pivot_longer_spec()‘ to
create a spec object and process manually as needed.

names_repair What happens if the output has invalid column names? The default, ‘"check_unique"‘
is to error if the columns are duplicated. Use ‘"minimal"‘ to allow duplicates in
the output, or ‘"unique"‘ to de-duplicated by adding numeric suffixes. See [vc-
trs::vec_as_names()] for more options.

values_to A string specifying the name of the column to create from the data stored in cell
values. If ‘names_to‘ is a character containing the special ‘.value‘ sentinel, this
value will be ignored, and the name of the value column will be derived from
part of the existing column names.

values_drop_na If ‘TRUE‘, will drop rows that contain only ‘NA‘s in the ‘value_to‘ column.
This effectively converts explicit missing values to implicit missing values, and
should generally be used only when missing values in ‘data‘ were created by its
structure.

names_transform, values_transform

A list of column name-function pairs. Use these arguments if you need to change
the type of specific columns. For example, ‘names_transform=list(week=as.integer)‘
would convert a character week variable to an integer.

names_ptypes, values_ptypes

A list of column name-prototype pairs. A prototype (or ptype for short) is a zero-
length vector (like ‘integer()‘ or ‘numeric()‘) that defines the type, class, and
attributes of a vector. Use these arguments to confirm that the created columns
are the types that you expect.
If not specified, the type of the columns generated from ‘names_to‘ will be
character, and the type of the variables generated from ‘values_to‘ will be the
common type of the input columns used to generate them.

data A data frame.

col The name of the new column, as a string or symbol.
This argument is passed by expression and supports [quasiquotation][rlang::quasiquotation]
(you can unquote strings and symbols). The name is captured from the expres-
sion with [rlang::ensym()] (note that this kind of interface where symbols do not
represent actual objects is now discouraged in the tidyverse; we support it here
for backward compatibility).

... <[‘tidy-select‘][tidyr_tidy_select]> Columns to unite

na.rm If ‘TRUE‘, missing values will be remove prior to uniting each value.

remove If ‘TRUE‘, remove input columns from output data frame.

sep Separator between columns.
If character, ‘sep‘ is interpreted as a regular expression. The default value is a
regular expression that matches any sequence of non-alphanumeric values.

14 unnest

If numeric, ‘sep‘ is interpreted as character positions to split at. Positive values
start at 1 at the far-left of the string; negative value start at -1 at the far-right of
the string. The length of ‘sep‘ should be one less than ‘into‘.

extra If ‘sep‘ is a character vector, this controls what happens when there are too many
pieces. There are three valid options:
* "warn" (the default): emit a warning and drop extra values. * "drop": drop
any extra values without a warning. * "merge": only splits at most ‘length(into)‘
times

fill If ‘sep‘ is a character vector, this controls what happens when there are not
enough pieces. There are three valid options:
* "warn" (the default): emit a warning and fill from the right * "right": fill with
missing values on the right * "left": fill with missing values on the left

Details

‘pivot_longer()‘ is an updated approach to [gather()], designed to be both simpler to use and to
handle more use cases. We recommend you use ‘pivot_longer()‘ for new code; ‘gather()‘ isn’t
going away but is no longer under active development.

Value

A tidySummarizedExperiment objector a tibble depending on input

A tidySummarizedExperiment objector a tibble depending on input

A tidySummarizedExperiment objector a tibble depending on input

A tidySummarizedExperiment objector a tibble depending on input

A tidySummarizedExperiment objector a tibble depending on input

A tidySummarizedExperiment objector a tibble depending on input

See Also

[separate()] to split up by a separator.

[separate()], the complement.

[unite()], the complement, [extract()] which uses regular expression capturing groups.

Examples

tidySummarizedExperiment::pasilla %>%
tidy() %>%
nest(data=-condition) %>%
unnest(data)

tidySummarizedExperiment::pasilla %>%
tidy() %>%
nest(data=-condition)

tidySummarizedExperiment::pasilla %>%
tidy() %>%
extract(type, into="sequencing", regex="([a-z]*)_end", convert=TRUE)

unnest 15

See vignette("pivot") for examples and explanation

library(dplyr)
tidySummarizedExperiment::pasilla %>%

tidy() %>%
pivot_longer(c(condition, type), names_to="name", values_to="value")

tidySummarizedExperiment::pasilla %>%
tidy() %>%
unite("group", c(condition, type))

un <- tidySummarizedExperiment::pasilla %>%
tidy() %>%
unite("group", c(condition, type))

un %>% separate(col=group, into=c("condition", "type"))

Index

∗ datasets
pasilla, 7

as_tibble, 2

bind, 3

count, 4

extract (unnest), 12

formatting, 5

ggplot, 6

nest (unnest), 12

pasilla, 7
pivot_longer (unnest), 12
plot_ly, 8

separate (unnest), 12

tidy, 11

unite (unnest), 12
unnest, 12

16

	as_tibble
	bind
	count
	formatting
	ggplot
	pasilla
	plot_ly
	tidy
	unnest
	Index

