
Package ‘megadepth’
March 30, 2021

Title megadepth: BigWig and BAM related utilities

Version 1.0.3

Date 2020-12-17

Description This package provides an R interface to Megadepth by Christopher
Wilks available at https://github.com/ChristopherWilks/megadepth. It is
particularly useful for computing the coverage of a set of genomic regions
across bigWig or BAM files. With this package, you can build base-pair
coverage matrices for regions or annotations of your choice from BigWig
files. Megadepth was used to create the raw files provided by
https://bioconductor.org/packages/recount3.

License Artistic-2.0

URL https://github.com/LieberInstitute/megadepth

BugReports https://support.bioconductor.org/t/megadepth

biocViews Software, Coverage, DataImport, Transcriptomics, RNASeq,
Preprocessing

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.1

Suggests covr, knitr, BiocStyle, sessioninfo, rmarkdown, rtracklayer,
derfinder, GenomeInfoDb, tools, RefManageR, testthat

SystemRequirements megadepth
(<https://github.com/ChristopherWilks/megadepth>)

VignetteBuilder knitr

Imports xfun, utils, fs, GenomicRanges, readr, cmdfun

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/megadepth

git_branch RELEASE_3_12

git_last_commit 4cef55c

git_last_commit_date 2021-02-02

Date/Publication 2021-03-29

Author Leonardo Collado-Torres [aut] (<https://orcid.org/0000-0003-2140-308X>),
David Zhang [aut, cre] (<https://orcid.org/0000-0003-2382-8460>)

Maintainer David Zhang <david.zhang.12@ucl.ac.uk>

1

https://github.com/LieberInstitute/megadepth
https://support.bioconductor.org/t/megadepth

2 bam_to_bigwig

R topics documented:
bam_to_bigwig . 2
bam_to_junctions . 3
get_coverage . 4
install_megadepth . 6
megadepth_cmd . 7
read_coverage . 8
read_junction_table . 9

Index 11

bam_to_bigwig Convert a BAM file to a BigWig

Description

Given an input BAM file, convert this to the BigWig format which can then be used in get_coverage().

Usage

bam_to_bigwig(
bam_file,
prefix = file.path(tempdir(), basename(bam_file)),
min_unique_qual = FALSE,
double_count = FALSE,
overwrite = FALSE

)

Arguments

bam_file A character(1) with the path to the input BAM file.

prefix A character(1) specifying the output file prefix. This function creates a Big-
Wig file called {prefix}.all.bw. By default, the prefix is the BAM file name and
the file is created in the tempdir() and will be deleted after you close your R
session.

min_unique_qual

A integer(1) specifying a mapping quality threshold and only bases above
this will be used to generate the BigWig. If set to FALSE this argument is not
used by Megadepth. Otherwise it will generate files {prefix}.unique.bw and
{prefix}.unique.tsv.

double_count A logical(1) determining whether to count the overlapping ends of paired
ends reads twice.

overwrite A logical(1) specifying whether to overwrite the output file(s), if they exist
already.

Details

Note that this functionality is currently not supported on Windows by Megadepth.

bam_to_junctions 3

Value

A character() with the path to the output files(s).

Examples

Install the latest version if necessary
install_megadepth(force = TRUE)

Find the example BAM file
example_bam <- system.file("tests", "test.bam",

package = "megadepth", mustWork = TRUE
)

Create the BigWig file
Currently Megadepth does not support this on Windows
if (!xfun::is_windows()) {

example_bw <- bam_to_bigwig(example_bam, overwrite = TRUE)

Path to the output file(s) generated by bam_to_bigwig()
example_bw

Use the all.bw file in get_coverage(), first find an annotation file
annotation_file <- system.file("tests", "testbw2.bed",

package = "megadepth", mustWork = TRUE
)

Compute the coverage
bw_cov <- get_coverage(

example_bw["all.bw"],
op = "mean",
annotation = annotation_file

)
bw_cov

}

bam_to_junctions Extract junctions from a BAM file

Description

Given a BAM file, extract junction information including co-ordinates, strand, anchor length for
each junction read. For details on the format of the output TSV file, check https://github.com/
ChristopherWilks/megadepth#junctions.

Usage

bam_to_junctions(
bam_file,
prefix = file.path(tempdir(), basename(bam_file)),
all_junctions = TRUE,
junctions = FALSE,
long_reads = FALSE,

https://github.com/ChristopherWilks/megadepth#junctions
https://github.com/ChristopherWilks/megadepth#junctions

4 get_coverage

overwrite = FALSE
)

Arguments

bam_file A character(1) with the path to the input BAM file.
prefix A character(1) specifying the output file prefix. This function creates a file

called prefix.jxs.tsv. By default, the prefix is the BAM file name and the file
is created in the tempdir() and will be deleted after you close your R session.

all_junctions A logical(1) indicating whether to obtain all junctions.
junctions A logical(1) indicating whether to obtain co-occurring jx coordinates.
long_reads A logical(1) indicating whether to increase the buffer size to accommodate

for long-read RNA-sequencing.
overwrite A logical(1) specifying whether to overwrite the output file(s), if they exist

already.

Value

A character(1) with the path to the output junction tsv file.

Examples

Install if necessary
install_megadepth()

Find the example BAM file
example_bam <- system.file("tests", "test.bam",

package = "megadepth", mustWork = TRUE
)

Run bam_to_junctions()
example_jxs <- bam_to_junctions(example_bam, overwrite = TRUE)

Path to the output file generated by bam_to_junctions()
example_jxs

get_coverage Compute coverage summarizations across a set of regions

Description

Given an input set of annotation regions, compute coverage summarizations using Megadepth for a
given BigWig file.

Usage

get_coverage(
bigwig_file,
op = c("sum", "mean", "max", "min"),
annotation,
prefix = file.path(tempdir(), "bw.mean")

)

get_coverage 5

Arguments

bigwig_file A character(1) with the path to the input BigWig file.

op A character(1) specifying the summarization operation to perform.

annotation A character(1) path to a BED file with the genomic coordinates you are in-
terested in.

prefix A character(1) specifying the output file prefix. This function creates a file
called prefix.annotation.tsv that can be read again later with read_coverage().
By default the file is created in the tempdir() and will be deleted after you close
your R session.

Details

Note that the chromosome names (seqnames) in the BigWig file and the annotation file should use
the same format. Otherwise, Megadepth will return 0 counts.

Value

A GRanges-class object with the coverage summarization across the annotation ranges.

See Also

Other Coverage functions: read_coverage()

Examples

Install if necessary
install_megadepth()

Next, we locate the example BigWig and annotation files
example_bw <- system.file("tests", "test.bam.all.bw",

package = "megadepth", mustWork = TRUE
)
annotation_file <- system.file("tests", "testbw2.bed",

package = "megadepth", mustWork = TRUE
)

Compute the coverage
bw_cov <- get_coverage(example_bw, op = "mean", annotation = annotation_file)
bw_cov

If you want to cast this into a RleList object use the following code:
(it's equivalent to rtracklayer::import.bw(as = "RleList"))
although in the megadepth case the data has been summarized
GenomicRanges::coverage(bw_cov)

Checking with derfinder and rtracklayer
bed <- rtracklayer::import(annotation_file)

The file needs a name
names(example_bw) <- "example"

Read in the base-pair coverage data
if (!xfun::is_windows()) {

6 install_megadepth

regionCov <- derfinder::getRegionCoverage(
regions = bed,
files = example_bw,
verbose = FALSE

)

Summarize the base-pair coverage data.
Note that we have to round the mean to make them comparable.
testthat::expect_equivalent(

round(sapply(regionCov[c(1, 3:4, 2)], function(x) mean(x$value)), 2),
bw_cov$score,

)

If we compute the sum, there's no need to round
testthat::expect_equivalent(

sapply(regionCov[c(1, 3:4, 2)], function(x) sum(x$value)),
get_coverage(example_bw, op = "sum", annotation = annotation_file)$score,

)
}

install_megadepth Install Megadepth

Description

Download the appropriate Megadepth executable for your platform from Github and try to copy it
to a system directory so megadepth can run the megadepth command.

Usage

install_megadepth(version = "latest", force = FALSE)

Arguments

version A character()‘ specifying the Megadepth version number, e.g., 1.0.4; the spe-
cial value latest means the latest version (fetched from Github releases).

force A logical(1) specifying whether to install megadepth even if it has already
been installed.

Details

This function tries to install Megadepth to Sys.getenv('APPDATA') on Windows, ‘~/Library/Application
Support’ on macOS, and ‘~/bin/’ on other platforms (such as Linux). If these directories are not
writable, the package directory ‘Megadepth’ of megadepth will be used. If it still fails, you have
to install Megadepth by yourself and make sure it can be found via the environment variable PATH.

If you want to install Megadepth to a custom path, you can set the global option megadepth.dir
to a directory to store the Megadepth executable before you call install_megadepth(), e.g.,
options(megadepth.hugo.dir = '~/Downloads/Megadepth_1.0.4/'). This may be useful for
you to use a specific version of Megadepth for a specific project. You can set this option per project,
similar to how blogdown.hugo.dir is used for specifying the directory for Hugo in the blogdown
package.. See Section 1.4 Global options for details, or store a copy of Megadepth on a USB Flash
drive along with your project code.

https://bookdown.org/yihui/blogdown/global-options.html

megadepth_cmd 7

Value

Returns NULL. The main use is to install Megadepth.

References

This function is based on blogdown::install_hugo() which is available from https://github.com/
rstudio/blogdown/blob/master/R/install.R.

Examples

Install megadepth
install_megadepth()

megadepth_cmd Run Megadepth commands

Description

Wrapper functions to run Megadepth commands via system2('megadepth',...).

Usage

megadepth_cmd(...)

megadepth_shell(input = ".", ...)

Arguments

... Arguments to be passed to system2('megadepth',...), e.g. annotation(path)
is basically megadepth_cmd(c('--annotation',path)) (i.e. run the com-
mand megadepth --annotation path).

input A character(1) with the path to the input BAM, BigWig or text file for Megadepth.

Value

See base::system2() for the types of output you can generate.

A character() with the capture of the standard output stream generated by Megadepth.

Functions

• megadepth_cmd: Run an arbitrary Megadepth command.

• megadepth_shell: Run an arbitrary Megadepth command.

References

megadepth_cmd() is based on blogdown::hugo_cmd() which is available at https://github.com/
rstudio/blogdown/blob/master/R/hugo.R.

megadepth_shell() is based on the shell_ls() example from cmdfun which is available at https:
//snystrom.github.io/cmdfun/index.html.

https://github.com/rstudio/blogdown/blob/master/R/install.R
https://github.com/rstudio/blogdown/blob/master/R/install.R
https://github.com/rstudio/blogdown/blob/master/R/hugo.R
https://github.com/rstudio/blogdown/blob/master/R/hugo.R
https://snystrom.github.io/cmdfun/index.html
https://snystrom.github.io/cmdfun/index.html

8 read_coverage

Examples

Install if necessary
install_megadepth()

Find version
megadepth_shell() provides an interface more familiar to R users
megadepth_shell(version = TRUE)
megadepth_cmd() requires using directly the command line syntax for
Megadepth
megadepth_cmd("--version", stdout = TRUE)

Compare the help files:
megadepth_shell() captures the standard output and returns a character()
megadepth_cmd() shows the standard output on the console
megadepth_shell("--help")
megadepth_cmd("--help")

read_coverage Read a coverage TSV file created by Megadepth

Description

Read an *annotation.tsv file created by get_coverage() or manually by the user using Megadepth.

Usage

read_coverage(tsv_file, verbose = TRUE)

read_coverage_table(tsv_file)

Arguments

tsv_file A character(1) specifying the path to the tab-separated (TSV) file created
manually using megadepth_shell() or on a previous get_coverage() run.

verbose A logical(1) controlling whether to suppress messages when reading the data.

Value

A GRanges-class object with the coverage summarization across the annotation ranges.

A tibble::tible() with columns chr, start, end and score.

Functions

• read_coverage_table: Read a coverage TSV file created by Megadepth as a table

See Also

Other Coverage functions: get_coverage()

read_junction_table 9

Examples

Install if necessary
install_megadepth()

Locate example BigWig and annotation files
example_bw <- system.file("tests", "test.bam.all.bw",

package = "megadepth", mustWork = TRUE
)
annotation_file <- system.file("tests", "testbw2.bed",

package = "megadepth", mustWork = TRUE
)

Compute the coverage
bw_cov <- get_coverage(example_bw, op = "mean", annotation = annotation_file)
bw_cov

Read in the coverage file again, using read_coverage()
First, lets locate the tsv file that was generated by get_coverage()
tsv_file <- file.path(tempdir(), "bw.mean.annotation.tsv")
bw_cov_manual <- read_coverage(tsv_file)
stopifnot(identical(bw_cov, bw_cov_manual))

To get an RleList object, just like the one you would get
from using rtracklayer::import.bw(as = "RleList") directly on the
BigWig file, use:
GenomicRanges::coverage(bw_cov_manual)

The coverage data can also be read as a `tibble::tibble()`
read_coverage_table(tsv_file)

read_junction_table Read a junction TSV file created by Megadepth as a table

Description

Read an *all_jxs.tsv or *jxs.tsv file created by bam_to_junctions() or manually by the user using
Megadepth. The rows of a *jxs.tsv can have either 7 or 14 columns, which can lead to warnings
when reading in - these are safe to ignore. For details on the format of the input TSV file, check
https://github.com/ChristopherWilks/megadepth#junctions.

Usage

read_junction_table(tsv_file)

Arguments

tsv_file A character(1) specifying the path to the tab-separated (TSV) file created
manually using megadepth_shell() or on a previous bam_to_junctions()
run.

https://github.com/ChristopherWilks/megadepth#junctions

10 read_junction_table

Value

A tibble::tibble() with the junction data that follows the format specified at https://github.
com/ChristopherWilks/megadepth#junctions.

Examples

Install if necessary
install_megadepth()

Find the example BAM file
example_bam <- system.file("tests", "test.bam",

package = "megadepth", mustWork = TRUE
)

Run bam_to_junctions()
example_jxs <- bam_to_junctions(example_bam, overwrite = TRUE)

Read the junctions in as a tibble
all_jxs <- read_junction_table(example_jxs[["all_jxs.tsv"]])

all_jxs

https://github.com/ChristopherWilks/megadepth#junctions
https://github.com/ChristopherWilks/megadepth#junctions

Index

∗ Coverage functions
get_coverage, 4
read_coverage, 8

bam_to_bigwig, 2
bam_to_junctions, 3

get_coverage, 4, 8
GRanges-class, 5, 8

install_megadepth, 6

megadepth_cmd, 7
megadepth_shell (megadepth_cmd), 7

read_coverage, 5, 8
read_coverage_table (read_coverage), 8
read_junction_table, 9

system2, 7

11

	bam_to_bigwig
	bam_to_junctions
	get_coverage
	install_megadepth
	megadepth_cmd
	read_coverage
	read_junction_table
	Index

