
The clustComp package

Alvis Brazma and Aurora Torrente

October 27, 2020

1 Introduction

This document presents an overview to the clustComp package, which is a collection of tools
developed for the comparison and the visualisation of relationships between two clusterings,
either flat versus flat or flat versus hierarchical. Both situations are addressed by represent-
ing clusters as nodes in a weighted bipartite graph, where each layer corresponds to one of
the clusterings under comparison, and the edge weights are given by the number of elements
in the intersection between any two (connected) clusters.

To illustrate the use of the package, we use the publicly available dataset included in the
experiment data package, colonCA, on Bioconductor, which contains an exprSet instance
for the Alon et al. (1999) colon cancer data, including 40 tumour samples and 22 normal
samples, measured at 2000 probeset. We first install and load the experiment data package,
which requires the Biobase package:

> library(Biobase)

> library(colonCA)

> data(colonCA)

For visualisation purposes, we are going to rename some rownames of some of the dataset,
which are too long:

> rownames(colonCA)[39:42] <- paste("HSAC07", 0:3)

> rownames(colonCA)[50:53] <- paste("UMGAP", 0:3)

> rownames(colonCA)[260:263] <- paste("i", 0:3)

Next, we load the clustComp package using:

> library(clustComp)

and build the clusterings to be compared. We arbitrarily choose flat clusterings of seven and
six clusters, respectively, and two hierarchical trees built with the complete-linkage and the
Ward methods, respectively:

1

> set.seed(0)

> # seven flat clusters:

> flat1 <- paste("A", kmeans(exprs(colonCA), 7)$cluster, sep = "")

> # six flat clusters:

> flat2 <- paste("B", kmeans(exprs(colonCA), 6)$cluster, sep = "")

> # dendrograms with 2000 leaves:

> hierar <- hclust(dist(exprs(colonCA)))

> hierar2 <- hclust(dist(exprs(colonCA)), method = 'ward.D')

2 Comparison of two flat clusterings

The key algorithm for the comparison of clusterings is the barycentre algorithm, which tries
to minimise heuristically the number of edge crossings in the bipartite graph, represented by
default in a vertical layout. The size of the nodes and the width of the edges can be adjusted
by the user, with the arguments point.sz and line.wd; also a minimum distance h.min

between consecutive nodes can be set by the user to avoid overlapping.
To compare two flat clusterings, use the function flatVSflat, which combines the barycentre
algorithm with an additional heuristic consisting in swapping consecutive nodes if that leads
to a reduced number of edge crossings. The following run of the function decreases the
number of edge crossings from the initial 228422 to the final 9604:

> flatVSflat(flat1, flat2, line.wd = 5, h.min = 0.3, greedy = FALSE)

$icross

[1] 695724

$fcross

[1] 25018

$coord1

A1 A2 A3 A4 A5 A6 A7

-1.7927536 -1.3818898 0.0000000 2.0000000 1.0000000 2.9868421 -0.6654676

$coord2

B1 B2 B3 B4 B5 B6

3 2 1 0 -1 -2

2

One can easily see that this layout is not the optimal one, but it can be used to find it, by
setting an appropriate initial ordering of the nodes:

> flatVSflat(flat1, flat2, coord1=c(6,3,4,7,5,1,2),

+ coord2=c(5,1,4,6,3,2), greedy = FALSE)

The ordinates of each flat cluster are yielded by the barycentre algorithm; these can be
overridden to have evenly distributed nodes (preserving the ordering); also a horizontal
layout is allowed:

3

> flatVSflat(flat1, flat2, evenly=TRUE, horiz=TRUE, greedy = FALSE)

2.1 The greedy algorithm

The greedy algorithm constructs a one-to-one mapping between groups of clusters from each
partitioning. These new groups are named superclusters; they correspond to the p connected
components in the subgraph found by considering only the thickest edge among those which
are incident with each node. Ties are not broken at random; instead, all edges with maxi-
mum weight are taken into account for constructing the mapping.

The two sets of p superclusters are assigned new labels: ’S1’, ’S2’,...,’Sp’ for the first clus-
tering, and ’T1’, ’T2’,...,’Tp’ for the second one, as shown below:

> myMapping<-SCmapping(flat1, flat2)

4

The initial clusters that form each supercluster are also indicated in the plot, in brack-
ets. After merging them to form the superclusters, all the edges are drawn in the bi-graph
(otherwise, it would contain only parallel edges).
Additionally, the mapping between superclusters can be visualised through the function
flatVSflat by setting the argument greedy to TRUE.

> flatVSflat(flat1, flat2, line.wd = 5, h.min = 0.3, greedy = TRUE)

5

3 Comparison of flat and hierarchical clusterings

To compare a hierarchical and a flat clusterings we compute cutoffs at different heights of
the dendrogram and collapse the resulting branches to form flat clusters, that are compared
to the non-hierarchical clustering with the barycentre algorithm, and optionally, with the
greedy algorithm.

We explore the tree by depth-first search, starting at the root. Each comparison can be
sequentially plotted (the default), and then the code needs the interaction of the user to
continue, or alternatively, only the final comparison, after all split decisions have been made,
is shown. The criterium used to decide whether we should divide a given branch is that split-
ting that branch yields a better value of a certain scoring function (namely, "it", a more
stringent one, based on information theory, or "crossing", based on the layout aesthetics).
In other words, we compute a certain score for the ’parent tree’ (with the branch under study
still collapsed) and for the ’children tree’ (with the branch replaced by its descendants), and
keep the best one. Note that the number of descendants might be different from 2 if we are
using the look-ahead strategy.

The plots, either intermediate or final, display the pruned tree on the left, with branches
evenly separated, and the flat clustering on the right, with coordinates given by the barycen-
tre algorithm. Each collapsed branch is labelled with ’B’ followed by a number in brackets.
That number follows the notation of dendrograms in R: if it is negative, it is a leaf (therefore
it cannot be split as it has no children); if it is positive, it indicates the stage at which the
given branch was agglomerated when computing the tree (i.e. it has two children). The
flat clusters on the right are labelled with ’F’ followed by their original label, in brackets.
Additionally, a box with as many divisions as branches/clusters indicates the sizes of the
corresponding groups.

The following pictures illustrate the use of the function flatVShier for the comparison of
the hierarchical clustering of the colon data, and the flat clustering with 7 clusters.

• Aesthetics-based scoring function, with no look ahead : the optimal set of cutoffs yields
19 branches; the greedy algorithm computes 7 superclusters, identified in the plot by
different colours/symbols.

> comparison.flatVShier.1<-flatVShier(hierar, flat1, verbose=FALSE,

+ pausing=FALSE, score.function="crossing", greedy.colours=1:4,

+ look.ahead=0)

6

A more descriptive version of previous figure can be achieved by setting the parameter
expanded to TRUE; in that case, the full dendrogram is represented:

> comparison.flatVShier.1<-flatVShier(hierar, flat1, verbose=FALSE,

+ pausing=FALSE, score.function="crossing", greedy.colours=1:4,

+ look.ahead=0, expanded=TRUE)

7

Two coloured bars at both sides of the bi-graph show how genes are distributed across
branches and flat clusters.

• Information theoretical-based scoring function, looking one step ahead : the optimal set
of cutoffs yields 7 branches; the greedy algorithm computes 4 superclusters.

8

> comparison.flatVShier.2<-flatVShier(hierar, flat1, verbose=FALSE,

+ pausing=FALSE, h.min=0.2, score.function="it",

+ greedy.colours=1:4, look.ahead=1)

• Information theoretical-based scoring function, looking two steps ahead : the optimal
set of cutoffs yields 12 branches; the greedy algorithm computes 5 superclusters.

> comparison.flatVShier.3<-flatVShier(hierar, flat1, verbose=FALSE,

+ pausing=FALSE, h.min=0.2, score.function="it",

+ greedy.colours=1:4, look.ahead=2)

9

The intermediate steps can be visualised by setting the argument pausing equal to TRUE
(it requires the interaction of the user to show all the iterations).

Also, an expanded version of the comparison can be achieved by displaying the whole tree,
which helps visualising the size of the clusters.

> comparison.flatVShier.4<-flatVShier(hierar2, flat1, verbose=FALSE,

+ pausing=FALSE, h.min=0.2, score.function="it",

+ greedy.colours=1:4, look.ahead=2, expanded=TRUE)

10

In the expanded version, it is also possible to draw the heatmap, by providing the expression
data as an argument.

> comparison.flatVShier.5<-flatVShier(hierar2, flat1, verbose=FALSE,

+ pausing=FALSE, h.min=0.2, score.function="it",

11

+ greedy.colours=1:4, look.ahead=2, expanded=TRUE,

+ expression=exprs(colonCA))

12

