
HowTo: Querying online Data

Jeff Gentry and Robert Gentleman

October 27, 2020

1 Overview

This article demonstrates how you can make use of the tools that have been
provided for on-line querying of data resources. These tools rely on others (such
as the NLM and NCBI) providing and documenting appropriate web interfaces.
The tools described here allow you to either retrieve the data (usually in XML)
or have it rendered in a browser on the local machine. To do this you will need
the Biobase, XML, and annotate packages. The functionality in this article was
first described in (Gentleman and Gentry, 2002), although some enhancements
have been made since the writing of that article.

Assembling and using meta-data annotation is a non-trivial task. In the
Bioconductor Project we have developed tools to support two different methods
of accessing meta-data. One is based on obtaining data from a variety of sources,
of curating it and packaging it in a form that is suitable for analysing microarray
data. The second method is to make use of on-line resources such as those
provided by NLM and NCBI. The functions described in this vignette provide
infrastructure for that second type of meta-data usage.

We first describe the functions that allow users to specify queries and open
the appropriate web page on their local machine. Then, we investigate the
much richer set of tools that are provided by NLM for accessing and working
with PubMed data.

2 Using the Browser

There are currently four functions that provide functionality for accessing online
data resources. They are:

genbank Users specify GenBank identifiers and can request them to be rendered
in the browser or returned in XML.

pubmed Users specify PubMed identifiers and can request them to be rendered
in the browser or returned in XML. More details on parsing and manipu-
lating the XML are given below.

1



entrezGeneByID Users specify Entrez Gene identifiers and the appropriate links
are opened in the browser. Entrez Gene does not provide XML so there
is no download option, currently. The user can request that the URL be
rendered or returned.

entrezGeneQuery Users specify a string that will be used as the Entrez Gene
query and the species of interest (there can be several). The user can
request either that the URL be rendered or returned.

Both genbank and pubmed can return XML versions of the data. These re-
turned values can subsequently be processed using functionality provided by the
XML package (Temple Lang, 2000). Specific details and examples for PubMed
are given in Section 3.

The function entrezGeneByID takes a set of known Entrez Gene identifiers
and constructs a URL that will have these rendered. The user can either save
the URL (perhaps to send to someone else or to embed in an HTML page, see
the vignette on creating HTML output for more details).

The function entrezGeneQuery takes a character string to be used for query-
ing PubMed. For example, this function call,

entrezGeneQuery("leukemia", "Homo sapiens")

will find all Human genes that have the word leukemia associated with them in
their Entrez Gene records. Note that the R code is merely an interface to the
services provided by NLM and NCBI and users are referred to those sites for
complete descriptions of the algorithms they use for searching etc.

3 Accessing PubMed information

In this section we demonstrate how to query PubMed and how to operate on
the data that are returned. As noted above, these queries generate XML, which
must then be parsed to provide the specific data items of interest. Our example
is based on the sample.ExpressionSet data from the package Biobase. Users
should be able to easily replace these data with their own.

> library("annotate")

> data(sample.ExpressionSet)

> affys <- featureNames(sample.ExpressionSet)[490:500]

> affys

[1] "31729_at" "31730_at" "31731_at" "31732_at" "31733_at" "31734_at"

[7] "31735_at" "31736_at" "31737_at" "31738_at" "31739_at"

Here we have selected an arbitrary set of 11 genes to be interested in from
our sample data. However, sample.ExpressionSet provided us with Affymetrix
identifiers, and for the pubmed function, we need to use PubMed ID values. To
obtain these, we can use the annotation tools within annotate.

2



> library("hgu95av2.db")

> ids <- getPMID(affys,"hgu95av2")

> ids <- unlist(ids,use.names=FALSE)

> ids <- unique(ids[!is.na(as.numeric(ids))])

> length(ids)

[1] 787

> ids[1:10]

[1] "1939271" "2449431" "7729427" "7835343" "7836461" "7933101"

[7] "8121496" "8680883" "8764009" "8764062"

We use getPMID to obtain the PubMed identifiers that are related to our
probes of interest. Then we process these to leave out any that have no PMIDs
and we remove duplicates as well. The mapping to PMIDs are actually based
on Entrez Gene identifiers and since the mapping from Affymetrix IDs to Entrz
Gene is many to one there is some chance of duplication. From our initial 11
Affymetrix identifiers we see that there are 787 unique PubMed identifiers (i.e.
papers).

For each of these papers we can obtain information, such as the title, the
authors, the abstract, the Entrez Gene identifiers for genes that are referred to
in the paper and many other pieces of information. Again, for a complete listing
and description the reader is referred to the NLM website.

We next generate the query and store the results in a variable named x.
This object is of class XMLDocument and to manipulate it we will use functions
provided by the XML package.

> x <- pubmed(ids[1:10])

> a <- xmlRoot(x)

> numAbst <- length(xmlChildren(a))

> numAbst

[1] 10

Our search of the 787 PubMed IDs (from the 11 Affymetrix IDs) has resulted
in 10 abstracts from PubMed (stored in R using XML format). The annotate
package also provides a pubMedAbst class, which will take the raw XML format
from a call to pubmed and extract the interesting sections for easy review.

> arts <- vector("list", length=numAbst)

> absts <- rep(NA, numAbst)

> for (i in 1:numAbst) {

+ ## Generate the PubMedAbst object for this abstract

+ arts[[i]] <- buildPubMedAbst(a[[i]])

+ ## Retrieve the abstract text for this abstract

+ absts[i] <- abstText(arts[[i]])

+ }

> arts[[7]]

3



An object of class 'pubMedAbst':
Title: Direct interaction of human TFIID with the HIV-1

transactivator tat.

PMID: 8121496

Authors: F Kashanchi, G Piras, MF Radonovich, JF Duvall, A

Fattaey, CM Chiang, RG Roeder, JN Brady

Journal: Nature

Date: Jan 1994

In the S language we say that the pubMedAbst class has a number of different
slots. They are:

authors The vector of authors.

pmid The PubMed record number.

abstText The actual abstract (in text).

articleTitle The title of the article.

journal The journal it is published in.

pubDate The publication date.

These can all be individually extracted utilizing the provided methods, such as
abstText in the above example. As you can see, the pubMedAbst class provides
several key pieces of information: authors, abstract text, article title, journal,
and the publication date of the journal.

Once the abstracts have been assembled you can search them using any of
the standard search techniques. Suppose for example we wanted to know which
abstracts have the term cDNA in them, then the following code chunk shows how
to identify these abstracts.

> found <- grep("cDNA",absts)

> goodAbsts <- arts[found]

> length(goodAbsts)

[1] 2

So 2 of the articles relating to our genes of interest mention the term cDNA

in their abstracts.
Lastly, as a demonstration for how one can use the query toolset to cross

reference several databases, we can use the same set of PubMed IDs with another
function. In this example, the genbank function is used with the argument
type="uid". By default, the genbank function assumes that the id values passed
in are Genbank accession numbers, but we currently have PubMed ID values
that we want to use. The type="uid" argument specifies that we are using
PubMed IDs (aka NCBI UID numbers).

4



> y <- genbank(ids[1:10], type="uid")

> b <- xmlRoot(y)

At this point the object b can be manipulated in a manner similar to a from
the PubMed example.

Also, note that both pubmed and genbank have an option to display the data
directly in the browser instead of XML, by specifying disp="browser" in the
parameter listing.

4 Generating HTML output for your abstracts

Many users find it useful to have a web page created with links for all of their
abstracts, leading to the actual PubMed page online. These pages can then be
distributed to other people who have an interest in the abstracts that you have
found. There are two formats for this, the first provides for a simple HTML
page which has a link for every abstract, and the other provides for a framed
HTML page with the links on the left and the resulting PubMed page in the
main frame. For these examples, we will be using temporary files:

> fname <- tempfile()

> pmAbst2HTML(goodAbsts, filename=fname)

> fnameBase <- tempfile()

> pmAbst2HTML(goodAbsts, filename=fnameBase, frames=TRUE)

5 Session Information

The version number of R and packages loaded for generating the vignette were:

R version 4.0.3 (2020-10-10)

Platform: x86_64-apple-darwin17.0 (64-bit)

Running under: macOS Mojave 10.14.6

Matrix products: default

BLAS: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib

LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib

locale:

[1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:

[1] grid stats4 parallel stats graphics grDevices

[7] utils datasets methods base

other attached packages:

5



[1] GO.db_3.12.0 hgu95av2.db_3.2.3 org.Hs.eg.db_3.12.0

[4] Rgraphviz_2.34.0 graph_1.68.0 xtable_1.8-4

[7] annotate_1.68.0 XML_3.99-0.5 AnnotationDbi_1.52.0

[10] IRanges_2.24.0 S4Vectors_0.28.0 Biobase_2.50.0

[13] BiocGenerics_0.36.0

loaded via a namespace (and not attached):

[1] Rcpp_1.0.5 bit_4.0.4 R6_2.4.1 rlang_0.4.8

[5] blob_1.2.1 httr_1.4.2 tools_4.0.3 DBI_1.1.0

[9] bit64_4.0.5 digest_0.6.27 vctrs_0.3.4 memoise_1.1.0

[13] RSQLite_2.2.1 compiler_4.0.3 pkgconfig_2.0.3

References

R. Gentleman and J. Gentry. Querying pubmed. R News, 2(2):28–31, June
2002. URL http://CRAN.R-project.org/doc/Rnews/.

Duncan Temple Lang. Tools for parsing and generating xml within r and s-plus.
CRAN, 2000. URL http://www.omegahat.org/RSXML.

6

http://CRAN.R-project.org/doc/Rnews/
http://www.omegahat.org/RSXML


Figure 1: pmAbst2HTML without frames

Figure 2: pmAbst2HTML with frames

7


	Overview
	Using the Browser
	Accessing PubMed information
	Generating HTML output for your abstracts
	Session Information

