
Introduction to qckitfastq

August Guang and Wenyue Xing

Introduction

qckitfastq is part of the planned qckit suite of packages from the Computational Biology Core at Brown
University. The long-term goal of the qckit suite is to not only provide comprehensive quality control metrics
for common genomics sequencing workflows, but to 1) also provide quality control visualizations for multiple
samples through updated modules in multiQC (Ewels et al. 2016), and 2) provide a public quality control
database which allows benchmarking of QC metrics for an experiment against other similar experiments.
Users of qckitfastq will have the option to enter SRA metadata and create visualizations from our database
as well as submit their qc results (if submitting an SRA archive) to our database once these features have
been implemented. The purpose of this particular package is to run quality control on FASTQ files from
genome sequencing.

Why use qckitfastq?

Indeed there are many other quality control packages for FASTQ files existing already, including ShortReads
(Morgan et al. 2009) and seqTools (Kaisers 2017) for R and the popular FASTQC (Andrews 2010) Java-based
program. qckitfastq offers a few advantages compared to these 3 programs for users who need such features:

1. access to raw sequence and quality data
2. access to data frames of the quality control results in addition to plots
3. quality control analyses of the entire FASTQ file
4. fast file processing

To break it down further, seqTools and ShortReads do not offer as comprehensive set of quality control
metrics as qckitfastq and FASTQC. seqTools further provides limited access to raw data and intermediate
analysis results. ShortRead provides users with access to the raw sequencing data and intermedite analysis
results, but is inefficient on datasets exceeding 10 million reads. FASTQC meanwhile truncates any reads
longer than 75bp as well as estimates overall quality only based on the first 100,000 reads of any FASTQ file.
qckitfastq does not contain any of these limitations.

Running qckitfastq

qckitfastq provides the following metrics:

• Read length distribution
• Per base read quality
• Per read read quality
• GC content
• Nucleotide read content
• Kmer count
• Overrepresented reads
• Overrepresented kmers

1

https://compbiocore.github.io/
https://compbiocore.github.io/

• Adapter content

The simplest way to run qckitfastq is by executing run_all, a single command that will produce a report
of all of the included metrics in a user-provided directory with some default parameters. However, each
metric can also be run separately for closer examination.

Individual metrics

For each individual metric that qckitfastq provides, the user can choose to save either the data frame for
the metric, the associated plot, or both.

Our example in this vignette has 25,000 reads, each 100bp long. The majority of metrics are run on the path
to the FASTQ file. Some functions for quality control in this package are simply wrappers around seqTools
due to the fact that their functions are fast. We provide these wrappers for the sake of completeness in
quality control metrics. These wrappers require processing the FASTQ data through the seqTools::fastqq
command first:
library(qckitfastq)
infile <- system.file("extdata", "10^5_reads_test.fq.gz", package = "qckitfastq")
fseq <- seqTools::fastqq(infile)

[fastqq] File (1/1) '/tmp/RtmpwXAdlH/Rinst4db5ad04162/qckitfastq/extdata/10^5_reads_test.fq.gz' done.

Read length distribution

read_length generates a data frame of read lengths and the number of reads with that particular read length.
plot_read_length generates a distribution plot of the length of all reads. The generated plot would show the
sequence length of all the sequences throughout the file. The plot is considered an indication of good data
quality is all sequences have roughly the same sequence length with minimal deviations. The following plot
shows that all reads in the file have sequence length of 100.
read_len <- read_length(fseq)
kable(head(read_len)) %>% kable_styling()

read_length num_reads
1 0
2 0
3 0
4 0
5 0
6 0

plot_read_length(read_len)

2

25000

0

5000

10000

15000

20000

25000

0 25 50 75 100
Sequence length

N
um

be
r

of
 r

ea
ds

 w
ith

 s
eq

ue
nc

e
le

ng
th

Sequence length distribution

Per base quality

The per_base_quality function calculates quality score per base summary statistics of 10th, 25th, median,
75th and 90th quantiles across sequences. Currently it treats all quality score encodings as Phred+33. We
can use the result to create a quality score distribution per position plot using plot_per_base_quality. As
a basic heuristic, quality scores above 28 can be categorized as good (green), those from 20 to 28 can be
categorized as medium (yellow), and under 20 is bad (red).
bs <- per_base_quality(infile)
kable(head(bs)) %>% kable_styling()

position q10 q25 median q75 q90
1 32 32 32 32 32
2 32 32 32 32 32
3 32 37 37 37 37
4 37 37 37 37 37
5 37 37 37 37 37
6 37 41 41 41 41

3

plot_per_base_quality(bs)

20

25

30

35

40

0 25 50 75 100
Position

Q
ua

lit
y

S
co

re

Quality score distribution per position

Per read quality score

The per_read_quality function compute the mean quality score per read. We can then use
plot_per_read_quality to generate a histogram of this statistics. The histogram is considered an
indication of good data quality if the majority of reads have mean quality scores greater than 30. If a
significant portion of reads have quality scores less than 30, then the data most likely has issues that need to
be examined.
prq <- per_read_quality(infile)
kable(head(prq)) %>% kable_styling()

read sequence_mean
1 39.11
2 38.15
3 40.35
4 40.35
5 39.83
6 40.40

plot_per_read_quality(prq)

4

0

5000

10000

15000

25 30 35 40
Mean Quality Score

F
re

qu
en

cy
Histograms of per sequence mean quality

Per read GC content

The GC_content function computes the GC nucleotide content percentage per read, and plot_GC_content
plots the distribution of GC content. As a general rule, an indication of good data quality is when the GC
content percentage in each read is between 30 and 50% and roughly follows a normal distribution.
gc_df <- GC_content(infile)
kable(head(gc_df)) %>% kable_styling()

read mean_GC
1 43
2 37
3 39
4 40
5 42
6 38

plot_GC_content(gc_df)

5

0

1000

2000

3000

0 25 50 75 100
Mean GC content percentage

F
re

qu
en

cy
Histograms for GC content percentage

Per position nucleotide read content

read_content calculates the total numbers across reads of each nucleotide base by position. plot_read_content
plots the percentage of nucleotide content per position. We also provide an additional function
read_base_content that allows the user to get the nucleotide base content by position across reads for a
specific nucleotide (options are a,c,t,g,n). As a general rule, the plot would be considered an indication of
good data quality when the percentage of each nucleotide sequence content is about evenly distributed
across all bases. However, there are some types of analyses for which this will not be the case. For example,
RNA-Seq will have an uneven sequence content distribution in the first 10 bases, and RRBS will have almost
no cytosines and very high thymine content because the library prep protocol converts most C to T (Meissner
et al. 2005). Knowledge of the library prep protocol is thus important for evaluating quality in terms of
nucleotide sequence content.
scA <- read_base_content(fseq, content = "A")
kable(head(scA)) %>% kable_styling()

x
4351
5341
5995
6262
6624
6689

6

rc <- read_content(fseq)
kable(head(rc)) %>% kable_styling()

position a c t g n
1 4351 7760 5807 6745 337
2 5341 4297 9661 5689 12
3 5995 3626 9264 6115 0
4 6262 4066 9324 5348 0
5 6624 4078 8019 6279 0
6 6689 3833 8001 6477 0

plot_read_content(rc)

0

10

20

30

40

0 25 50 75 100
Position

P
er

ce
nt

ag
e

of
 c

on
te

nt variable

a

c

g

t

n

Per base sequence content percentage

Per position kmer count

kmer_count function produces the per position kmer count with given path to the FASTQ file and the kmer
length specified.
km <- kmer_count(infile,k=6)

[fastq_Klocs] File (1/1) '/tmp/RtmpwXAdlH/Rinst4db5ad04162/qckitfastq/extdata/10^5_reads_test.fq.gz' done.
kable(head(km)) %>% kable_styling()

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
AAAAAA 14 9 44 18 33 42 69 163 41 34 15 37 28 49 63 28 29 19 50 30 30 18 26 85 22 31 36 33 175 35 46 22 73 32 31 40 53 63 96 36 26 35 23 36 71 39 38 23 29 52 59 108 55 83 29 27 18 51 83 113 166 50 85 53 39 64 52 56 79 101 50 82 165 92 56 36 29 33 62 72 69 165 120 131 126 106 42 43 64 109 171 66 79 120 129
AAAAAC 8 4 1 24 2 9 21 14 142 5 7 1 12 13 18 32 15 4 6 3 11 12 2 14 47 4 10 6 9 23 22 32 11 52 10 5 1 29 48 81 23 8 15 7 13 17 23 21 9 13 22 34 67 40 27 13 12 8 16 28 28 134 28 65 37 20 16 11 28 58 80 18 43 84 44 18 14 9 8 19 20 7 12 17 21 54 55 18 17 27 17 55 34 11 19
AAAAAG 2 2 0 3 2 3 2 2 1 1 1 0 1 2 1 1 0 1 4 1 1 0 1 2 1 4 1 3 0 1 1 1 1 1 2 1 0 2 1 3 1 0 1 3 2 0 1 1 5 1 1 0 4 1 0 1 1 2 0 0 1 0 1 1 2 0 2 0 0 3 1 2 0 3 2 4 3 1 2 2 2 3 3 3 21 5 0 2 0 2 5 9 4 2 3
AAAAAT 8 28 29 34 44 34 33 65 28 58 43 36 36 21 39 41 75 74 42 99 28 33 26 29 49 38 25 38 34 170 24 43 18 32 31 48 76 42 23 21 24 31 30 25 45 69 21 40 31 35 39 78 79 29 92 27 41 20 46 79 95 55 29 42 14 60 63 84 54 44 26 36 48 85 67 69 46 36 33 68 110 101 211 92 120 87 85 61 49 51 144 124 67 86 145
AAAACA 0 2 5 4 4 3 4 6 3 3 3 6 8 3 4 6 5 1 11 8 5 3 15 13 16 8 6 6 3 13 5 10 8 6 30 3 4 9 13 14 9 8 16 10 13 4 10 34 10 9 14 13 15 14 16 97 17 27 9 21 18 34 33 35 45 9 29 39 14 37 43 5 5 14 16 9 7 15 13 19 6 13 35 12 12 10 13 14 16 14 101 21 23 9 17
AAAACC 2 8 4 1 25 2 9 21 15 143 4 8 1 11 13 15 32 14 4 6 3 11 10 2 16 47 5 9 5 8 21 20 27 12 53 11 6 1 26 50 77 22 8 13 7 12 19 22 20 9 11 21 29 65 35 27 13 10 7 16 25 27 132 26 63 37 19 14 9 27 58 80 17 44 84 44 18 11 8 6 19 18 8 11 16 22 53 57 16 20 26 17 55 32 11

Overrepresented reads

overrep_reads produces a data frame consisting of overrepresented reads and their counts in decreasing order
of counts. Here overrepresented is defined as unique reads that have counts larger than 0.1% of the total reads
in the file. plot_overrep_reads produces a density plot of the counts and marks the top 5 overrepresented
reads in red.
overrep_reads<-overrep_reads(infile)
knitr::kable(head(overrep_reads,n = 5)) %>% kable_styling()

read_sequence count
TGGGTGTGAGGAGTTCAGTTATATGTTTGGGATTTTTTAGGTAGTGGGTGTTGAGCTTGAACGCTTTCTTAATTGGTGGCTGCTTTTAGGCCTACTATGG 123
CCCCAAACCCACTCCACCTTACTACCAGACAACCTTAGCCAAACCATTTACCCAAATAAAGTATAGGCGATAGAAATTGAAACCTGGCGCAATAGATATA 122
CACTAGGAAAAAACCTTGTAGAGAGAGTAAAAAATTTAACACCCATAGTAGGCCTAAAAGCAGCCACCAATTAAGAAAGCGTTCAAGCTCAACACCCACT 120
CTAAACCTAGCCCCAAACCCACTCCACCTTACTACCAGACAACCTTAGCCAAACCATTTACCCAAATAAAGTATAGGCGATAGAAATTGAAACCTGGCGC 117
TAAACCTAGCCCCAAACCCACTCCACCTTACTACCAGACAACCTTAGCCAAACCATTTACCCAAATAAAGTATAGGCGATAGAAATTGAAACCTGGCGCA 116

plot_overrep_reads(overrep_reads)

8

0.00

0.01

0.02

0.03

0.04

0.05

25 50 75 100 125
Sequence Count

D
en

si
ty

Overrepresented Sequence Histogram with top 5 rug

Overrepresented kmers

overrep_kmer generates a data frame of overrepresented kmers with its maximum log2(observed/expected)
ratio and the position of the maximum obs/exp ratio in descending order. Only those kmers with a ratio
greater than 2 are returned in the data frame. We can also create a boxplot of the obs/exp ratio thatn
includes plotting the top 2 (or n) kmer outliers.
overkm <-overrep_kmer(infile,7)

[fastqq] File (1/1) '/tmp/RtmpwXAdlH/Rinst4db5ad04162/qckitfastq/extdata/10^5_reads_test.fq.gz' done.
[fastq_Klocs] File (1/1) '/tmp/RtmpwXAdlH/Rinst4db5ad04162/qckitfastq/extdata/10^5_reads_test.fq.gz' done.
knitr::kable(head(overkm,n=10)) %>% kable_styling()

row position obsexp_ratio kmer
15353 6 11.109619 TGTTTGA
16316 2 10.580131 TTTGTGT
8175 1 10.552171 CTTTGTG
12031 5 9.685497 GTGTTTG
12259 7 9.638035 GTTTGAG
15296 4 9.565904 TGTGTTT
8066 56 9.445229 CTTGAAC
16112 3 9.444925 TTGTGTT
12108 13 9.314122 GTTCAGT
2553 54 9.278962 AGCTTGA

9

plot_overrep_kmer(overkm)

TGTTTGA
TTTGTGT

3

6

9

0 25 50 75
Position

lo
g2

(O
bs

er
ve

d/
E

xp
ec

te
d)

 K
m

er
 r

at
io

Boxplot of log2(Observed/Expected) Kmer ratio

Adapter content

adapter_content computes the counts of a pre-determined set of adapter sequences and reports back any
exceeding 0.1% of the total reads, sorted from most abundant to least abundant. plot_adapter_content
creates a bar plot of the top 5 most common adapters. In this instance we will use a different file to compute
adapter content, as the first example has no adapter contamination. This function is only available for
macOS/Linux due to a dependency on RSeqAn/C++14, which is not supported on current Bioconductor
Windows build machines.
if(.Platform$OS.type != "windows") {

infile2 <- system.file("extdata", "test.fq.gz", package = "qckitfastq")
ac_sorted <- adapter_content(infile2)
kable(head(ac_sorted)) %>% kable_styling()
plot_adapter_content(ac_sorted)

}

10

0

1

2

3

4

5

Ill
um

in
a

M
ul

tip
le

xi
ng

 A
da

pt
er

 2

Ill
um

in
a

M
ul

tip
le

xi
ng

 R
ea

d1
 S

eq
ue

nc
in

g
P

rim
er

Ill
um

in
a

P
ai

re
d

E
nd

 A
da

pt
er

 1

Ill
um

in
a

P
ai

re
d

E
nd

 S
eq

ue
nc

in
g

P
rim

er
 1

Ill
um

in
a

S
in

gl
e

E
nd

 S
eq

ue
nc

in
g

P
rim

er

Adapters

C
ou

nt
s

Top 5 adapters and their counts in reads file

References

Andrews, Simon. 2010. “FastQC: A quality control tool for high throughput sequence data.” https:
//doi.org/citeulike-article-id:11583827.

Ewels, Philip, Måns Magnusson, Sverker Lundin, and Max Käller. 2016. “MultiQC: Summarize analysis results
for multiple tools and samples in a single report.” Bioinformatics. https://doi.org/10.1093/bioinformatics/
btw354.

Kaisers, Wolfgang. 2017. SeqTools: Analysis of Nucleotide, Sequence and Quality Content on Fastq Files.

Meissner, Alexander, Andreas Gnirke, George W. Bell, Bernard Ramsahoye, Eric S. Lander, and Rudolf
Jaenisch. 2005. “Reduced representation bisulfite sequencing for comparative high-resolution DNAmethylation
analysis.” Nucleic Acids Research. https://doi.org/10.1093/nar/gki901.

Morgan, Martin, Simon Anders, Michael Lawrence, Patrick Aboyoun, Hervé Pagès, and Robert Gentleman.
2009. “ShortRead: A Bioconductor Package for Input, Quality Assessment and Exploration of High-
Throughput Sequence Data.” Bioinformatics 25:2607–8. https://doi.org/10.1093/bioinformatics/btp450.

11

https://doi.org/citeulike-article-id:11583827
https://doi.org/citeulike-article-id:11583827
https://doi.org/10.1093/bioinformatics/btw354
https://doi.org/10.1093/bioinformatics/btw354
https://doi.org/10.1093/nar/gki901
https://doi.org/10.1093/bioinformatics/btp450

	Introduction
	Why use qckitfastq?

	Running qckitfastq
	Individual metrics
	Read length distribution
	Per base quality
	Per read quality score
	Per read GC content
	Per position nucleotide read content
	Per position kmer count
	Overrepresented reads
	Overrepresented kmers
	Adapter content

	References

