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> library(FunChIP)

1 Introduction

The FunChIP package provides a set of methods for the GRanges class of the package
GenomicRanges to cluster ChIP-Seq peaks according to their shapes, starting from a BAM file
containing the aligned reads and a GRanges object with the corresponding enriched regions.
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1If in the BAM file multi-
ple length are present,
r is estimated as the
average length.

2 Input and Preprocessing

ChIP-Seq enriched regions are provided by the user in a GRanges object GR. The user must
provide the BAM file containing the reads aligned on the positive and negative strands of the
DNA. From the BAM file we can compute, for each region of the GRanges (let N be the total
number of regions), the base-level coverage separately for positive and negative reads. These
two count vectors are used to estimate the distance dpn between positive and negative reads
and then the total length of the fragments of the ChIP-Seq experiment d. In particular, we
assume that the positive and negative counts measure the same signal, shifted by dpn, as
they are computed from the two ends of the sequencing fragments. The global length of the
fragment is the sum between the length of the reads of the BAM file, r1, and the distance
between the positive and negative coverage dpn

d = dpn + r.

The function compute_fragments_length computes, from the GRanges object and the BAM

file, the estimated length of the fragments. Given a range for dpn: [dmin; dmax], the optimum
distance dpn is

dpn = argminδ∈[dmin:dmax]

N∑
n=1

D(fn+, f
δ
n−),

where fn+ is the positive coverage function of the n-th region, and fδn− is the negative
coverage of the n th region, shifted by δ. The distance D is the square of the L2 distance
between the coverages, normalized by the width of the region. The definition of the L2

distance is detailed in Section 4.
> # load the GRanges object associated

> # to the ChIP-Seq experiment on the

> # transcription factor c-Myc in murine cells

>

> data(GR100)

> # name of the .bam file (the

> # .bam.bai index file must also be present)

>

> bamf <- system.file("extdata", "test.bam",

+ package="FunChIP", mustWork=TRUE)

> # compute d

>

> d <- compute_fragments_length(GR, bamf, min.d = 0, max.d = 300)

[1] "estimated distance positive - negative read 148"

[1] "estimated read length 51"

> d

[1] 199

>

In Figure 1 the distance function is shown varying the parameter δ, and the minimum value
dpn is computed.
Once we have correctly identified the fragment length we can compute the final coverage
function to obtain the shape of the peaks. The pileup_peak method for the GRanges class
uses the BAM file to compute the base-level coverage on these regions, once the reads are
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Figure 1: Identification of d
optimal value of dpn is presented. It is the minimum of the global distance function.

extended up to their final length d. pileup_peak adds to the GRanges a counts metadata
column, containing for each region a vector with length equal to the width of the region
storing the coverage function.
> # associate to each peak

> # of the GRanges object the correspondent

> # coverage function

>

> peaks <- pileup_peak(GR, bamf, d = d)

> peaks

GRanges object with 100 ranges and 1 metadata column:

seqnames ranges strand | counts

<Rle> <IRanges> <Rle> | <list>

[1] chr18 3337524-3338025 * | 7,8,8,...

[2] chr18 4369126-4369352 * | 7,9,9,...

[3] chr18 4375448-4375883 * | 8,8,8,...

[4] chr18 4715744-4716162 * | 5,5,5,...

[5] chr18 4716374-4716597 * | 15,15,15,...

... ... ... ... . ...

[96] chr18 35112325-35112593 * | 12,12,12,...

[97] chr18 35113538-35114826 * | 9,8,8,...

[98] chr18 35118063-35118304 * | 10,10,10,...

[99] chr18 35182164-35182425 * | 8,8,8,...

[100] chr18 35205390-35205649 * | 14,14,14,...

-------

seqinfo: 20 sequences from an unspecified genome; no seqlengths

>

Additional information can be found in the help page of the pileup_peak method.
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3 Smoothing

The counts metadata is approximated by a combination of splines to guarantee the smooth-
ness and regularity needed for further analysis, as described in the following Sections.
The preprocessing steps carried out in the smooth_peak method are the following:

• Removal of the background and extension. In ChIP-Seq experiments, peaks may have
an additive noisy background, and the removal of this background is mandatory to
compare different peaks. The background is estimated as a constant value "raising"
the peak and equal to the minimum value the coverage assumes. Consequently, once
the background has been removed, each peak has zero as minimum value, thus allowing
the peak to be indefinitely extended with zeros, if necessary. In Section 4, how this
choice affects the algorithm will be discussed.

• Smoothing. In order to be regular enough to computed derivatives, a peak has to be
transformed in a suitable functional object, as described in Section 4. The smoothing
of the count vector c is performed through the projection of c on a cubic B-spline basis
Φ = {φ1, . . . φK} with a penalization on the second derivative [1]. The result is a spline
approximation of the data, which is continuous on the whole domain, together with
its first order derivatives. Moreover, the penalization on the second derivative allows
to control the global regularity of the function avoiding over-fitting and a consequent
noisy spline definition. The spline approximation s =

∑K
k=1 θkφk of the count vector

c = {cj} is defined minimizing

S(λ) =

n∑
j=1

[cj − s(xj)]2 + λ

∫
[s′′(x)]

2
dx,

with xj being the relative genomic coordinate the counts. The multiplying coefficient
λ quantifies the penalization on the second derivative and is chosen through the Gen-
eralized Cross Validation criteria. For each peak i the GCVi index is computed with a
leave-one-out cross validation

GCVi =

(
n

n− df(λ)

)(
SSEi

n− df(λ)

)
and then it is summed on the whole data set to obtain the global GCV . The number
of degrees of freedom df(λ) is automatically computed from the definition of the basis
Φ.
The error SSEi can be computed either on the data (SSE0

i ) or on the derivatives
(SSE1

i ), to control the regularity of the function or the regularity of the derivatives,
respectively:

SSE0
i =

√√√√ n∑
j=1

(cj − s(xj))2 or SSE1
i =

√√√√n−1∑
j=1

(∇cj − s′(xj))2,

with∇cj being the finite-difference approximation of the derivative of the counts vector
c for the data i: c = c(i), while s′(xi) is the evaluation of the first derivative s′ = s′(i)
on the genomic coordinates. For further details on the spline definition see the spline

function of the fda package.
• Scaling of the peaks. This optional preprocessing step makes all the curves having the

same width and area. In particular all the abscissa grid are scaled to become equal to
the smallest grid throughout the data, while y−values are scaled to make areas of all
the curves equal to 1.
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The smooth_peak method approximates the counts metadata by removing the background,
computing the spline and potentially defining the scaled approximation. Focusing on the
spline approximation, smooth_peak automatically chooses the optimal λ parameter according
to the GCV criteria; the user can decide whether to consider the data or the derivatives to
compute the SSE.
> # the method smooth_peak

> # removes the background and defines the spline

> # approximation from the previously computed peaks

> # with lambda estimated from the

> # GCV on derivatives. The method spans a non-uniform

> # grid for lambda from 10^-4 to 10^12.

> # ( the grid is uniform for log10(lambda) )

>

> peaks.smooth <- smooth_peak(peaks, lambda = 10^(-4:12),

+ subsample.data = 50, GCV.derivatives = TRUE,

+ plot.GCV = TRUE, rescale = FALSE )

[1] "iteration on lambda: 1"

[1] "iteration on lambda: 2"

[1] "iteration on lambda: 3"

[1] "iteration on lambda: 4"

[1] "iteration on lambda: 5"

[1] "iteration on lambda: 6"

[1] "iteration on lambda: 7"

[1] "iteration on lambda: 8"

[1] "iteration on lambda: 9"

[1] "iteration on lambda: 10"

[1] "iteration on lambda: 11"

[1] "iteration on lambda: 12"

[1] "iteration on lambda: 13"

[1] "iteration on lambda: 14"

[1] "iteration on lambda: 15"

[1] "iteration on lambda: 16"

[1] "iteration on lambda: 17"

>
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Figure 2: Generalized Cross Validation index
GCV computed on data (left), and on the derivatives (right), as a function of λ.
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In Figure 2, the plot of the GCV for both data and derivatives is shown. From this Figure
we see that the optimum value of λ, which minimizes the GCV for the derivatives, is also
associated to a small value of the GCV for the data thus supporting the automatic choice.
> # the automatic choice is lambda = 10^6

>

> peaks.smooth <- smooth_peak(peaks, lambda = 10^6,

+ plot.GCV = FALSE)

> head(peaks.smooth)

GRanges object with 6 ranges and 6 metadata columns:

seqnames ranges strand | counts spline

<Rle> <IRanges> <Rle> | <list> <list>

[1] chr18 3337524-3338025 * | 7,8,8,... 0.107577,0.115944,0.124571,...

[2] chr18 4369126-4369352 * | 7,9,9,... 0.106531,0.125616,0.145441,...

[3] chr18 4375448-4375883 * | 8,8,8,... 0.103757,0.127649,0.152502,...

[4] chr18 4715744-4716162 * | 5,5,5,... 0.108025,0.121182,0.134814,...

[5] chr18 4716374-4716597 * | 15,15,15,... 0.109476,0.126596,0.144360,...

[6] chr18 4921270-4921506 * | 8,8,8,... 0.104672,0.120304,0.136527,...

spline_der width_spline start_spline end_spline

<list> <integer> <numeric> <numeric>

[1] 0.00823719,0.00849664,0.00875919,... 593 3337483 3338075

[2] 0.0187191,0.0194523,0.0201997,... 335 4369075 4369409

[3] 0.0234173,0.0243690,0.0253395,... 508 4375417 4375924

[4] 0.0129218,0.0133933,0.0138718,... 523 4715698 4716220

[5] 0.0168009,0.0174399,0.0180908,... 315 4716303 4716617

[6] 0.0153411,0.0159259,0.0165217,... 332 4921234 4921565

-------

seqinfo: 20 sequences from an unspecified genome; no seqlengths

> # mantaining this choice of lambda smooth_peak

> # can also define the scaled approximation

> # of the spline

>

> peaks.smooth.scaled <- smooth_peak(peaks, lambda = 10^6,

+ plot.GCV = FALSE, rescale = TRUE)

> head(peaks.smooth.scaled)

GRanges object with 6 ranges and 8 metadata columns:

seqnames ranges strand | counts spline

<Rle> <IRanges> <Rle> | <list> <list>

[1] chr18 3337524-3338025 * | 7,8,8,... 0.107577,0.115944,0.124571,...

[2] chr18 4369126-4369352 * | 7,9,9,... 0.106531,0.125616,0.145441,...

[3] chr18 4375448-4375883 * | 8,8,8,... 0.103757,0.127649,0.152502,...

[4] chr18 4715744-4716162 * | 5,5,5,... 0.108025,0.121182,0.134814,...

[5] chr18 4716374-4716597 * | 15,15,15,... 0.109476,0.126596,0.144360,...

[6] chr18 4921270-4921506 * | 8,8,8,... 0.104672,0.120304,0.136527,...

spline_der width_spline start_spline end_spline

<list> <integer> <numeric> <numeric>

[1] 0.00823719,0.00849664,0.00875919,... 593 3337483 3338075

[2] 0.0187191,0.0194523,0.0201997,... 335 4369075 4369409

[3] 0.0234173,0.0243690,0.0253395,... 508 4375417 4375924

[4] 0.0129218,0.0133933,0.0138718,... 523 4715698 4716220
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[5] 0.0168009,0.0174399,0.0180908,... 315 4716303 4716617

[6] 0.0153411,0.0159259,0.0165217,... 332 4921234 4921565

spline_rescaled

<list>

[1] 0.0026361:0.00304401:0.00347677:...,...

[2] 0.00122834:0.00147221:0.00172654:...,...

[3] 0.000864564:0.00120333:0.00156496:...,...

[4] 0.000788311:0.000956446:0.00113505:...,...

[5] 0.00235269:0.0027355:0.0031333:...,...

[6] 0.00139356:0.00162209:0.00186007:...,...

spline_der_rescaled

<list>

[1] 0.000395668:0.000420244:0.000445387:...,...

[2] 0.000238709:0.000249059:0.000259633:...,...

[3] 0.000327572:0.000350081:0.000373281:...,...

[4] 0.000162986:0.000173327:0.000183923:...,...

[5] 0.000375411:0.000390254:0.000405393:...,...

[6] 0.000223859:0.00023322:0.000242774:...,...

-------

seqinfo: 20 sequences from an unspecified genome; no seqlengths

>

Now the GRanges object contains, besides counts, 5 new metadata columns with the spline
approximation evaluated on the base-level grid, its derivatives, the width of the spline and
the new starting and ending points (see Figure 10). For a more detailed description of the
metadata columns, see the help page of the smooth_peak method.
With the introduction of the smoothing, counts at the edges of the peak are connected with
regularity to 0, and therefore new values different from zeros may be introduced. In order to
maintain regularity, the grid is extended up to the new boundaries.
Adding to smooth_peak the option rescale = TRUE the method, beside the 5 metadata
columns previously introduced, returns 2 more metadata columns with the scaled approx-
imation of the spline and its derivatives.
Once the spline approximation is defined, the summit of the smoothed peak (or even of the
scaled peak), i.e. of its spline approximation, can be detected. The summit will be used to
initialize the peak alignment procedure, described in Section 4, and it can either be a user-
defined parameter, stored in a vector of the same length of the GR, or automatically computed
as the maximum height of the spline. The summit is stored in the new metadata column
summit_spline. If the rescale option is set to TRUE the summit of the scaled approximation
is also returned in the metadata colum summit_spline_rescaled.
> # peaks.summit identifies the maximum point

> # of the smoothed peaks

>

> peaks.summit <- summit_peak(peaks.smooth)

> head(peaks.summit)

GRanges object with 6 ranges and 7 metadata columns:

seqnames ranges strand | counts spline

<Rle> <IRanges> <Rle> | <list> <list>

[1] chr18 3337524-3338025 * | 7,8,8,... 0.107577,0.115944,0.124571,...
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[2] chr18 4369126-4369352 * | 7,9,9,... 0.106531,0.125616,0.145441,...

[3] chr18 4375448-4375883 * | 8,8,8,... 0.103757,0.127649,0.152502,...

[4] chr18 4715744-4716162 * | 5,5,5,... 0.108025,0.121182,0.134814,...

[5] chr18 4716374-4716597 * | 15,15,15,... 0.109476,0.126596,0.144360,...

[6] chr18 4921270-4921506 * | 8,8,8,... 0.104672,0.120304,0.136527,...

spline_der width_spline start_spline end_spline

<list> <integer> <numeric> <numeric>

[1] 0.00823719,0.00849664,0.00875919,... 593 3337483 3338075

[2] 0.0187191,0.0194523,0.0201997,... 335 4369075 4369409

[3] 0.0234173,0.0243690,0.0253395,... 508 4375417 4375924

[4] 0.0129218,0.0133933,0.0138718,... 523 4715698 4716220

[5] 0.0168009,0.0174399,0.0180908,... 315 4716303 4716617

[6] 0.0153411,0.0159259,0.0165217,... 332 4921234 4921565

summit_spline

<integer>

[1] 444

[2] 186

[3] 174

[4] 310

[5] 121

[6] 169

-------

seqinfo: 20 sequences from an unspecified genome; no seqlengths

> # peaks.summit can identify also the maximum

> # point of the scaled approximation

>

> peaks.summit.scaled <- summit_peak(peaks.smooth.scaled,

+ rescale = TRUE)

> head(peaks.summit.scaled)

GRanges object with 6 ranges and 10 metadata columns:

seqnames ranges strand | counts spline

<Rle> <IRanges> <Rle> | <list> <list>

[1] chr18 3337524-3338025 * | 7,8,8,... 0.107577,0.115944,0.124571,...

[2] chr18 4369126-4369352 * | 7,9,9,... 0.106531,0.125616,0.145441,...

[3] chr18 4375448-4375883 * | 8,8,8,... 0.103757,0.127649,0.152502,...

[4] chr18 4715744-4716162 * | 5,5,5,... 0.108025,0.121182,0.134814,...

[5] chr18 4716374-4716597 * | 15,15,15,... 0.109476,0.126596,0.144360,...

[6] chr18 4921270-4921506 * | 8,8,8,... 0.104672,0.120304,0.136527,...

spline_der width_spline start_spline end_spline

<list> <integer> <numeric> <numeric>

[1] 0.00823719,0.00849664,0.00875919,... 593 3337483 3338075

[2] 0.0187191,0.0194523,0.0201997,... 335 4369075 4369409

[3] 0.0234173,0.0243690,0.0253395,... 508 4375417 4375924

[4] 0.0129218,0.0133933,0.0138718,... 523 4715698 4716220

[5] 0.0168009,0.0174399,0.0180908,... 315 4716303 4716617

[6] 0.0153411,0.0159259,0.0165217,... 332 4921234 4921565

spline_rescaled

<list>

[1] 0.0026361:0.00304401:0.00347677:...,...

[2] 0.00122834:0.00147221:0.00172654:...,...

8

http://bioconductor.org/packages/FunChIP


FunChIP: A Functional Data Analysis approach to cluster ChIP-Seq peaks according to their shapes

[3] 0.000864564:0.00120333:0.00156496:...,...

[4] 0.000788311:0.000956446:0.00113505:...,...

[5] 0.00235269:0.0027355:0.0031333:...,...

[6] 0.00139356:0.00162209:0.00186007:...,...

spline_der_rescaled summit_spline_rescaled summit_spline

<list> <integer> <integer>

[1] 0.000395668:0.000420244:0.000445387:...,... 227 444

[2] 0.000238709:0.000249059:0.000259633:...,... 168 186

[3] 0.000327572:0.000350081:0.000373281:...,... 104 174

[4] 0.000162986:0.000173327:0.000183923:...,... 180 310

[5] 0.000375411:0.000390254:0.000405393:...,... 117 121

[6] 0.000223859:0.00023322:0.000242774:...,... 155 169

-------

seqinfo: 20 sequences from an unspecified genome; no seqlengths

4 The k-mean alignment algorithm and the cluster_peak

method

The k-mean alignment algorithm is an efficient method to classify functional data allowing for
general transformation of abscissae [2]; this general method is implemented in the package
fdakma and various applications to real dataset are introduced in [3], [4], [5].
In particular, given

• a set of curves s1, . . . , sn,
• the number of clusters K,
• a distance function d(si, sj) between two curves si and sj , as for example the integral

of the difference si − sj ,
• a family of warping functions W to transform the abscissae of the curves and therefore

align the peaks. Generally, W is the set of shifts or dilations or affine transformations
(shift + dilation),

the algorithm, presented in Algorithm 1, is an iterative procedure to split the curves into K
clusters. The introduction of the warping function h ∈ W allows each curve to be shifted,
dilated, or both, to define the minimum distance between curves. The new curve s ◦ h has
the same values of s, but its abscissa grid is modified. For example, in Figure 3 two peaks
are presented: in the left panel, they are not aligned, while the right panel shows the effects
of alignment; the transformation of the abscissae (shift transformation) makes the two peaks
more similar, and the distance d is not anymore affected by artificial phase distance. The
code generating Figure 3 calls cluster_peak and plot_peak, which are described in Section
4.2 and Section 5.
> # representation of two peaks

>

> par (mfrow = c(1,2))

> plot_peak(peaks.summit, index = c(6,7), col=c('red',2), cex.main = 2, cex.lab = 2, cex.axis = 1.5, lwd = 2)

> aligned.peaks <- cluster_peak(peaks.summit[c(6,7)], parallel = FALSE ,

+ n.clust = 1, seeds = 1, shift.peak = TRUE,

9
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Figure 3: Alignment procedure
Representation of two smoothed peaks. In the left panel they are not aligned, while in the right panel they
are aligned with an integer shift.

+ weight = 1, alpha = 1, p = 2, t.max = 2,

+ plot.graph.k = FALSE, verbose = FALSE)

> aligned.peaks

GRanges object with 2 ranges and 10 metadata columns:

seqnames ranges strand | counts spline

<Rle> <IRanges> <Rle> | <list> <list>

[1] chr18 4921270-4921506 * | 8,8,8,... 0.104672,0.120304,0.136527,...

[2] chr18 5078473-5078803 * | 11,11,11,... 0.100641,0.110866,0.121442,...

spline_der width_spline start_spline end_spline

<list> <integer> <numeric> <numeric>

[1] 0.0153411,0.0159259,0.0165217,... 332 4921234 4921565

[2] 0.0100516,0.0103994,0.0107528,... 420 5078418 5078837

summit_spline cluster_shift coef_shift dist_shift

<integer> <list> <list> <list>

[1] 169 1 -15 0.447149

[2] 283 1 16 0

-------

seqinfo: 20 sequences from an unspecified genome; no seqlengths

> # shift coefficients

> aligned.peaks$coef_shift

[[1]]

[1] -15

[[2]]

[1] 16

> plot_peak(aligned.peaks, col = 'forestgreen',

+ shift = TRUE, k = 1, cluster.peak = TRUE,

+ line.plot = 'spline',

+ cex.main = 2, cex.lab = 2, cex.axis = 1.5, lwd = 2)

For the specific case of ChIP-Seq data, the admitted warping functions for the k-mean align-
ment algorithm (in the cluster_peak method), are integer shifts:

W = {h : h(t) = t+ q with q ∈ Z} . 1

10
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In other words, with this choice, peaks can be shifted by integer values in the alignment
procedure of the algorithm.

Algorithm 1: k-mean alignment algorithm
Given a set of functions s1, . . . , sn and a number K of clusters
Template: random choice (if not provided) of the initial centers of the clusters c1 . . . , ck
while decrease of the distance higher than a fixed threshold do

foreach i ∈ 1 : n do
Alignment: si is aligned to each template ck: the optimal warping function h?i,k
in W is detected

h?i,k = argminh∈W d(ck, xi ◦ h)

with the corresponding distance d?i,k = minh∈W d(ck, xi ◦ h)
Assignment: si is assigned to the best cluster

k?i = argmink∈1:K d?i,k

end
foreach k ∈ 1 : K do

Template: identification of the new template of the cluster ck
Normalization: the average warping function of the curves belonging to k is set
to be the identity transformation

h(s) = s

end
end

In the cluster_peak method the distance between two curves s1 and s2 is defined as

d(s1, s2) = (1− α) d0(s1, s2) + αw d1(s1, s2) =

= (1− α) ‖se1 − se2‖p + αw ‖(se1)′ − (se2)′‖p, 2

where
• ‖f‖p is the p norm of f . In particular, for p = 0, ‖ · ‖p is the L∞ norm

‖f‖0 = ‖f‖L∞ = max
x∈U
|f(x)|,

with U being the domain of f .
For p = 1, ‖ · ‖p is the L1 norm

‖f‖1 = ‖f‖L1 =

∫
U

|f(x)|dx.

And for p = 2, ‖ · ‖p is the L2 norm

‖f‖2 = ‖f‖L2 =

∫
U

(f(x))
2
dx.

• se1 and se2 are the functions s1 and s2 extended with zeros where not defined, after their
backgrounds have been removed (see Section 2). The distance function is computed
on the union of the domains of s1 and s2 (U); s1 and s2 need to be extended to cover
the whole U .
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2weight can be also set
to NULL and it will be
automatically computed
as specified in Section
4.1. To save computa-
tional time, it is gen-
erally computed on a
random sub-sample
of data, whose size
is set by the subsam

ple.weight parameter.

• α ∈ [0, 1] is a coefficient tuning the contributions of the norm of the data and the
norm of the derivatives. If α = 0, the distance is computed on the data, while if α = 1
it is based on the derivatives. Intermediate values balance these two contributions:
increasing the relevance given to the derivatives emphasizes the shapes of the peaks,
while data are more related to the height.

• w is a weight coefficient, essential to make the norm of the data and of the derivatives
comparable. It can be user defined or computed inside the cluster_peak method. A
suggestion for computing the weight w is given in Section 4.1.

4.1 Definition of weight in the distance function

If not provided, the method cluster_peak defines w as

w = median

(
d0(si, sj)

d1(si, sj)

)
where d0(i, j) = ‖sei − sej‖p and d1(i, j) = ‖(se1)′ − (se2)′‖p. These matrices can be auto-
matically computed with the distance_peak function.
> # compute the weight from the first 10 peaks

>

> dist_matrix <- distance_peak(peaks.summit)

> # dist matrix contains the two matrices d_0(i,j)

> # and d_1(i,j), used to compute w

> names(dist_matrix)

[1] "dist_matrix_d0" "dist_matrix_d1"

> ratio_norm <- dist_matrix$dist_matrix_d0 / dist_matrix$dist_matrix_d1

> ratio_norm_upper_tri <- ratio_norm[upper.tri(ratio_norm)]

> summary(ratio_norm_upper_tri)

Min. 1st Qu. Median Mean 3rd Qu. Max.

28.21 91.36 117.79 124.07 148.17 330.95

> # suggestion: use the median as weight

> w <- median(ratio_norm_upper_tri)

> w

[1] 117.7907

>

4.2 The cluster_peak method

The two main characteristics of the k-mean alignment algorithm used in FunChIP are the
distance function d (defined in Equation (2)), used to compute the distance between curves,
and the set of warping functions W (defined in Equation (1)) considered for the alignment.
The cluster_peak method applies the k-mean alignment algorithm with these specifications
to the set of peaks stored in the GRanges object. In particular, the parameters weight2,
alpha and p define the distance used in the algorithm, while t.max sets the maximum shift
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3sum over all the peaks
of the distance of each
peak from the corre-
sponding template.

of each peak in each iteration (in this particular case, q of Equation (1) does not vary in the
whole Z but q ∈ {−t.max · |U |, . . . ,+t.max · |U |}, with |U | being the maximum width of the
spline approximation of the peaks.
Given a GRanges GR containing the metadata columns computed from the smooth_peak

method, cluster_peak applies the k-mean alignment algorithm for all the values of k between
1 and n.clust (parameter of the function).
The algorithm can be run in parallel, setting to TRUE the parallel argument of the method
and providing the number of cores num.cores. With these settings, the different applications
of the algorithm, corresponding to different numbers of clusters, are executed in parallel.
As detailed in the help, the cluster_peak method has 2 outputs:

• The GRanges object, updated with new metadata columns associated to the classi-
fication. In particular, in the general case of classification with and without align-
ment, columns with information on the clustering of the peaks (cluster_shift and
cluster_NOshift), the corresponding shifts (coef_shift) and the distances from the
template of the clusters (dist_shift and dist_NOshift) are added.

• The graph of the global distance within clusters3 as a function of the number of clusters
(if plot.graph.k = TRUE). This plot can be used to identify the optimal number of
clusters of the partition of the data set and the effect of the alignment procedure. In
particular, if shift = NULL, the algorithm is run both with and without alignment and
two trend lines are plotted: the black line corresponds to the global distance without
the shift, and the red line corresponds to the distance obtained with alignment. If
shift is set to TRUE or FALSE, just one type of algorithm is run and the correspondent
curve is plotted. For each trend line, this graph allows the identification of the optimal
value of the number of clusters: for this value, the distance significantly decreases with
respect to the lower values of k, and negligibly increases with respect to higher values
of k (elbow in the line). The gap between the red and the black line, instead, shows
the decrease of the distance when the shift is introduced.

It is relevant to point out that the algorithm can be run both on the original data and on the
scaled peaks, depending on the focus of the analysis. The logic paramter rescale allows the
user to choose.
> # classification of the smooth peaks in different

> # numbers of clusters, from 1 ( no distinction, only shift )

> # to 4.

>

> # here the analysis is run on the spline approximation

> # without scaling

> peaks.cluster <- cluster_peak(peaks.summit, parallel = FALSE , seeds=1:4,

+ n.clust = 1:4, shift = NULL,

+ weight = 1, alpha = 1, p = 2, t.max = 2,

+ plot.graph.k = TRUE, verbose = FALSE)

> head(peaks.cluster)

GRanges object with 6 ranges and 12 metadata columns:

seqnames ranges strand | counts spline

<Rle> <IRanges> <Rle> | <list> <list>

[1] chr18 3337524-3338025 * | 7,8,8,... 0.107577,0.115944,0.124571,...

[2] chr18 4369126-4369352 * | 7,9,9,... 0.106531,0.125616,0.145441,...

[3] chr18 4375448-4375883 * | 8,8,8,... 0.103757,0.127649,0.152502,...
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[4] chr18 4715744-4716162 * | 5,5,5,... 0.108025,0.121182,0.134814,...

[5] chr18 4716374-4716597 * | 15,15,15,... 0.109476,0.126596,0.144360,...

[6] chr18 4921270-4921506 * | 8,8,8,... 0.104672,0.120304,0.136527,...

spline_der width_spline start_spline end_spline

<list> <integer> <numeric> <numeric>

[1] 0.00823719,0.00849664,0.00875919,... 593 3337483 3338075

[2] 0.0187191,0.0194523,0.0201997,... 335 4369075 4369409

[3] 0.0234173,0.0243690,0.0253395,... 508 4375417 4375924

[4] 0.0129218,0.0133933,0.0138718,... 523 4715698 4716220

[5] 0.0168009,0.0174399,0.0180908,... 315 4716303 4716617

[6] 0.0153411,0.0159259,0.0165217,... 332 4921234 4921565

summit_spline cluster_NOshift dist_NOshift cluster_shift

<integer> <list> <list> <list>

[1] 444 1,1,1,... 0.624908,0.225284,0.225284,... 1,1,1,...

[2] 186 1,2,2,... 0.436710,0.517292,0.432370,... 1,2,2,...

[3] 174 1,2,2,... 0.378181,0.485136,0.382850,... 1,2,2,...

[4] 310 1,2,2,... 0.539505,0.554752,0.578859,... 1,2,2,...

[5] 121 1,1,1,... 0.534987,0.217738,0.217738,... 1,1,1,...

[6] 169 1,1,2,... 0.293730,0.414829,0.292960,... 1,1,2,...

coef_shift dist_shift

<list> <list>

[1] 6,18,23,... 0.611799,0.217936,0.217936,...

[2] 16,21,22,... 0.296362,0.492958,0.252045,...

[3] -11,-3,-5,... 0.371425,0.382139,0.372516,...

[4] -13,-6,-10,... 0.531585,0.556766,0.556058,...

[5] -14,9,14,... 0.528634,0.217563,0.217563,...

[6] 1,14,6,... 0.273368,0.413050,0.273738,...

-------

seqinfo: 20 sequences from an unspecified genome; no seqlengths

>

> # here the analysis is run on the spline approximation

> # with scaling

> peaks.cluster.scaled <- cluster_peak(peaks.summit.scaled, parallel = FALSE , seeds=1:4,

+ n.clust = 1:4, shift = NULL,

+ weight = 1, alpha = 1, p = 2, t.max = 2,

+ plot.graph.k = TRUE, verbose = FALSE,

+ rescale = TRUE)

> head(peaks.cluster.scaled)

GRanges object with 6 ranges and 15 metadata columns:

seqnames ranges strand | counts spline

<Rle> <IRanges> <Rle> | <list> <list>

[1] chr18 3337524-3338025 * | 7,8,8,... 0.107577,0.115944,0.124571,...

[2] chr18 4369126-4369352 * | 7,9,9,... 0.106531,0.125616,0.145441,...

[3] chr18 4375448-4375883 * | 8,8,8,... 0.103757,0.127649,0.152502,...

[4] chr18 4715744-4716162 * | 5,5,5,... 0.108025,0.121182,0.134814,...

[5] chr18 4716374-4716597 * | 15,15,15,... 0.109476,0.126596,0.144360,...

[6] chr18 4921270-4921506 * | 8,8,8,... 0.104672,0.120304,0.136527,...

spline_der width_spline start_spline end_spline

<list> <integer> <numeric> <numeric>
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[1] 0.00823719,0.00849664,0.00875919,... 593 3337483 3338075

[2] 0.0187191,0.0194523,0.0201997,... 335 4369075 4369409

[3] 0.0234173,0.0243690,0.0253395,... 508 4375417 4375924

[4] 0.0129218,0.0133933,0.0138718,... 523 4715698 4716220

[5] 0.0168009,0.0174399,0.0180908,... 315 4716303 4716617

[6] 0.0153411,0.0159259,0.0165217,... 332 4921234 4921565

spline_rescaled

<list>

[1] 0.0026361:0.00304401:0.00347677:...,...

[2] 0.00122834:0.00147221:0.00172654:...,...

[3] 0.000864564:0.00120333:0.00156496:...,...

[4] 0.000788311:0.000956446:0.00113505:...,...

[5] 0.00235269:0.0027355:0.0031333:...,...

[6] 0.00139356:0.00162209:0.00186007:...,...

spline_der_rescaled summit_spline_rescaled summit_spline

<list> <integer> <integer>

[1] 0.000395668:0.000420244:0.000445387:...,... 227 444

[2] 0.000238709:0.000249059:0.000259633:...,... 168 186

[3] 0.000327572:0.000350081:0.000373281:...,... 104 174

[4] 0.000162986:0.000173327:0.000183923:...,... 180 310

[5] 0.000375411:0.000390254:0.000405393:...,... 117 121

[6] 0.000223859:0.00023322:0.000242774:...,... 155 169

cluster_NOshift dist_NOshift cluster_shift coef_shift

<list> <list> <list> <list>

[1] 1,1,1,... 0.01354655,0.00634872,0.00634872,... 1,1,1,... 1,36,41,...

[2] 1,2,2,... 0.00314305,0.00377609,0.00260030,... 1,2,2,... 7,8,10,...

[3] 1,2,3,... 0.00668285,0.00627910,0.00460132,... 1,2,3,... -17,-13,-4,...

[4] 1,2,2,... 0.00461631,0.00470065,0.00449050,... 1,2,2,... -6,-2,-1,...

[5] 1,2,3,... 0.00446076,0.00382455,0.00269385,... 1,2,3,... -13,-11,2,...

[6] 1,2,2,... 0.00130264,0.00127949,0.00132011,... 1,2,2,... -3,-3,-2,...

dist_shift

<list>

[1] 0.01360197,0.00529869,0.00529869,...

[2] 0.00288555,0.00288555,0.00196126,...

[3] 0.00556534,0.00561814,0.00411762,...

[4] 0.00469498,0.00474231,0.00488327,...

[5] 0.00330416,0.00331770,0.00579343,...

[6] 0.00121593,0.00123025,0.00000000,...

-------

seqinfo: 20 sequences from an unspecified genome; no seqlengths

>

The particular case of k-mean alignment with k = 1 clusters can be used to highlight the
effects of the alignment of the peaks: no grouping is performed, just the shifts are computed.
Therefore, the decrease of the global distance is solely due to a change of the abscissae of
the functions, as Figure 3 shows. Moreover, focusing for exemple on the first panel of Figure
??, we can deduce that, for this case

• the alignment can effectively decrease the distance, for exemple for k = 6, the gap
between red and black line is significant;
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Figure 4: Global distance within clusters. Global distance of the peaks form the corresponding tem-
plate, as a function of the number of clusters k
In the left panel the graph for the original spline approximation, while in the right panel restuls are relative
to the scaled approximation.

• the alignment may change the optimal k: looking at the black line, one would have
chosen k = 4, while the red line suggests k = 3 is the best choice. With the introduction
of the shifts, data which are originally different becomes more similar and therefore one
less cluster is needed; it has to be noted that the distance obtained with k = 3 and
alignment is very similar to the one obtained with k = 4 and no alignment.

Therefore, for this case, one possible classification is the one associated to k = 3 with shift.
On the contray for the scaled peaks the value of k we can identify as crucial is k = 2 and
shift is relevant since it reduces a lot the global distance. In Section 4.3 we present two
quantitative methods to isolate the most suitable value of k: the first quantifies the elbow
rule we have presented here and the second that computes the Silhouette index to consider
the global structure of the dataset. The results for this specific number of clusters can then
be selected with the choose_k method:
> # select the results for k = 3 with alignment

> peaks.classified.short <- choose_k(peaks.cluster, k = 3,

+ shift = TRUE, cleaning = TRUE)

> head(peaks.classified.short)

GRanges object with 6 ranges and 1 metadata column:

seqnames ranges strand | cluster

<Rle> <IRanges> <Rle> | <numeric>

[1] chr18 3337524-3338025 * | 1

[2] chr18 4369126-4369352 * | 2

[3] chr18 4375448-4375883 * | 2

[4] chr18 4715744-4716162 * | 2

[5] chr18 4716374-4716597 * | 1

[6] chr18 4921270-4921506 * | 2

-------

seqinfo: 20 sequences from an unspecified genome; no seqlengths

> peaks.classified.extended <- choose_k(peaks.cluster, k = 3,

+ shift = TRUE, cleaning = FALSE)

> # and for the scaled version for k =2 and alignment

>

> peaks.classified.scaled.short <- choose_k(peaks.cluster.scaled, k = 2,
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+ shift = TRUE, cleaning = TRUE)

> head(peaks.classified.scaled.short)

GRanges object with 6 ranges and 4 metadata columns:

seqnames ranges strand | spline_rescaled

<Rle> <IRanges> <Rle> | <list>

[1] chr18 3337524-3338025 * | 0.0026361:0.00304401:0.00347677:...,...

[2] chr18 4369126-4369352 * | 0.00122834:0.00147221:0.00172654:...,...

[3] chr18 4375448-4375883 * | 0.000864564:0.00120333:0.00156496:...,...

[4] chr18 4715744-4716162 * | 0.000788311:0.000956446:0.00113505:...,...

[5] chr18 4716374-4716597 * | 0.00235269:0.0027355:0.0031333:...,...

[6] chr18 4921270-4921506 * | 0.00139356:0.00162209:0.00186007:...,...

spline_der_rescaled summit_spline_rescaled cluster

<list> <integer> <numeric>

[1] 0.000395668:0.000420244:0.000445387:...,... 227 1

[2] 0.000238709:0.000249059:0.000259633:...,... 168 2

[3] 0.000327572:0.000350081:0.000373281:...,... 104 2

[4] 0.000162986:0.000173327:0.000183923:...,... 180 2

[5] 0.000375411:0.000390254:0.000405393:...,... 117 2

[6] 0.000223859:0.00023322:0.000242774:...,... 155 2

-------

seqinfo: 20 sequences from an unspecified genome; no seqlengths

> peaks.classified.scaled.extended <- choose_k(peaks.cluster.scaled, k = 2,

+ shift = TRUE, cleaning = FALSE)

The choose_k method allows, respectively, to remove all the metadata columns computed
by FunChIP and obtain a GRanges equivalent to the initial one, with an extra the metadata
column cluster containing the classification labels (cleaning = TRUE), or a GRanges retain-
ing all the details of the prepossessing and clustering (all the previously described metadata
columns), with the extra column cluster (cleaning = FALSE).

4.3 The choice of the final classification with the bending index
and the Silhouette plot

In this section we present two analyses which could be useful to identify the most suitable
value of the number of clusters.
The first analysis quantifies the elbow rule we proposed in the previous section. The function
bending_index computes for each value of k in the range [2 : K − 1], with K the maximum
number of clusters allowed in cluster_peak, an index that quantifies the bending of the curve.
The higher this index, the more appropriate is the correspondent value of k. The index is
computed as the distance of the point P in k of the global distance function, normalized to
its maximum value, ( P = (k, D̃(k))) from the line r passing by the point in k − 1 and in
k + 1 (r = r((k − 1, D̃(k − 1)), (k + 1, D̃(k + 1))). The normalized distance function is

D̃(k) =
D(k)

maxk=1:K D(k)
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withD(k) being the global distance of the set of classified peaks, when divided into k clusters:

D(k) =

n∑
i=1

d?i,k.

In particular, d?i,k is the distance of each peak i from the center of the correspondent cluster
ck?i . Then, the index can be written as:

r(k) = dist((k, D̃(k)), r((k − 1, D̃(k − 1)), (k + 1, D̃(k + 1))))

> # here we compute the bending index for the classification

> # provided for the non scaled dataset

>

> index <- bending_index(peaks.cluster, plot.graph.k = FALSE)

> index

$index_shift

2 3

0.009578264 0.044113662

$index_NOshift

2 3

0.01664078 0.03811411

> # and then for the scaled dataset

> index_scaled <- bending_index(peaks.cluster.scaled, plot.graph.k = FALSE)

> index_scaled

$index_shift

2 3

0.04202466 0.02561751

$index_NOshift

2 3

0.065931403 0.002706642

>

The function returns the value of the bending index varying k for both the classification with
index_shift and without index_NOshift alignment, if both classifications are stored in the
object. It can also show the plot of the global distance curves of Figure ??, if plot.graph.k
= TRUE.
Moreover, we present another method to evaluate the choice the proper number of clusters,
which takes into account the global set of data. This method is based on the defintion of
the Silhouette index of [6] and, for the peak i, the index is computed as

s(i) =
a(i)− b(i)

max(a(i), b(i))
,

with a(i) being the average dissimilarity of peak i with all other data within the same cluster
and b(i) the lowest average dissimilarity of i to any other cluster, of which i is not a member.
To compute the b(i) value it is necessary to compare peaks belonging to different clusters.
In case of classification with alignment, to define the distance of peaks of different clusters
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it is necessary first to align the two clusters. To perform this global alignment in an efficient
way, we align the centers of the clusters and then use the estimated shift coefficient to align
all the peaks of the two clusters.
> sil <- silhouette_plot(peaks.cluster, p=2, weight = 1, alpha = 1,

+ rescale = FALSE, t.max = 2)

[1] "Silhouette for the non aligned peaks"

[1] "Silhouette for the aligned peaks"

> sil <- silhouette_plot(peaks.cluster.scaled, p=2, weight = 1, alpha = 1,

+ rescale = FALSE, t.max = 2)

[1] "Silhouette for the non aligned peaks"

[1] "Silhouette for the aligned peaks"
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Figure 5: Silhouette graph for the classification of unscaled peaks. In the top panel, Silhouette plots
for the classification without alignment, as function of the number of clusters; in the bottom panel,
Silhouette plots for the classification with alignment

Th plots shown in Figure ?? represent the Silhouette index for all the peaks divided in the
clusters, together with the global average Silhouette index. The average Silhouette index is
maximum when the clustering is separating the data in the most suited manner and then
this index has to be maximized to choose the best classification. In the case here presented
here, the best classification according to this criteria is the classification with alignment and
k = 2 or k = 3. Considering both Silhouette and the bending criteria, in the next section we
present the results of the classification with alignement and k = 3 clusters.
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Figure 6: Silhouette graph for the classification of scaled peaks. In the top panel, Silhouette plots
for the classification without alignment, as a function of the number of clusters; in the bottom panel,
Silhouette plots for the classification with alignment

5 Visualization of the peaks

The plot_peak method is a very flexible function for displaying ChIP-Seq peaks. In particular,
it allows to plot the raw counts obtained by the pileup_peak method, as in Figure 7. It can
also plot smoothed peaks, possibly centered around the summit, as in Figure ??, or scaled
as in Figure ?? and centerd.
> # plot of the first 10 peaks (raw data)

> par(mar=c(4.5,5,4,4))

> plot_peak(peaks, index = 1:10, line.plot = 'count',

+ cex.main = 2, cex.lab = 2, cex.axis =2)

0 100 200 300 400 500

0
5

10
15

20
25

30

Original Peaks

bp

co
un

ts

Figure 7: 10 peaks: counts
Representation of the original peaks as raw counts (no smoothing).
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> # plot of the smoothed approximation of the first 10 peaks

> par(mar=c(4.5,5,4,4))

> plot_peak(peaks.smooth, index = 1:10, line.plot = 'spline', cex.main = 2,cex.lab = 2, cex.axis =2)

>

> # plot of the smoothed approximation of the first 10 peaks,

> # centering peaks around their summits

> par(mar=c(4.5,5,4,4))

> plot_peak(peaks.summit, index = 1:10, line.plot = 'spline', cex.main = 2,cex.lab = 2, cex.axis =2)

> # plot of the smoothed approximation of the first 10 peaks;

> # the scaled functions are plotted.

> #

> par(mar=c(4.5,5,4,4))

> plot_peak(peaks.smooth.scaled, index = 1:10,

+ line.plot = 'spline', rescale = TRUE,

+ cex.main = 2,cex.lab = 2, cex.axis =2)

>

> # plot of the scaled approximation of the first 10 peaks,

> # centering peaks around their summits

> par(mar=c(4.5,5,4,4))

> plot_peak(peaks.summit.scaled, index = 1:10,

+ line.plot = 'spline', rescale = TRUE,

+ cex.main = 2,cex.lab = 2, lwd = 2,cex.axis =2)

0 100 300 500 700

0
5

10
15

20
25

peaks

bp

sm
oo

th
ed

 c
ou

nt
s

−400 −200 0 200

0
5

10
15

20
25

peaks

bp

sm
oo

th
ed

 c
ou

nt
s

Figure 8: 10 spline-smoothed peaks. In the left panel, smoothed peaks are shown, while in the right
panel the same peaks are centered around their summits

From the comparison of Figure ?? and Figure ?? it is clear how the scaling affects the shape
of splines. Now peaks are no more related to the magnitude, but just to their shapes.
Moreover, plotting both raw counts and spline is also possible: Figure 10 shows a single peak
in its raw and smoothed version. This representation is useful to check the accuracy of the
smoothing and, if needed, manually set the λ parameter of the spline approximation.
> # plot of a peak comparing its raw structure and

> # its spline-smoothed version.

> par(mar=c(4.5,5,4,4))

> plot_peak(peaks.summit, index = 3, lwd =2, line.plot = 'both', col = 'darkblue', cex.main = 2,cex.lab = 2, cex.axis =2)
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Figure 9: 10 spline-smoothed and scaled peaks. In the left panel, scaled peaks are shown, while in
the right panel the same peaks are centered around their summits
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Figure 10: Read coverage and spline approximation
Plot of the original read coverage of a peak and its smoothing (spline approximation), centered around the
summit.

> # plot of the results of the kmean alignment.

> # Peaks are plotted in three different panels

> # according to the clustering results.

>

> plot_peak(peaks.cluster, index = 1:100, line.plot = 'spline',

+ shift = TRUE, k = 3, cluster.peak = TRUE,

+ col = topo.colors(3), cex.main = 2,cex.lab = 2, cex.axis =2)

> # plot of the results of the kmean alignment.

> # Scaled peaks are plotted in three different panels

> # according to the clustering results.

>

> plot_peak(peaks.cluster.scaled, index = 1:100, line.plot = 'spline',

+ shift = TRUE, k = 2, cluster.peak = TRUE, rescale = TRUE,

+ col = heat.colors(2), cex.main = 2,cex.lab = 2, cex.axis =2)

>
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Figure 11: Peaks divided in the three clusters The same spline-smoothed peaks are plotted in grey,
and for each panel the peaks in the corresponding cluster are colored to show their different shapes
Peaks are aligned with the shift coefficients obtained by the k-mean alignment algorithm.
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Figure 12: Scaled peaks divided in the two clusters The same spline-smoothed scaled peaks are
plotted in grey, and for each panel the peaks in the corresponding cluster are colored to show their
different shapes
Peaks are aligned with the shift coefficients obtained by the k-mean alignment algorithm.

Finally, the plot_peak method allows to plot the results of the clustering via the k-mean
alignment. In Figure 11 and Figure 12, smoothed and scaled peaks are divided into the three
clusters and plotted with the optimal shift obtained with the alignment.
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