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Abstract

Single cell gene expression studies enable profiling of transcriptional regulation during complex biological pro-
cesses and within highly hetergeneous cell populations. These studies allow discovery of genes that identify certain
subtypes of cells, or that mark a particular intermediate states during a biological process. In many single cell
studies, individual cells are executing through a gene expression program in an unsynchronized manner. In effect,
each cell is a snapshot of the transcriptional program under study. The package monocle provides tools for ana-
lyzing single-cell expression experiments. Monocle introduced the strategy of ordering single cells in pseudotime,
placing them along a trajectory corresponding to a biological process such as cell differentiation. Monocle learns
this trajectory directly from the data, in either a fully unsupervised or a semi-supervised manner. It also performs
differential gene expression and clustering to identify important genes and cell states. It is designed for RNA-Seq
studies, but can be used with other assays. For more information on the algorithm at the core of monocle, or to
learn more about how to use single cell RNA-Seq to study a complex biological process, see Trapnell and Cacchiarelli
et al [1]
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1 Introduction

The monocle package provides a toolkit for analyzing single cell gene expression experiments. This vignette provides
an overview of a single cell RNA-Seq analysis workflow with Monocle. Monocle was originally developed to analyze
dynamic biological processes such as cell differentiation, although it also supports simpler experimental settings.

Monocle 2 includes new, improved algorithms for classifying and counting cells, performing differential expression
analysis between subpopulations of cells, and reconstructing cellular trajectories. Monocle 2 has also been re-engineered
to work well with very large single-cell RNA-Seq experiments containing tens of thousands of cells or even more.
Monocle can help you perform three main types of analysis:

1. Clustering, classifying, and counting cells. Single-cell RNA-Seq experiments allow you to discover new (and
possibly rare) subtypes of cells. Monocle helps you identify them.

2. Constructing single-cell trajectories. In development, disease, and throughout life, cells transition from one
state to another. Monocle helps you discover these transitions.

3. Differential expression analysis. Characterizing new cell types and states begins with comparing them to other,
better understood cells. Monocle includes a sophisticated but easy to use system for differential expression.

Before we look at Monocle’s functions for each of these common analysis tasks, let’s see how to load up single-cell
datasets in Monocle.

2 Quick Start

This quick start will outline the default functions to execute in order to to analyze your data. If you are interested in
how Monocle works and functions other than the default ones mentioned here, move onto section 3 ”Getting Started
with Monocle”.

1. Store Data in a CellDataSet Object

Three files are required in order to create a CellDataSet object:

exprs: rows are genes and columns are cells (type = matrix) phenoData: rows are cells and columns are cell
attributes (type = AnnotatedDataFrame) featureData: rows are features and columns are gene attributes (type
= AnnotatedDataFrame)
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exprs number of columns must equal phenoData number of rows exprs number of rows must equal featureData
number of rows featureData must have column named ”gene short name” for certain functions

Use the newCellDataSet function, as shown below, to create a new CellDataSet object with expression values
measured in FPKM. By default, Monocle assumes your data is log-normally distributed and uses a Tobit model
to test for differential expression in downstream steps. If you are not using TPM or FPKM data go to section
2.2 on how to model it for further steps.

pd <- new("AnnotatedDataFrame", data = HSMM_sample_sheet)

fd <- new("AnnotatedDataFrame", data = HSMM_gene_annotation)

HSMM <- newCellDataSet(as.matrix(HSMM_expr_matrix), phenoData = pd, featureData = fd)

2. Filter Low-quality Cells

The following lines are an example of how to display a table that reports how many cells express certain genes.
detectGenes() takes a CellDataSet object and minimum threshold and will return the same CellDataSet object
with all the genes that surpass the minimum threshold.

HSMM <- detectGenes(HSMM, min_expr = 0.1)

print(head(fData(HSMM)))

The expressed genes vector will hold the identifiers for genes expressed in at least 50 cells of the CellDataSet.
This will be used later when we place cells in order of biological process.

expressed_genes <- row.names(subset(fData(HSMM), num_cells_expressed >= 50))

The following lines will remove cells with very low mRNA recovery or far more recovery than that of the typical
cell.

HSMM <- HSMM[,pData(HSMM)$Total_mRNAs < 1e6]

upper_bound <- 10^(mean(log10(pData(HSMM)$Total_mRNAs)) + 2*sd(log10(pData(HSMM)$Total_mRNAs)))

lower_bound <- 10^(mean(log10(pData(HSMM)$Total_mRNAs)) - 2*sd(log10(pData(HSMM)$Total_mRNAs)))

HSMM <- HSMM[,pData(HSMM)$Total_mRNAs > lower_bound & pData(HSMM)$Total_mRNAs < upper_bound]

3. Classify Cells with CellTypeHierarchy

Monocle allows you to tag different cells based on the expression of marker genes of your choosing through
CellTypeHierarchies. First, create a new CellTypeHierarchy with the newCellTypeHierarchy() function. Then
you can add new cell types to the CellTypeHierarchy by using the addCellType() function as shown below. The
addCellType() function takes the CellTypeHierarchy you are adding the cell type to, the name of the new cell
type as a string, and a classifaction function, called classify func, that accept expression data of each cell as
input and return a boolean indicating whether or not the inputted cell is of that type.

cth <- newCellTypeHierarchy()

MYF5_id <- row.names(subset(fData(HSMM), gene_short_name == "MYF5"))

ANPEP_id <- row.names(subset(fData(HSMM), gene_short_name == "ANPEP"))

cth <- addCellType(cth, "Myoblast", classify_func = function(x) {x[MYF5_id,] >= 1})

cth <- addCellType(cth, "Fibroblast",

classify_func = function(x) {x[MYF5_id,] < 1 & x[ANPEP_id,] > 1} )

HSMM <- classifyCells(HSMM, cth, 0.1)

4. Cluster Cells with Known Marker Genes

For this quick start we will be clustering cells using predetermined markers, however Monocle is capable of
unsupervised cell clustering, but that is beyond the default settings that are displayed in this quick start.

The markerDiffTable function accepts a CellDataSet and a CellTypeHierarchy as input and classifies all the cells
in the CellDataSet into types in the CellTypeHierarchy.
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marker_diff <- markerDiffTable(HSMM[expressed_genes,],

cth,

residualModelFormulaStr = "~Media",

cores = detectCores())

We then assign all the genes with a q-value below 0.05 to a variable and calculate the ”specifity” of those genes
to cell type listed in the CellTypeHierarchy. The ”specificity”can range from 0 to 1, the closer it is to 1 the more
restricted it is to the type in question. Afterwards, selectTopMarkers will return a data table of the genes with
the highest specificity which you can then use to determine which genes you will use for clustering. It’s often
best to choose the top 10 to 20 genes that are the most specific for each cell type for clustering.

candidate_clustering_genes <- row.names(subset(marker_diff, qval < 0.05))

marker_spec <- calculateMarkerSpecificity(HSMM[candidate_clustering_genes,], cth)

head(selectTopMarkers(marker_spec, 10))

To cluster the cells we’ll choose the top ten markers for each of the cell types. An example of the procedure of
clusteringCells is shown below. The parameter of clusterCells(), residualModelFormulaStr, is a model formula
that identifies the effects to subtract from the data before clustering.

semisup_clustering_genes <- unique(selectTopMarkers(marker_spec, 20)$gene_id)

HSMM <- setOrderingFilter(HSMM, semisup_clustering_genes)

HSMM <- clusterCells(HSMM,

num_clusters = 2,

clustering_genes = semisup_clustering_genes,

residualModelFormulaStr = "~Media + num_genes_expressed")

5. Semi-Supervised Ordering with Known Marker Genes

To order cells in a semi-supervised manner, first, define genes that mark progress using a new CellTypeHierarchy,
much like we did for cell classifacation.

HSMM_myo <- HSMM[,pData(HSMM)$CellType == "Myoblast"]

CCNB2_id <- row.names(subset(fData(HSMM_myo), gene_short_name == "CCNB2"))

MYH3_id <- row.names(subset(fData(HSMM_myo), gene_short_name == "MYH3"))

Then select ordering genes that co-vary with these markers.

cth <- newCellTypeHierarchy()

cth <- addCellType(cth, "Cycling myoblast", classify_func = function(x) {x[CCNB2_id,] >= 1})

cth <- addCellType(cth, "Myotube", classify_func = function(x) {x[MYH3_id,] >= 1})

Finally, order the cells based on these genes.

marker_diff <- markerDiffTable(HSMM_myo[expressed_genes,],

cth,

cores = detectCores())

semisup_clustering_genes <- row.names(subset(marker_diff, qval < 0.01))

HSMM_myo <- setOrderingFilter(HSMM_myo, semisup_clustering_genes)

6. Reduce Dimensionality of Data

HSMM_myo <- reduceDimension(HSMM_myo, max_components = 2)

7. Order Cells in Pseudotime
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HSMM_myo <- orderCells(HSMM_myo, reverse = FALSE)

8. Plot Genes in Pseudotime The first three lines are used to filter through the data so that only pseudotime is
plotted for desired genes. The last line with the function ”plot genes in pseudotime()” will actually plot the
genes.

HSMM_filtered <- HSMM_myo[expressed_genes,]

my_genes <- row.names(subset(fData(HSMM_filtered),

gene_short_name %in% c("CDK1", "MEF2C", "MYOG")))

cds_subset <- HSMM_filtered[my_genes,]

plot_genes_in_pseudotime(cds_subset, color_by = "Hours")

9. Determine Root of Branched Trajectory Monocle cannot tell which side of the cell trajectory is the beginning,
however it contains methods for each scenario to make sure that the trajectory is lined up correctly with the
axis.

If the trajectory DOES NOT contain multiple outcomes, this is easily solved by re-ordering the cells and setting
the ”reverse” parameter in the orderCells() function to TRUE as the example below demonstrates

HSMM_myo <- orderCells(HSMM_myo, reverse = TRUE)

If the trajectory DOES contain multiple outcomes you can check to see if Monocle chose the correct branch
as the start by generating two cell trajectories, one that colors by time and the other by pseudotime. If the
branch that contains time 0, in the cell trajectory colored by time, is in the same position as the the branch that
contains pseudotime 0, in the cell trajectory colored by pseudotime, then Monocle chose the correct starting
point. Otherwise you will have to manually change it.

lung <- load_lung()

plot_cell_trajectory(lung, color_by = "Time")

plot_cell_trajectory(lung, color_by = "Pseudotime")

In order to change the root we must first call plot trajectory coloring the cells by ”State”to see what our options
are for where we can set the root. State is Monocle’s jargon for different portions of the tree. When this plot is
created it will assign each branch a number

plot_cell_trajectory(lung, color_by = "State")

When you have determined which branch to set as the root, call orderCells() again and set the ”root state”
parameter as the number associated with the branch you want as the root.

lung <- orderCells(lung, root_state = 3)

10. Basic Differential Analysis In the myoblast data, the cells in the beginning of the experiment were cultured in
”growth medium” to prevent differentiation and later switched to ”differentiation medium” to promote it. The
following example describes how to show which genes are affected by the switch.

diff_test_res <- differentialGeneTest(HSMM_myo, fullModelFormulaStr = "~Media")

sig_genes <- subset(diff_test_res, qval < 0.1)

sig_genes[, c("gene_short_name", "pval", "qval")]

Monocle also has tools that allow you to display your data with graphs to emphasize the differences revealed by
the tests above. One type of plot is the ”jitter” plot as shown in the below example.

MYOG_ID1 <- HSMM_myo[row.names(subset(fData(HSMM_myo),

gene_short_name %in% c("MYOG", "CCNB2"))),]

plot_genes_jitter(MYOG_ID1, grouping = "Media", ncol = 2)
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11. Find Genes that Distinguish Cell Type or State To test the effects of CellType on gene expression, call differ-
entialGeneTest() on the selected genes. In order to do so you must specify a model formula, a parameter of
diff test res, that indicates we are looking for genes with expression levels that depend on CellType. We do not
need to specify the reduced model because the default value, 1, is what we want here.

to_be_tested <- row.names(subset(fData(HSMM),

gene_short_name %in% c("UBC", "NCAM1", "ANPEP")))

cds_subset <- HSMM[to_be_tested,]

diff_test_res <- differentialGeneTest(cds_subset, fullModelFormulaStr = "~CellType")

diff_test_res[,c("gene_short_name", "pval", "qval")]

In order to see which genes are myoblast-specific we can again use a jitter plot to see.

plot_genes_jitter(cds_subset, grouping = "~CellType",

nrow = 1, ncol = NULL, plot_trend = TRUE)

12. Find Genes That Are a Function of Pseudotime Once Monocle is able to put cells in order of a biological process,
you can analyze the cells to find genes that change as the cells make progress.

to_be_tested <- row.names(subset(fData(HSMM),

gene_short_name %in% c("MYH3", "MEF2C", "CCNB2", "TNNT1")))

cds_subset <- HSMM[to_be_tested,]

We need to specify a model for differential analysis that indicates change across Pseudotime as the first line
below shows. The sm.ns in the model below indicates that Monocle should fit a natural spline through the
expression values.

diff_test_res <- differentialGeneTest(cds_subset, fullModelFormulaStr = "~sm.ns(Pseudotime)")

diff_test_res[,c("gene_short_name", "pval", "qval")]

We can plot the expression levels of these genes with the plot genes in pseudotime() function.

plot_genes_in_pseudotime(cds_subset, color_by = "Hours")

13. Analyzing Branches in Single-Cell Trajectories

Monocle contains several tools for analyzing the branching events of trajectories with multiple outcomes. To
analyze how genes are expressed differently in a branch compared to its root, Monocle incorporates branched
expression analysis modeling, or BEAM. BEAM takes a CellDataSet ordered by orderCells and the name of a
branch point in the trajectory and returns a table of significance scores for each gene. Genes that score significant
are branch-dependent in their expression.

lung <- load_lung()

BEAM_res <- BEAM(lung, branch_point = 1, cores = detectCores())

BEAM_res <- BEAM_res[order(BEAM_res$qval),]

BEAM_res <- BEAM_res[,c("gene_short_name", "pval", "qval")]

You can visualize changes for all genes that are significantly branch-dependent with a special type of heatmap.
This heatmap will show both lineages simultaneously. This heatmap requires you to enter a specifc branch point.
The start of the branch point is represented by the middle of the heatmap, going from the middle to the left is
one branch and going from the middle to the right is the other branch.

plot_genes_branched_heatmap(lung[row.names(subset(BEAM_res, qval < 1e-4)),],

branch_point = 1,

num_clusters = 4,

cores = detectCores(),

use_gene_short_name = T,

show_rownames = T)
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We can also plot these genes in pseudotime using plot genes branched pseudotime() which is quite similar to
plot genes in pseudotime except that shows two kinetic trends, one for each lineage, instead of one.

lung_genes <- row.names(subset(fData(lung), gene_short_name %in% c("Ccnd2", "Sftpb", "Pdpn")))

plot_genes_branched_pseudotime(lung[lung_genes,],

branch_point = 1,

color_by = "Time",

ncol = 1)

3 Getting started with Monocle

The monocle package takes a matrix of gene expression values as calculated by Cufflinks [2] or another gene expression
estimation program. Monocle can work with relative expression values (e.g. FPKM or TPM units) or absolute transcript
counts (e.g. from UMI experiments). Monocle also works“out-of-the-box”with the transcript count matrices produced
by CellRanger, the software pipeline for analyzing experiments from the 10X Genomics Chromium instrument. Monocle
also works well with data from other RNA-Seq workflows such as sci-RNA-Seq and instruments like the Biorad ddSEQ.
Although Monocle can be used with raw read counts, these are not directly proportional to expression values unless
you normalize them by length, so some Monocle functions could produce nonsense results. If you don’t have UMI
counts, We recommend you load up FPKM or TPM values instead of raw read counts.

3.1 The CellDataSet class

monocle holds single cell expression data in objects of the CellDataSet class. The class is derived from the Bioconductor
ExpressionSet class, which provides a common interface familiar to those who have analyzed microarray experiments
with Bioconductor. The class requires three input files:

1. exprs, a numeric matrix of expression values, where rows are genes, and columns are cells

2. phenoData, an AnnotatedDataFrame object, where rows are cells, and columns are cell attributes (such as cell
type, culture condition, day captured, etc.)

3. featureData, an AnnotatedDataFrame object, where rows are features (e.g. genes), and columns are gene
attributes, such as biotype, gc content, etc.

The expression value matrix must have the same number of columns as the phenoData has rows, and it must have
the same number of rows as the featureData data frame has rows. Row names of the phenoData object should
match the column names of the expression matrix. Row names of the featureData object should match row names
of the expression matrix. Also, one of the columns of the featureData must be named ”gene short name”.

You can create a new CellDataSet object as follows:

#not run

HSMM_expr_matrix <- read.table("fpkm_matrix.txt")

HSMM_sample_sheet <- read.delim("cell_sample_sheet.txt")

HSMM_gene_annotation <- read.delim("gene_annotations.txt")

Once these tables are loaded, you can create the CellDataSet object like this:

pd <- new("AnnotatedDataFrame", data = HSMM_sample_sheet)

fd <- new("AnnotatedDataFrame", data = HSMM_gene_annotation)

HSMM <- newCellDataSet(as.matrix(HSMM_expr_matrix), phenoData = pd, featureData = fd)

This will create a CellDataSet object with expression values measured in FPKM, a measure of relative expression
reported by Cufflinks. By default, Monocle assumes that your expression data is in units of transcript counts and uses
a negative binomial model to test for differential expression in downstream steps. However, if you’re using relative
expression values such as TPM or FPKM data, see below for how to tell Monocle how to model it in downstream
steps.

NOTE: if you do have UMI data, you should not normalize it yourself prior to creating your CellDataSet. You
should also not try to convert the UMI counts to relative abundances (by converting it to FPKM/TPM data). You
should not use relative2abs() as discussed below in section 3.4. Monocle will do all needed normalization steps
internally. Normalizing it yourself risks breaking some of Monocle’s key steps.
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3.2 Choosing a distribution for expression data

Monocle works well with both relative expression data and count-based measures (e.g. UMIs). In general, it works best
with transcript count data, especially UMI data. Whatever your data type, it is critical that specify the appropriate
distribution for it. FPKM/TPM values are generally log-normally distributed, while UMIs or read counts are better
modeled with the negative binomial. To work with count data, specify the negative binomial distribution as the
expressionFamily argument to newCellDataSet:

# Not run

HSMM <- newCellDataSet(count_matrix,

phenoData = pd,

featureData = fd,

expressionFamily=negbinomial.size())

There are several allowed values for expressionFamily, which expects a“family function”from the VGAM package:

Family function Data type Notes

negbinomial.size() (default) UMIs, Transcript counts
from experiments with
spike-ins or rela-

tive2abs, raw read
counts

Negative binomial distribution with fixed variance (which
is automatically calculated by Monocle). Recommended
for most users.

negbinomial() UMIs, Transcript counts
from experiments with
spike-ins or rela-

tive2abs, raw read
counts

Slightly more accurate than negbinomial.size(), but
much, much slower. Not recommended except for very
small datasets.

tobit() FPKM, TPM Tobits are truncated normal distributions. Using to-

bit() will tell Monocle to log-transform your data where
appropriate. Do not transform it yourself.

gaussianff() log-transformed
FPKM/TPMs, Ct values
from single-cell qPCR

If you want to use Monocle on data you have already
transformed to be normally distributed, you can use this
function, though some Monocle features may not work
well.

Using the wrong expressionFamily for your data will lead to bad results, errors from Monocle, or both.
However, if you have FPKM/TPM data, you can still use negative binomial if you first convert your relative expression
values to transcript counts using relative2abs. This often leads to much more accurate results than using tobit().
See 3.4 for details.

3.3 Working with large data sets

Some single-cell RNA-Seq experiments report measurements from tens of thousands of cells or more. As instrumenta-
tion improves and costs drop, experiments will become ever larger and more complex, with many conditions, controls,
and replicates. A matrix of expression data with 50,000 cells and a measurement for each of the 25,000+ genes in the
human genome can take up a lot of memory. However, because current protocols typically don’t capture all or even
most of the mRNA molecules in each cell, many of the entries of expression matrices are zero. Using sparse matrices
can help you work with huge datasets on a typical computer. We generally recommend the use of sparseMatrices for
most users, as it speeds up many computations even for more modestly sized datasets.

To work with your data in a sparse format, simply provide it to Monocle as a sparse matrix from the Matrix
package:

HSMM <- newCellDataSet(as(as.matrix(rpc_matrix), "sparseMatrix"),

phenoData = pd,

featureData = fd,

lowerDetectionLimit=0.5,

expressionFamily=negbinomial.size())

NOTE: The output from a number of RNA-Seq pipelines, including CellRanger, is already in a sparseMatrix format
(e.g. MTX). If so, you should just pass it directly to newCellDataSet without first converting it to a dense matrix
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(via (as.matrix)), because that may exceed your available memeory. If you have 10X Genomics data and are using
cellrangerRkit, you can use it to load your data and then pass that to Monocle as follows:

cellranger_pipestance_path <- "/path/to/your/pipeline/output/directory"

gbm <- load_cellranger_matrix(cellranger_pipestance_path)

gbm_cds <- newCellDataSet(exprs(gbm),

phenoData = new("AnnotatedDataFrame", pData(gbm)),

featureData = new("AnnotatedDataFrame", fData(gbm)),

lowerDetectionLimit=0.5,

expressionFamily=negbinomial.size())

Monocle’s sparse matrix support is provided by the Matrix package. Other sparse matrix packages, such as slam
or SparseM are not supported.

3.4 Converting relative expression values into mRNA counts

If you performed your single-cell RNA-Seq experiment using spike-in standards, you can convert these measurements
into mRNAs per cell (RPC). RPC values are often easier to analyze than FPKM or TPM values, because have better
statistical tools to model them. In fact, it’s possible to convert FPKM or TPM values to RPC values even if there
were no spike-in standards included in the experiment. Monocle 2 includes an algorithm called Census which performs
this conversion (Qiu et al, submitted). You can convert to RPC values before creating your CellDataSet object using
the relative2abs function, as follows:

pd <- new("AnnotatedDataFrame", data = HSMM_sample_sheet)

fd <- new("AnnotatedDataFrame", data = HSMM_gene_annotation)

# First create a CellDataSet from the relative expression levels

HSMM <- newCellDataSet(as.matrix(HSMM_expr_matrix),

phenoData = pd,

featureData = fd,

lowerDetectionLimit=0.1,

expressionFamily=tobit(Lower=0.1))

# Next, use it to estimate RNA counts

rpc_matrix <- relative2abs(HSMM, method = "num_genes")

# Now, make a new CellDataSet using the RNA counts

HSMM <- newCellDataSet(as(as.matrix(rpc_matrix), "sparseMatrix"),

phenoData = pd,

featureData = fd,

lowerDetectionLimit=0.5,

expressionFamily=negbinomial.size())

Note that since we are using RPC values, we have changed the value of lowerDetectionLimit to reflect the new
scale of expression. Importantly, we have also set the expressionFamily to negbinomial(), which tells Monocle to
use the negative binomial distribution in certain downstream statistical tests. Failing to change these two options can
create problems later on, so make sure not to forget them when using RPC values.

Finally, we’ll also call two functions that pre-calculate some information about the data. Size factors help us
normalize for differences in mRNA recovered across cells, and “dispersion” values will help us perform differential
expression analysis later.

HSMM <- estimateSizeFactors(HSMM)

HSMM <- estimateDispersions(HSMM)

## Removing 139 outliers

We’re now ready to start using the HSMM object in our analysis.
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3.5 Filtering low-quality cells

The first step in any single-cell RNA-Seq analysis is identifying poor-quality libraries from further analysis. Most
single-cell workflows will include at least some libraries made from dead cells or empty wells in a plate. It’s also crucial
to remove doublets: libraries that were made from two or more cells accidentally. These cells can disrupt downstream
steps like pseudotime ordering or clustering. This section walks through typical quality control steps that should be
performed as part of all analyses with Monocle.

It is often convenient to know how many express a particular gene, or how many genes are expressed by a given
cell. Monocle provides a simple function to compute those statistics:

HSMM <- detectGenes(HSMM, min_expr = 0.1)

print(head(fData(HSMM)))

## gene_short_name biotype num_cells_expressed

## ENSG00000000003.10 TSPAN6 protein_coding 184

## ENSG00000000005.5 TNMD protein_coding 0

## ENSG00000000419.8 DPM1 protein_coding 211

## ENSG00000000457.8 SCYL3 protein_coding 18

## ENSG00000000460.12 C1orf112 protein_coding 47

## ENSG00000000938.8 FGR protein_coding 0

## use_for_ordering

## ENSG00000000003.10 FALSE

## ENSG00000000005.5 FALSE

## ENSG00000000419.8 FALSE

## ENSG00000000457.8 FALSE

## ENSG00000000460.12 TRUE

## ENSG00000000938.8 FALSE

expressed_genes <- row.names(subset(fData(HSMM), num_cells_expressed >= 10))

The vector expressed_genes now holds the identifiers for genes expressed in at least 50 cells of the data set.
We will use this list later when we put the cells in order of biological progress. It is also sometimes convenient to
exclude genes expressed in few if any cells from the CellDataSet object so as not to waste CPU time analyzing them
for differential expression.

Let’s start trying to remove unwanted, poor quality libraries from the CellDataSet. Your single cell RNA-Seq
protocol may have given you the opportunity to image individual cells after capture but prior to lysis. This image data
allows you to score your cells, confirming that none of your libraries were made from empty wells or wells with excess
cell debris. With some protocols and instruments, you may get more than one cell captured instead just a single cell.
You should exclude libraries that you believe did not come from a single cell, if possible. Empty well or debris well
libraries can be especially problematic for Monocle. It’s also a good idea to check that each cell’s RNA-seq library was
sequenced to an acceptible degree. While there is no widely accepted minimum level for what constitutes seequencing
“deeply enough”, use your judgement: a cell sequenced with only a few thousand reads is unlikely to yield meaningful
measurements.

CellDataSet objects provide a convenient place to store per-cell scoring data: the phenoData slot. Simply include
scoring attributes as columns in the data frome you used to create your CellDataSet container. You can then easily
filter out cells that don’t pass quality control. You might also filter cells based on metrics from high throughput
sequencing quality assessment packages such as FastQC. Such tools can often identify RNA-Seq libraries made from
heavily degraded RNA, or where the library contains an abnormally large amount of ribosomal, mitochondrial, or other
RNA type that you might not be interested in.

The HSMM dataset included with this package has scoring columns built in:

print(head(pData(HSMM)))

## Library Well Hours Media Mapped.Fragments Pseudotime State

## T0_CT_A01 SCC10013_A01 A01 0 GM 1958074 23.916673 1

## T0_CT_A03 SCC10013_A03 A03 0 GM 1930722 9.022265 1

## T0_CT_A05 SCC10013_A05 A05 0 GM 1452623 7.546608 1

## T0_CT_A06 SCC10013_A06 A06 0 GM 2566325 21.463948 1

## T0_CT_A07 SCC10013_A07 A07 0 GM 2383438 11.299806 1

## T0_CT_A08 SCC10013_A08 A08 0 GM 1472238 67.436042 2

## Size_Factor num_genes_expressed
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## T0_CT_A01 1.392811 6850

## T0_CT_A03 1.311607 6947

## T0_CT_A05 1.218922 7019

## T0_CT_A06 1.013981 5560

## T0_CT_A07 1.085580 5998

## T0_CT_A08 1.099878 6055

This dataset has already been filtered using the following commands:

valid_cells <- row.names(subset(pData(HSMM), Cells.in.Well == 1 & Control == FALSE & Clump == FALSE & Debris == FALSE & Mapped.Fragments > 1000000))

HSMM <- HSMM[,valid_cells]

If you are using RPC values to measure expresion, as we are in this vignette, it’s also good to look at the distribution
of mRNA totals across the cells:

pData(HSMM)$Total_mRNAs <- Matrix::colSums(exprs(HSMM))

HSMM <- HSMM[,pData(HSMM)$Total_mRNAs < 1e6]

upper_bound <- 10^(mean(log10(pData(HSMM)$Total_mRNAs)) + 2*sd(log10(pData(HSMM)$Total_mRNAs)))

lower_bound <- 10^(mean(log10(pData(HSMM)$Total_mRNAs)) - 2*sd(log10(pData(HSMM)$Total_mRNAs)))

qplot(Total_mRNAs, data=pData(HSMM), color=Hours, geom="density") +

geom_vline(xintercept=lower_bound) +

geom_vline(xintercept=upper_bound)

HSMM <- HSMM[,pData(HSMM)$Total_mRNAs > lower_bound &

pData(HSMM)$Total_mRNAs < upper_bound]

HSMM <- detectGenes(HSMM, min_expr = 0.1)

We’ve gone ahead and removed the few cells with either very low mRNA recovery or far more mRNA that the
typical cell. Often, doublets or triplets have roughly twice the mRNA recovered as true single cells, so the latter filter is
another means of excluding all but single cells from the analysis. Such filtering is handy if your protocol doesn’t allow
directly visualization of cell after they’ve been captured. Note that these thresholds of 10,000 and 40,000 mRNAs are
specific to this dataset. You may need to adjust filter thresholds based on your experimental protocol.

Once you’ve excluded cells that do not pass your quality control filters, you should verify that the expression values
stored in your CellDataSet follow a distribution that is roughly lognormal:

# Log-transform each value in the expression matrix.

L <- log(exprs(HSMM[expressed_genes,]))

# Standardize each gene, so that they are all on the same scale,

# Then melt the data with plyr so we can plot it easily"

melted_dens_df <- melt(Matrix::t(scale(Matrix::t(L))))

# Plot the distribution of the standardized gene expression values.

qplot(value, geom="density", data=melted_dens_df) + stat_function(fun = dnorm, size=0.5, color='red') +

xlab("Standardized log(FPKM)") +

ylab("Density")
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4 Classifying and counting cells of different types

Single cell experiments are often performed on complex mixtures of multiple cell types. Dissociated tissue samples
might contain two, three, or even many different cells types. In such cases, it’s often nice to classify cells based on
type using known markers. In the myoblast experiment, the culture contains fibroblasts that came from the original
muscle biopsy used to establish the primary cell culture. Myoblasts express some key genes that fibroblasts don’t.
Selecting only the genes that express, for example, sufficiently high levels of MYF5 excludes the fibroblasts. Likewise,
fibroblasts express high levels of ANPEP (CD13), while myoblasts tend to express few if any transcripts of this gene.

4.1 Classifying cells with CellTypeHierarchy

Monocle provides a simple system for tagging cells based on the expression of marker genes of your choosing. You
simply provide a set of functions that Monocle can use to annotate each cell. For example, you could provide a function
for each of several cell types. These functions accept as input the expression data for each cell, and return TRUE to
tell Monocle that a cell meets the criteria defined by the function. So you could have one function that returns TRUE
for cells that express myoblast-specific genes, another function for fibroblast-specific genes, etc. Here’s an example of
such a set of “gating” functions:

MYF5_id <- row.names(subset(fData(HSMM), gene_short_name == "MYF5"))

ANPEP_id <- row.names(subset(fData(HSMM), gene_short_name == "ANPEP"))

cth <- newCellTypeHierarchy()

cth <- addCellType(cth, "Myoblast", classify_func=function(x) {x[MYF5_id,] >= 1})

cth <- addCellType(cth, "Fibroblast", classify_func=function(x)

{x[MYF5_id,] < 1 & x[ANPEP_id,] > 1})

The functions are organized into a small data structure called a CellTypeHierarchy, that Monocle uses to classify
the cells. You first initialize a new CellTypeHierarchy object, then register your gating functions within it. Once the
data structure is set up, you can use it to classify all the cells in the experiment:

HSMM <- classifyCells(HSMM, cth, 0.1)

The function classifyCells applies each gating function to each cell, classifies the cells according to the gating
functions, and returns the CellDataSet with a new column, CellType in its pData table. We can now count how
many cells of each type there are in the experiment.

table(pData(HSMM)$CellType)

##

## Fibroblast Myoblast Unknown

## 56 85 121

pie <- ggplot(pData(HSMM), aes(x = factor(1), fill = factor(CellType))) +

geom_bar(width = 1)

pie + coord_polar(theta = "y") +

theme(axis.title.x=element_blank(), axis.title.y=element_blank())
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Note that many cells are marked “Unknown”. This is common, largely because of the low rate of mRNA capture
in most single-cell RNA-Seq experiments. A cell might express a few MYF5 mRNAs, but we weren’t lucky enough to
capture one of them. When a cell doesn’t meet any of the criteria specified in your classification functions, it’s marked
“Unknown”. If it meets multiple functions’ criteria, it’s marked “Ambiguous”. You could just exclude such cells, but
you’d be throwing out a lot of your data. In this case, we’d lose more than half of the cells!

4.2 Unsupervised cell clustering

Monocle provides an algorithm you can use to impute the types of the “Unknown” cells. This algorithm, implemented
in the function clusterCells, groups cells together according to global expression profile. That way, if your cell
expresses lots of genes specific to myoblasts, but just happens to lack MYF5, we can still recognize it as a myoblast.
clusterCells can be used in an unsupervised manner, as well as in a “semi-supervised” mode, which allows to assist
the algorithm with some expert knowledge. Let’s look at the unsupervised mode first.

The first step is to decide which genes to use in clustering the cells. We could use all genes, but we’d be including
a lot of genes that are not expressed at a high enough level to provide a meaningful signal. Including them would just
add noise to the system. We can filter genes based on average expression level, and we can additionally select genes
that are unusually variable across cells. These genes tend to be highly informative about cell state.

disp_table <- dispersionTable(HSMM)

unsup_clustering_genes <- subset(disp_table, mean_expression >= 0.1)

HSMM <- setOrderingFilter(HSMM, unsup_clustering_genes$gene_id)

plot_ordering_genes(HSMM)
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The setOrderingFilter function marks genes that will be used for clustering in subsequent calls to clusterCells,
although we will be able to provide other lists of genes if we want. plot_ordering_genes shows how variability (dis-
persion) in a gene’s expression depends on the average expression across cells. The red line shows Monocle’s expectation
of the dispersion based on this relationship. The genes we marked for use in clustering are shown as black dots, while
the others are shown as grey dots.

Now we’re ready to try clustering the cells:

# HSMM@auxClusteringData[["tSNE"]]£variance_explained <- NULL

plot_pc_variance_explained(HSMM, return_all = F) # norm_method = 'log',
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HSMM <- reduceDimension(HSMM, max_components=2, num_dim = 6,

reduction_method = 'tSNE', verbose = T)

## Remove noise by PCA ...

## Reduce dimension by tSNE ...

HSMM <- clusterCells(HSMM,

num_clusters=2)

## Distance cutoff calculated to 1.12138

## the length of the distance: 34191

plot_cell_clusters(HSMM, 1, 2, color="CellType", markers=c("MYF5", "ANPEP"))

Monocle uses t-SNE [3] to cluster cells, using an approach that’s very similar to and inspired by Rahul Satija’s
excellent Seurat package, which itself was inspired by viSNE from Dana Pe’er’s lab.

The cells tagged as myoblasts by our gating functions are marked in green, while the fibroblasts are tagged in red.
The cells that don’t express either marker are blue. In many experiments, cells of different types are clearly separate
from one another. Unfortunately, in this experiment, the cells don’t simply cluster by type - there’s not a clear space
between the green cells and the red cells. This isn’t all that surprising, because myoblasts and contaminating interstitial
fibroblasts express many of the same genes in these culture conditions, and there are multiple culture conditions in
the experiment. That is, there are other sources of variation in the experiment that might be driving the clustering.
One source of variation in the experiment stems from the experimental design. To initiate myoblast differentiation, we
switch media from a high-mitogen growth medium (GM) to a low-mitogen differentiation medium (DM). Perhaps the
cells are clustering based on the media they’re cultured in?

plot_cell_clusters(HSMM, 1, 2, color="Media")
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Monocle allows us to subtract the effects of “uninteresting” sources of variation to reduce their impact on the
clustering. You can do this with the residualModelFormulaStr argument to clusterCells and several other
Monocle functions. This argument accepts an R model formula string specifying the effects you want to subtract prior
to clustering.

HSMM <- reduceDimension(HSMM, max_components=2, num_dim = 2, reduction_method = 'tSNE',
residualModelFormulaStr="~Media + num_genes_expressed", verbose = T) #

## Removing batch effects

## Remove noise by PCA ...

## Reduce dimension by tSNE ...

HSMM <- clusterCells(HSMM, num_clusters=2)

## Distance cutoff calculated to 0.9592123

## the length of the distance: 34191

plot_cell_clusters(HSMM, 1, 2, color="CellType")
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Now that we’ve accounted for some unwanted sources of variation, we’re ready to take another crack at classifying
the cells by unsupervised clustering:

HSMM <- clusterCells(HSMM, num_clusters=2)

## Distance cutoff calculated to 0.9592123

## the length of the distance: 34191

plot_cell_clusters(HSMM, 1, 2, color="Cluster") + facet_wrap(~CellType)

Now, most of the myoblasts are in one cluster, most of the fibroblasts are in the other, and the unknowns are spread
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across both. However, we still see some cells of both types in each cluster. This could be due to lack of specificity in
our marker genes and our CellTypeHierarchy functions, but it could also be due to suboptimal clustering. To help rule
out the latter, let’s try running clusterCells in its semi-supervised mode.

4.3 Semi-supervised cell clustering with known marker genes

First, we’ll select a different set of genes to use for clustering the cells. Before we just picked genes that were highly
expressed and highly variable. Now, we’ll pick genes that co-vary with our markers. In a sense, we’ll be building a
large list of genes to use as markers, so that even if a cell doesn’t have MYF5, it might be recognizable as a myoblast
based on other genes.

marker_diff <- markerDiffTable(HSMM[expressed_genes,],

cth,

residualModelFormulaStr="~Media + num_genes_expressed",

cores=detectCores())

The function markerDiffTable takes a CellDataSet and a CellTypeHierarchy and classifies all the cells into types
according to your provided functions. It then removes all the“Unknown”and“Ambiguous”functions before identifying
genes that are differentially expressed between the types. Again, you can provide a residual model of effects to exclude
from this test. The function then returns a data frame of test results, and you can use this to pick the genes you
want to use for clustering. Often it’s best to pick the top 10 or 20 genes that are most specific for each cell type.
This ensures that the clustering genes aren’t dominated by markers for one cell type. You generally want a balanced
panel of markers for each type if possible. Monocle provides a handy function for ranking genes by how restricted their
expression is for each type.

candidate_clustering_genes <- row.names(subset(marker_diff, qval < 0.01))

marker_spec <- calculateMarkerSpecificity(HSMM[candidate_clustering_genes,], cth)

head(selectTopMarkers(marker_spec, 3))

## gene_id CellType specificity

## 1 ENSG00000019991.11 Fibroblast 0.9894231

## 2 ENSG00000128340.10 Fibroblast 0.9999611

## 3 ENSG00000163710.3 Fibroblast 0.9718761

## 4 ENSG00000156298.8 Myoblast 0.9884418

## 5 ENSG00000233494.1 Myoblast 1.0000000

## 6 ENSG00000270123.1 Myoblast 1.0000000

The last line above shows the top three marker genes for myoblasts and fibroblasts. The ”specificity” score is
calculated using the metric described in Cabili et al [?] and can range from zero to one. The closer it is to one, the
more restricted it is to the cell type in question. You can use this feature to define new markers for known cell types,
or pick out genes you can use in purifying newly discovered cell types. This can be highly valuable for downstream
follow up experiments.

To cluster the cells, we’ll choose the top 500 markers for each of these cell types:

semisup_clustering_genes <- unique(selectTopMarkers(marker_spec, 500)$gene_id)

HSMM <- setOrderingFilter(HSMM, semisup_clustering_genes)

plot_ordering_genes(HSMM)
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Note that we’ve got smaller set of genes, and some of them are not especially highly expressed or variable across
the experiment. However, they are great for distinguishing cells that express MYF5 from those that have ANPEP.
We’ve already marked them for use in clustering, but even if we hadn’t, we could still use them by providing them
directly to clusterCells.

plot_pc_variance_explained(HSMM, return_all = F) #

HSMM <- reduceDimension(HSMM, max_components=2, num_dim = 3, norm_method = 'log', reduction_method = 'tSNE',
residualModelFormulaStr="~Media + num_genes_expressed", verbose = T)

## Removing batch effects
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## Remove noise by PCA ...

## Reduce dimension by tSNE ...

HSMM <- clusterCells(HSMM, num_clusters=2)

## Distance cutoff calculated to 1.088545

## the length of the distance: 34191

plot_cell_clusters(HSMM, 1, 2, color="CellType")

4.4 Imputing cell type

Note that we’ve reduce the number of “contaminating” fibroblasts in the myoblast cluster, and vice versa. But what
about the “Unknown” cells? If you provide clusterCells with a the CellTypeHierarcy, Monocle will use it classify
whole clusters, rather than just individual cells. Essentially, cluserCells works exactly as before, except after the clusters
are built, it counts the frequency of each cell type in each cluster. When a cluster is composed of more than a certain
percentage (in this case, 10%) of a certain type, all the cells in the cluster are set to that type. If a cluster is composed
of more than one cell type, the whole thing is marked “Ambiguous”. If there’s no cell type thats above the threshold,
the cluster is marked“Unknown”. Thus, Monocle helps you impute the type of each cell even in the presence of missing
marker data.

HSMM <- clusterCells(HSMM,

num_clusters=2,

frequency_thresh=0.1,

cell_type_hierarchy=cth)

## Distance cutoff calculated to 1.088545

## the length of the distance: 34191

plot_cell_clusters(HSMM, 1, 2, color="CellType", markers = c("MYF5", "ANPEP"))
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As you can see, the clusters are fairly pure in terms of MYF5 expression. There are some cells expressing ANPEP
in both clusters, but those in the myoblast cluster also express MYF5. This is not surprising, as ANPEP isn’t a very
specific marker of fibroblasts. Overall, we’ve successfully classified all the cells:

pie <- ggplot(pData(HSMM), aes(x = factor(1), fill = factor(CellType))) +

geom_bar(width = 1)

pie + coord_polar(theta = "y") +

theme(axis.title.x=element_blank(), axis.title.y=element_blank())
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Finally, we subset the CellDataSet object to create HSMM_myo, which includes only myoblasts. We’ll use this in the
rest of the analysis.

HSMM_myo <- HSMM[,pData(HSMM)$CellType == "Myoblast"]

HSMM_myo <- estimateDispersions(HSMM_myo)

## Removing 127 outliers

5 Constructing single cell trajectories

During development, in response to stimuli, and througout life, cells transition from one functional “state” to another.
Cells in different states express different sets of genes, producing a dynamic repetoire of proteins and metabolites
that carry out their work. As cells move between states, undergo a process of transcriptional re-configuration, with
some genes being silenced and others newly activated. These transient states are often hard to characterize because
purifying cells in between more stable endpoint states can be difficult or impossible. Single-cell RNA-Seq can enable
you to see these states without the need for purification. However, to do so, we must determine where each cell is the
range of possible states.

Monocle introduced the strategy of using RNA-Seq for single cell trajectory analysis. Rather than purifying cells
into discrete states experimentally, Monocle uses an algorithm to learn the sequence of gene expression changes each
cell must go through as part of a dynamic biological process. Once it has learned the overall “trajectory” of gene
expression changes, Monocle can place each cell at its proper position in the trajectory. You can then use Monocle’s
differential analysis toolkit to find genes regulated over the course of the trajectory, as described in section 6.3. If there
are multiple outcome for the process, Monocle will reconstruct a “branched” trajectory. These branches correspond
to cellular “decisions”, and Monocle provides powerful tools for identifying the genes affected by them and involved in
making them. You can see how to analyze branches in section 9.6. Monocle relies on a machine learning technique called
reversed graph embedding to construct single-cell trajectories. You can read more about the theoretical foundations
of Monocle’s approach in section 9, or consult the references shown below in section ??.
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5.1 “Pseudotime”: a measure of progress through a biological process

In many biological processes, cells do not progress in perfect synchrony. In single-cell expression studies of processes
such as cell differentiation, captured cells might be widely distributed in terms of progress. That is, in a population of
cells captured at exactly the same time, some cells might be far along, while others might not yet even have begun the
process. This asynchrony creates major problems when you want to understand the sequence of regulatory changes
that occur as cells transition from one state to the next. Tracking the expression across cells captured at the same
time produces a very compressed sense of a gene’s kinetics, and the apparent variability of that gene’s expression will
be very high.

By ordering each cell according to its progress along a learned trajectory, Monocle alleviates the problems that
arise due to asynchrony. Instead of tracking changes in expression as a function of time, Monocle tracks changes as a
function of progress along the trajectory, which we term“pseudotime”. Pseudotime is an abstract unit of progress: it’s
simply the distance between a cell and the start of the trajectory, measured along the shortest path. The trajectory’s
total length is defined in terms of the total amount of transcriptional change that a cell undergoes as it moves from
the starting state to the end state. For further details, see section 9.

5.2 The ordering algorithm

5.2.1 Choosing genes for ordering

Inferring a single-cell trajectory is a hard machine learning problem. The first step is to select the genes Monocle will use
as input for its machine learning approach. This is called feature selection, and it has a major impact in the shape of the
trajectory. In single-cell RNA-Seq, genes expressed at low levels are often very noisy, but some may contain important
information regarding the state of the cell. If we simply provide all the input data, Monocle might get confused by the
noise, or fix on a feature of the data that isn’t biologically meaningful, such as batch effects arising from collecting
data on different days. Monocle provides you with a variety of tools to select genes that will yield a robust, accurate,
and biologically meaningful trajectory. You can use these tools to either perform a completely“unsupervised”analysis,
in which Monocle has no forehand knowledge of which gene you consider important. Alternatively, you can make
use of expert knowledge in the form of genes that are already known to define biolgical progress to shape Monocle’s
trajectory. We consider this mode “semi-supervised”, because Monocle will augment the markers you provide with
other, related genes. Monocle then uses these genes to produce trajectories consistent with known biology but that
often reveal new regulatory structure. We return to the muscle data to illustrate both of these modes.

5.2.2 Reducing the dimensionality of the data

Once we have selected the genes we will use to order the cells, Monocle applies a dimensionality reduction to the
data, which will drastically improves the quality of the trajectory. Monocle reduces the dimensionality of the data with
the reduceDimension function. This function has a number of options, so you should familiarize yourself with them
by consulting the its manual page. You can choose from two algorithms in reduceDimension. The first, termed
Independent Component Analysis, is a classic linear technique for decomposing data that powered the original version
of Monocle. The second, called DDRTree, is a much more powerful nonlinear technique that is the default for Monocle
2. For more on how these both work, see section 9.

5.2.3 Ordering the cells in pseudotime

With the expression data projected into a lower dimensional space, Monocle is ready to learn the trajectory that
describes how cells transition from one state into another. Monocle assumes that the trajectory has a tree structure,
with one end of it the “root”, and the others the “leaves”. A cell at the beginning of the biological process starts at
the root and progresses along the trunk until it reaches the first branch, if there is one. It then chooses a branch,
and moves further and further along the tree until it reaches a leaf. These mathematical assumptions translate into
some important biological ones. First, that the data includes all the major stages of the biological process. If your
experiment failed to capture any cells at a key developmental transition, Monocle won’t know its there. Second, that
gene expression changes are smooth as a cell moves from one stage to the next. This assumption is realistic: major
discontinuities in the trajectory would amount to a cell almost instantaneously turning over its transcriptome, which
probably doesn’t happen in most biolgical processes.

To order your cells, Monocle uses the orderCells function. This routine has one important argument, which
allows you to set the root of the tree, and thus the beginning of the process. See the manual page for orderCells
for more details.
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5.3 Unsupervised ordering

In this section, we discuss ordering cells in a completely unsupervised fashion. First, we must decide which genes we
will use to define a cell’s progress through myogenesis. Monocle orders cells by examining the pattern of expression
of these genes across the cell population. Monocle looks for genes that vary in “interesting” (i.e. not just noisy) ways,
and uses these to structure the data. We ultimately want a set of genes that increase (or decrease) in expression as a
function of progress through the process we’re studying.

Ideally, we’d like to use as little prior knowledge of the biology of the system under study as possible. We’d like
to discover the important ordering genes from the data, rather than relying on literature and textbooks, because that
might introduce bias in the ordering. One effective way to isolate a set of ordering genes is to simply compare the cells
collected at the beginning of the process to those at the end and find the differentially expressed genes, as described
above. The command below will find all genes that are differentially expressed in response to the switch from growth
medium to differentiation medium:

diff_test_res <- differentialGeneTest(HSMM_myo[expressed_genes,],

fullModelFormulaStr="~Media")

ordering_genes <- row.names (subset(diff_test_res, qval < 0.01))

Choosing genes based on differential analysis of time points is often highly effective, but what if we don’t have time
series data? If the cells are asynchronously moving through our biological process (as is usually the case), Monocle
can often reconstruct their trajectory from a single population captured all at the same time. Below are two methods
to select genes that require no knowledge of the design of the experiment at all.

5.3.1 Selecting genes with high dispersion across cells

Genes that vary a lot are often highly informative for identifying cell subpopulations or ordering cells along a trajectory.
In RNA-Seq, a gene’s variance typically depends on its mean, so we have to be a bit careful about how we select genes
based on their variance.

disp_table <- dispersionTable(HSMM_myo)

ordering_genes <- subset(disp_table,

mean_expression >= 0.5 &

dispersion_empirical >= 1 * dispersion_fit)$gene_id

Once we have a list of gene ids to be used for ordering, we need to set them in the HSMM object, because the next
several functions will depend on them.

HSMM_myo <- setOrderingFilter(HSMM_myo, ordering_genes)

plot_ordering_genes(HSMM_myo)

The genes we’ve chosen to use for ordering define the state space of the cells in our data set. Each cell is a point
in this space, which has dimensionality equal to the number of genes we’ve chosen. So if there are 500 genes used for
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ordering, each cell is a point in a 500-dimensional space. For a number of reasons, Monocle works better if we can
reduce the dimensionality of that space before we try to put the cells in order. In this case, we will reduce the space
down to one with two dimensions, which we will be able to easily visualize and interpret while Monocle is ordering the
cells.

HSMM_myo <- reduceDimension(HSMM_myo, max_components=2, method = 'DDRTree')

Now that the space is reduced, it’s time to order the cells using the orderCells function as shown below.

HSMM_myo <- orderCells(HSMM_myo)

Once the cells are ordered, we can visualize the trajectory in the reduced dimensional space.

plot_cell_trajectory(HSMM_myo, color_by="Hours")

The trajectory has a tree-like structure. We can see that the cells collected at time zero are located near one of
the tips of the tree, while the others are distributed amongst the two“branches”. Monocle doesn’t know a priori which
of the trajectory of the tree to call the“beginning”, so we often have to call orderCells again using the root_state

argument to specify the beginning. First, we plot the trajectory, this time coloring the cells by “State”:

plot_cell_trajectory(HSMM_myo, color_by="State")
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“State” is just Monocle’s term for the segment of the tree. The function below is handy for identifying the State
which contains most of the cells from time zero. We can then pass that to orderCells:

GM_state <- function(cds){

if (length(unique(pData(cds)$State)) > 1){

T0_counts <- table(pData(cds)$State, pData(cds)$Hours)[,"0"]

return(as.numeric(names(T0_counts)[which(T0_counts == max(T0_counts))]))

}else { return (1) }

}

HSMM_myo <- orderCells(HSMM_myo, root_state=GM_state(HSMM_myo))

plot_cell_trajectory(HSMM_myo, color_by="Pseudotime")
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If there are a ton of states in your tree, it can be a little hard to make out where each one falls on the tree.
Sometimes it can be handy to “facet” the trajectory plot so it’s easier to see where each of the states are located:

plot_cell_trajectory(HSMM_myo, color_by="State") + facet_wrap(~State, nrow=1)

And if you don’t have a timeseries, you might need to set the root based on where certain marker genes are
expressed, using your biological knowledge of the system. For example, in this experiment, a highly proliferative
population of progenitor cells are generating two types of post-mitotic cells. So the root should have cells that express
high levels of proliferation markers. We can use the jitter plot to pick figure out which state corresponds to rapid
proliferation:

blast_genes <- row.names(subset(fData(HSMM_myo), gene_short_name %in% c("CCNB2", "MYOD1", "MYOG")))

plot_genes_jitter(HSMM_myo[blast_genes,], grouping="State", min_expr=0.1)

To confirm that the ordering is correct we can select a couple of markers of myogenic progress. Plotting these
genes demonstrates that ordering looks good:

HSMM_expressed_genes <- row.names(subset(fData(HSMM_myo), num_cells_expressed >= 10))

HSMM_filtered <- HSMM_myo[HSMM_expressed_genes,]
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my_genes <- row.names(subset(fData(HSMM_filtered),

gene_short_name %in% c("CDK1", "MEF2C", "MYH3")))

cds_subset <- HSMM_filtered[my_genes,]

plot_genes_in_pseudotime(cds_subset, color_by="Hours")

Note: in the event that Monocle produces a linear trajectory, there will only be one state. In this case, you can tell
it which end is the beginning of the trajectory by passing orderCells an optional argument argument: the reverse

flag. The reverse flag tells Monocle to reverse the orientation of the entire process as it’s being discovered from the
data, so that the cells that would have been assigned to the end are instead assigned to the beginning, and so on.

5.3.2 Selecting genes based on PCA loading

A number of single-cell clustering studies have found that principal component analysis (PCA) is an effective way
of finding genes that vary widely across cells. You can use PCA to pick out a good set of ordering genes in a
completely unsupervised manner. The procedure below first normalizes the expression data by adding a pseudocount,
log-transforming it, and then standardizing it so that all genes have roughly the same dynamic range. Then, it uses
the irlba package to perform the PCA. The code below is a little more complicated than just calling prcomp(), but
it has the advantage of performing the entire computation with sparse matrix operations. This is important for large,
sparse CellDataSet objects like the ones common in droplet-based single-cell RNA-Seq.

HSMM_myo <- HSMM_myo[HSMM_expressed_genes,]

exprs_filtered <- t(t(exprs(HSMM_myo)/pData(HSMM_myo)$Size_Factor))

#nz_genes <- which(exprs_filtered != 0, arr.ind = T)

exprs_filtered@x <- log(exprs_filtered@x + 1)

# Calculate the variance across genes without converting to a dense

# matrix:

expression_means <- Matrix::rowMeans(exprs_filtered)

expression_vars <- Matrix::rowMeans((exprs_filtered - expression_means)^2)

# Filter out genes that are constant across all cells:

genes_to_keep <- expression_vars > 0

exprs_filtered <- exprs_filtered[genes_to_keep,]

expression_means <- expression_means[genes_to_keep]
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expression_vars <- expression_vars[genes_to_keep]

# Here's how to take the top PCA loading genes, but using

# sparseMatrix operations the whole time, using irlba. Note

# that the v matrix from irlba is the loading matrix

set.seed(0)

irlba_pca_res <- irlba(t(exprs_filtered),

nu=0,

center=expression_means,

scale=sqrt(expression_vars),

right_only=TRUE)$v

row.names(irlba_pca_res) <- row.names(exprs_filtered)

# Here, we will just

# take the top 200 genes from components 2 and 3.

# Component 1 usually is driven by technical noise.

# We could also use a more principled approach,

# similar to what dpFeature does below

PC2_genes <- names(sort(abs(irlba_pca_res[, 2]), decreasing = T))[1:200]

PC3_genes <- names(sort(abs(irlba_pca_res[, 3]), decreasing = T))[1:200]

ordering_genes <- union(PC2_genes, PC3_genes)

Using these to order the cells as above yields the following trajectory:

HSMM_myo <- setOrderingFilter(HSMM_myo, ordering_genes)

HSMM_myo <- reduceDimension(HSMM_myo, max_components=2, method = 'DDRTree')
HSMM_myo <- orderCells(HSMM_myo)

HSMM_myo <- orderCells(HSMM_myo, root_state=GM_state(HSMM_myo))

plot_cell_trajectory(HSMM_myo, color_by="Hours")

5.4 Unsupervised feature selection based on density peak clustering

Selecting genes for ordering cells using the techniques discussed above often works well in simple settings, but for
more complex processes, we recommend a new procedure called “dpFeature”. This procedure works by first projecting
cells into two dimensions using t-SNE and then detecting clusters using the “densityPeak” algorithm of Rodriguez and
Laio [4]. The resulting clusters of cells are compared using Monocle’s differential expression analysis functions to find
genes that distinguish them. The top of these are then used to order cells.

To use dpFeature, we first select superset of feature genes as genes expressed in at least 5% of all the cells.
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HSMM_myo <- detectGenes(HSMM_myo, min_expr=0.1)

fData(HSMM_myo)$use_for_ordering <- fData(HSMM_myo)$num_cells_expressed > 0.05 * ncol(HSMM_myo)

Then we will perform a PCA analysis to identify the variance explained by each PC (principal component). We can
look at a scree plot and determine how many pca dimensions are wanted based on whether or not there is a significant
gap between that component and the component after it. By selecting only the high loading PCs, we effectively only
focus on the more interesting biological variations.

plot_pc_variance_explained(HSMM_myo, return_all = F) #look at the plot and decide how many di-

mensions you need. It is determined by a huge drop of variance at that dimension. pass that num-

ber to num_dim in the next function.

We will then run reduceDimension with t-SNE as the reduction method on those top PCs and project them further
down to two dimensions.

HSMM_myo <- reduceDimension(HSMM_myo, max_components=2, norm_method = 'log', num_dim = 3,

reduction_method = 'tSNE', verbose = T)

## Remove noise by PCA ...

## Reduce dimension by tSNE ...

Then we can run density peak clustering to identify the clusters on the 2-D t-SNE space. Density peak algorithm
clusters cells based on each cell’s local density (ρ) and the nearest distance δ of a cell to another cell with higher
distance. We can set a threshold for the ρ, δ and define any cell with a higher local density and distance than the
thresholds as the density peaks. Those peaks are then used to define the clusters for all cells. By default, clusterCells
choose 95% of ρ and δ to define the thresholds. We can also set a number of clusters (n) we want to cluster. In this
setting, we will find the top n cells with high δ with ρ among the top 50% range. The default setting often gives good
clustering.

HSMM_myo <- clusterCells(HSMM_myo, verbose = F)

## Distance cutoff calculated to 0.681014

## the length of the distance: 11935

After the clustering, we can check the clustering results.
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plot_cell_clusters(HSMM_myo, color_by = 'as.factor(Cluster)')
plot_cell_clusters(HSMM_myo, color_by = 'as.factor(Hours)')

We also provide the decision plot for users to check the ρ, δ for each cell and decide the threshold for defining the
cell clusters.

plot_rho_delta(HSMM_myo, rho_threshold = 2, delta_threshold = 4 )

We could then re-run clustering based on the user defined threshold. To facilitate the computation, we can set
(skip rho sigma = T) which enables us to skip the calculation of the ρ, σ.

HSMM_myo <- clusterCells(HSMM_myo,

rho_threshold = 2,

delta_threshold = 4,

skip_rho_sigma = T,

verbose = F)

We can check the final clustering results as following:
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plot_cell_clusters(HSMM_myo, color_by = 'as.factor(Cluster)')
plot_cell_clusters(HSMM_myo, color_by = 'as.factor(Hours)')

After we confirm the clustering makes sense, we can then perform differential gene expression test as a way to
extract the genes that distinguish them.

clustering_DEG_genes <- differentialGeneTest(HSMM_myo[HSMM_expressed_genes,],

fullModelFormulaStr = '~Cluster',
cores = detectCores())

We will then select the top 1000 significant genes as the ordering genes.

HSMM_ordering_genes <- row.names(clustering_DEG_genes)[order(clustering_DEG_genes$qval)][1:1000]

HSMM_myo <- setOrderingFilter(HSMM_myo, ordering_genes = HSMM_ordering_genes)

HSMM_myo <- reduceDimension(HSMM_myo, method = 'DDRTree')
HSMM_myo <- orderCells(HSMM_myo)

HSMM_myo <- orderCells(HSMM_myo, root_state=GM_state(HSMM_myo))

plot_cell_trajectory(HSMM_myo, color_by="Hours")
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5.5 Semi-supervised ordering with known marker genes

Unsupervised ordering is desirable because it avoids introducing bias into the analysis. However, unsupervised machine
learning will often fix on a strong feature of the data that’s not the focus of your experiment. For example, where
each cell is in the cell cycle has a major impact on the shape of the trajectory when you use unsupervised learning.
But what if you wish to focus on cycle-independent effects in your biological process? Monocle’s “semi-supervised”
ordering mode can help you focus on the aspects of the process you’re interested in.

Ordering your cells in a semi-supervised manner is very simple. You first define genes that mark progress using
the CellTypeHierchy system, very similar to how we used it for cell type classification. Then, you use it to select
ordering genes that co-vary with these markers. Finally, you order the cell based on these genes just as we do in
unsupervised ordering. So the only difference between unsupervised and semi-supervised ordering is in which genes we
use for ordering.

As we saw before, myoblasts begin differnentation by exiting the cell cycle and then proceed through a sequence of
regulatory events that leads to expression of some key muscle-specific proteins needed for contraction. We can mark
cycling cells with cyclin B2 (CCNB2) and recognize myotubes as those cells expressed high levels of myosin heavy
chain 3 (MYH3).

CCNB2_id <- row.names(subset(fData(HSMM_myo), gene_short_name == "CCNB2"))

MYH3_id <- row.names(subset(fData(HSMM_myo), gene_short_name == "MYH3"))

cth <- newCellTypeHierarchy()

cth <- addCellType(cth, "Cycling myoblast", classify_func=function(x) {x[CCNB2_id,] >= 1})

cth <- addCellType(cth, "Myotube", classify_func=function(x) {x[MYH3_id,] >=1})

cth <- addCellType(cth, "Reserve cell", classify_func=function(x) {x[MYH3_id,] == 0 & x[CCNB2_id,] == 0})

HSMM_myo <- classifyCells(HSMM_myo, cth)

Now we select the set of genes that co-vary (in either direction) with these two “bellweather” genes:

marker_diff <- markerDiffTable(HSMM_myo[HSMM_expressed_genes,],

cth,

cores=detectCores())

#semisup_clustering_genes <- row.names(subset(marker_diff, qval < 0.05))

semisup_clustering_genes <- row.names(marker_diff)[order(marker_diff$qval)][1:1000]

Using the top 1000 genes for ordering produces a trajectory that’s highly similar to the one we obtained with
unsupervised methods, but it’s a little “cleaner”.

HSMM_myo <- setOrderingFilter(HSMM_myo, semisup_clustering_genes)

#plot_ordering_genes(HSMM_myo)

HSMM_myo <- reduceDimension(HSMM_myo, max_components=2, method = 'DDRTree', norm_method = 'log')
HSMM_myo <- orderCells(HSMM_myo)

HSMM_myo <- orderCells(HSMM_myo, root_state=GM_state(HSMM_myo))

plot_cell_trajectory(HSMM_myo, color_by="CellType") + theme(legend.position="right")

To confirm that the ordering is correct, we can select a couple of markers of myogenic progress. In this experiment,
one of the branches corresponds to cells that successfully fuse to form myotubes, and the other to those that fail to
fully differentiate. We’ll exclude the latter for now, but you can learn more about tools for dealing with branched
trajectories in section 7.
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HSMM_filtered <- HSMM_myo[HSMM_expressed_genes,]

my_genes <- row.names(subset(fData(HSMM_filtered),

gene_short_name %in% c("CDK1", "MEF2C", "MYH3")))

cds_subset <- HSMM_filtered[my_genes,]

plot_genes_branched_pseudotime(cds_subset,

branch_point=1,

color_by="Hours",

ncol=1)

6 Differential expression analysis

Differential gene expression analysis is a common task in RNA-Seq experiments. Monocle can help you find genes that
are differentially expressed between groups of cells and assesses the statistical signficance of those changes. These
comparisons require that you have a way to collect your cells into two or more groups. These groups are defined by
columns in the phenoData table of each CellDataSet. Monocle will assess the signficance of each gene’s expression
level across the different groups of cells.

6.1 Basic differential analysis

Performing differential expression analysis on all genes in the human genome can take a substantial amount of time.
For a dataset as large as the myoblast data from [1], which contains several hundred cells, the analysis can take several
hours on a single CPU. Let’s select a small set of genes that we know are important in myogenesis to demonstrate
Monocle’s capabilities:

marker_genes <- row.names(subset(fData(HSMM_myo),

gene_short_name %in% c("MEF2C", "MEF2D", "MYF5",

"ANPEP", "PDGFRA","MYOG",

"TPM1", "TPM2", "MYH2",

"MYH3", "NCAM1", "TNNT1",

"TNNT2", "TNNC1", "CDK1",

"CDK2", "CCNB1", "CCNB2",

"CCND1", "CCNA1", "ID1")))
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In the myoblast data, the cells collected at the outset of the experiment were cultured in“growth medium”(GM) to
prevent them from differentiating. After they were harvested, the rest of the cells were switched over to“differentiation
medium” (DM) to promote differentiation. Let’s have monocle find which of the genes above are affected by this
switch:

diff_test_res <- differentialGeneTest(HSMM_myo[marker_genes,],

fullModelFormulaStr="~Media",

cores = detectCores())

# Select genes that are significant at an FDR < 10%

sig_genes <- subset(diff_test_res, qval < 0.1)

sig_genes[,c("gene_short_name", "pval", "qval")]

## gene_short_name pval qval

## ENSG00000081189.9 MEF2C 3.039157e-23 1.519578e-22

## ENSG00000105048.12 TNNT1 7.189833e-13 1.797458e-12

## ENSG00000109063.9 MYH3 1.824891e-35 1.824891e-34

## ENSG00000111049.3 MYF5 4.253444e-35 2.835630e-34

## ENSG00000114854.3 TNNC1 2.207806e-18 7.359354e-18

## ENSG00000118194.14 TNNT2 1.780330e-43 3.560661e-42

## ENSG00000122180.4 MYOG 1.079340e-13 3.083829e-13

## ENSG00000123374.6 CDK2 9.222379e-03 1.152797e-02

## ENSG00000125414.13 MYH2 1.509808e-06 2.322781e-06

## ENSG00000125968.7 ID1 1.248559e-05 1.783656e-05

## ENSG00000134057.10 CCNB1 4.835374e-11 1.074528e-10

## ENSG00000134853.7 PDGFRA 3.252779e-02 3.826798e-02

## ENSG00000140416.15 TPM1 1.739188e-08 3.338489e-08

## ENSG00000149294.12 NCAM1 1.135119e-20 4.540474e-20

## ENSG00000157456.3 CCNB2 6.959336e-08 1.159889e-07

## ENSG00000166825.9 ANPEP 3.889354e-02 4.321504e-02

## ENSG00000170312.11 CDK1 1.836169e-08 3.338489e-08

## ENSG00000198467.8 TPM2 9.011498e-04 1.201533e-03

So most of the 22 genes are significant at a 10% false discovery rate! This isn’t surprising, as most of the above
genes are highly relevant in myogenesis. Monocle also provides some easy ways to plot the expression of a small set
of genes grouped by the factors you use during differential analysis. This helps you visualize the differences revealed
by the tests above. One type of plot is a “jitter” plot.

MYOG_ID1 <- HSMM_myo[row.names(subset(fData(HSMM_myo),

gene_short_name %in% c("MYOG", "CCNB2"))),]

plot_genes_jitter(MYOG_ID1, grouping="Media", ncol=2)

Note that we can control how to layout the genes in the plot by specifying the number of rows and columns. See
the man page on plot_genes_jitter for more details on controlling its layout. Most if not all of Monocle’s plotting
routines return a plot object from the ggplot2. This package uses a grammar of graphics to control various aspects of
a plot, and makes it easy to customize how your data is presented. See the ggplot2 book [5] for more details.

In this section, we’ll explore how to use Monocle to find genes that are differentially expressed according to several
different criteria. First, we’ll look at how to use our previous classification of the cells by type to find genes that
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distinguish fibroblasts and myoblasts. Second, we’ll look at how to find genes that are differentially expressed as a
function of pseudotime, such as those that become activated or repressed during differentiation. Finally, you’ll see
how to perform multi-factorial differential analysis, which can help subtract the effects of confounding variables in your
experiment.

To keep the vignette simple and fast, we’ll be working with small sets of genes. Rest assured, however, that
Monocle can analyze many thousands of genes even in large experiments, making it useful for discovering dynamically
regulated genes during the biological process you’re studying.

6.2 Finding genes that distinguish cell type or state

During a dynamic biological process such as differentiation, cells might assume distinct intermediate or final states.
Recall that earlier we distinguished myoblasts from contaminating fibroblasts on the basis of several key markers. Let’s
look at several other genes that should distinguish between fibroblasts and myoblasts.

to_be_tested <- row.names(subset(fData(HSMM),

gene_short_name %in% c("UBC", "NCAM1", "ANPEP")))

cds_subset <- HSMM[to_be_tested,]

To test the effects of CellType on gene expression, we simply call differentialGeneTest on the genes we’ve
selected. However, we have to specify a model formula in the call to tell Monocle that we care about genes with
expression levels that depends on CellType. Monocle’s differential expression analysis works essentially by fitting two
models to the expression values for each gene, working through each gene independently. The first of the two models
is called the full model. This model is essentially a way of predicting the expression value of each gene in a given cell
knowing only whether that cell is a fibroblast or a myoblast. The second model, called the reduced model, does the
same thing, but it doesn’t know the CellType for each cell. It has to come up with a reasonable prediction of the
expression value for the gene that will be used for all the cells. Because the full model has more information about each
cell, it will do a better job of predicting the expression of the gene in each cell. The question Monocle must answer for
each gene is how much better the full model’s prediction is than the reduced model’s. The greater the improvement
that comes from knowing the CellType of each cell, the more significant the differential expression result. This is a
common strategy in differential analysis, and we leave a detailed statistical exposition of such methods to others.

To set up the test based on CellType, we simply call differentialGeneTest with a string specifying fullModelFormulaStr.
We don’t have to specify the reduced model in this case, because the default of 1 is what we want here.

diff_test_res <- differentialGeneTest(cds_subset,

fullModelFormulaStr="~CellType",

cores = detectCores())

diff_test_res[,c("gene_short_name", "pval", "qval")]

## gene_short_name pval qval

## ENSG00000149294.12 NCAM1 4.505519e-92 1.351656e-91

## ENSG00000150991.10 UBC 4.000686e-01 4.000686e-01

## ENSG00000166825.9 ANPEP 4.007268e-13 6.010901e-13

Note that all the genes are significantly differentially expressed as a function of CellType except the housekeeping
gene TBP, which we’re using a negative control. However, we don’t know which genes correspond to myoblast-specific
genes (those more highly expressed in myoblasts versus fibroblast specific genes. We can again plot them with a jitter
plot to see:

plot_genes_jitter(cds_subset, grouping="CellType", color_by="CellType",

nrow=1, ncol=NULL, plot_trend=TRUE)

## geom_path: Each group consists of only one observation. Do you need to

## adjust the group aesthetic?

## geom_path: Each group consists of only one observation. Do you need to

## adjust the group aesthetic?

## geom_path: Each group consists of only one observation. Do you need to

## adjust the group aesthetic?
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Note that we could also simply compute summary statistics such as mean or median expression level on a per-
CellType basis to see this, which might be handy if we are looking at more than a handful of genes. Of course, we
could test for genes that change as a function of Hours to find time-varying genes, or Media to identify genes that are
responsive to the serum switch. In general, model formulae can contain terms in the pData table of the CellDataSet.

The differentialGeneTest function is actually quite simple “under the hood”. The call above is equivalent to:

full_model_fits <- fitModel(cds_subset, modelFormulaStr="~CellType")

reduced_model_fits <- fitModel(cds_subset, modelFormulaStr="~1")

diff_test_res <- compareModels(full_model_fits, reduced_model_fits)

diff_test_res

Occassionally, as we’ll see later, it’s useful to be able to call fitModel directly.
The differential analysis procedure in Monocle is extremely flexible: the model formulae you use in your tests can

include any term that exists as a column in the pData table, including those columns that are added by Monocle in
other analysis steps. For example, if you use clusterCells(), you can test for genes that differ between clusters by
using Cluster as your model formula.

6.3 Finding genes that change as a function of pseudotime

Monocle’s main job is to put cells in order of progress through a biological process (such as cell differentiation) without
knowing which genes to look at ahead of time. Once it’s done so, you can analyze the cells to find genes that changes
as the cells make progress. For example, you can find genes that are significantly upregulated as the cells “mature”.
Let’s look at a panel of genes important for myogenesis:

to_be_tested <- row.names(subset(fData(HSMM),

gene_short_name %in% c("MYH3", "MEF2C", "CCNB2", "TNNT1")))

cds_subset <- HSMM_myo[to_be_tested,]

Again, we’ll need to specify the model we want to use for differential analysis. This model will be a bit more com-
plicated than the one we used to look at the differences between CellType. Monocle assigns each cell a“pseudotime”
value, which records its progress through the process in the experiment. The model can test against changes as a
function of this value. Monocle uses the VGAM package to model a gene’s expression level as a smooth, nonlinear
function of pseudotime:

diff_test_res <- differentialGeneTest(cds_subset,

fullModelFormulaStr="~sm.ns(Pseudotime)",

cores = detectCores())

The sm.ns function states that Monocle should fit a natural spline through the expression values to help it describe
the changes in expression as a function of progress. We’ll see what this trend looks like in just a moment. Other
smoothing functions are available.

Once again, let’s add in the gene annotations so it’s easy to see which genes are significant.

diff_test_res[,c("gene_short_name", "pval", "qval")]

## gene_short_name pval qval
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## ENSG00000081189.9 MEF2C 6.134750e-35 1.226950e-34

## ENSG00000105048.12 TNNT1 3.141574e-33 3.141574e-33

## ENSG00000109063.9 MYH3 6.124129e-71 2.449651e-70

## ENSG00000157456.3 CCNB2 3.907668e-34 5.210224e-34

We can plot the expression levels of these genes, all of which show significant changes as a function of differentiation,
using the function plot_genes_in_pseudotime. This function has a number of cosmetic options you can use to
control the layout and appearance of your plot.

plot_genes_in_pseudotime(cds_subset, color_by="Hours")

6.4 Clustering genes by pseudotemporal expression pattern

A common question that arises when studying time-series gene expression studies is: “which genes follow similar kinetic
trends”? Monocle can help you answer this question by grouping genes that have similar trends, so you can analyze
these groups to see what they have in common. Monocle provides a convenient way to visualize all pseudotime-
dependent genes. The function plot_pseudotime_heatmap takes a CellDataSet object (usually containing a only
subset of significant genes) and generates smooth expression curves much like plot_genes_in_pseudotime. Then,
it clusters these genes and plots them using the pheatmap package. This allows you to visualize modules of genes that
co-vary across pseudotime.

diff_test_res <- differentialGeneTest(HSMM_myo[marker_genes,],

fullModelFormulaStr="~sm.ns(Pseudotime)",

cores = detectCores())

sig_gene_names <- row.names(subset(diff_test_res, qval < 0.1))

plot_pseudotime_heatmap(HSMM_myo[sig_gene_names,],

num_clusters = 3,

cores = detectCores(),

show_rownames = T)
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6.5 Multi-factorial differential expression analysis

Monocle can perform differential analysis in the presence of multiple factors, which can help you subtract some factors
to see the effects of others. In the simple example below, Monocle tests three genes for differential expression between
myoblasts and fibroblasts, while subtracting the effect of Hours, which encodes the day on which each cell was
collected. To do this, we must specify both the full model and the reduced model. The full model captures the effects
of both CellType and Hours, while the reduced model only knows about Hours.

When we plot the expression levels of these genes, we can modify the resulting object returned by plot_genes_jitter
to allow them to have independent y-axis ranges, to better highlight the differences between cell states.

to_be_tested <- row.names(subset(fData(HSMM),

gene_short_name %in% c("TPM1", "MYH3", "CCNB2", "GAPDH")))

cds_subset <- HSMM[to_be_tested,]

diff_test_res <- differentialGeneTest(cds_subset,

fullModelFormulaStr="~CellType + Hours",

reducedModelFormulaStr="~Hours",

cores = detectCores())

diff_test_res[,c("gene_short_name", "pval", "qval")]

## gene_short_name pval qval

## ENSG00000109063.9 MYH3 4.990678e-55 1.996271e-54

## ENSG00000111640.10 GAPDH 1.974650e-01 1.974650e-01

## ENSG00000140416.15 TPM1 2.540899e-22 5.081798e-22

## ENSG00000157456.3 CCNB2 1.358945e-02 1.811926e-02

plot_genes_jitter(cds_subset,

grouping="Hours", color_by="CellType", plot_trend=TRUE) +

facet_wrap( ~ feature_label, scales="free_y")
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7 Analyzing branches in single-cell trajectories

Often, single-cell trajectories include branches. The branches occur because cells execute alternative gene expression
programs. Branches appear in trajectories during development, when cells make fate choices: one developmental lineage
proceeds down one path, while the other lineage produces a second path. Monocle contains extensive functionality for
analyzing these branching events.

Consider the experiment performed by Steve Quake’s lab by Barbara Treutlein and colleages, who captured cells
from the developing mouse lung. They captured cells early in development, later when the lung contains both major
types of epithelial cells (AT1 and AT2), and cells right about to make the decision to become either AT1 or AT2.
Monocle can reconstruct this process as a branched trajectory, allow you to analyze the decision point in great detail.
We’ll learn more about branch analysis in section 9.6. The figure below shows the trajectory Monocle reconstructs
using some of their data. There is a single branch, labeled ”1”. What genes change as cells pass from the early
developmental stage the top left of the tree through the branch? What genes are differentially expressed between the
branches? To answer this question, Monocle provides you with a special statistical test: branched expression analysis
modeling, or BEAM.

lung <- load_lung()

## Removing 4 outliers

plot_cell_trajectory(lung, color_by="Time")
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BEAM takes as input a CellDataSet that’s been ordered with orderCells and the name of a branch point in
the trajectory. It returns a table of significance scores for each gene. Genes that score significant are said to be
branch-dependent in their expression.

BEAM_res <- BEAM(lung, branch_point=1, cores = detectCores())

BEAM_res <- BEAM_res[order(BEAM_res$qval),]

BEAM_res <- BEAM_res[,c("gene_short_name", "pval", "qval")]

You can visualize changes for all the genes that are significantly branch dependent using a special type of heatmap.
This heatmap shows changes in both lineages at the same time. It also requires that you choose a branch point to
inspect. Columns are points in pseudotime, rows are genes, and the beginning of pseudotime is in the middle of the
heatmap. As you read from the middle of the heatmap to the right, you are following one lineage through pseudotime.
As you read left, the other. The genes are clustered hierarchically, so you can visualize modules of genes that have
similar lineage-dependent expression patterns.

plot_genes_branched_heatmap(lung[row.names(subset(BEAM_res, qval < 1e-4)),],

branch_point = 1,

num_clusters = 4,

cores = detectCores(),

use_gene_short_name = T,

show_rownames = T)
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We can plot a couple of these genes, such as Pdpn and Sftpb (both known markers of fate in this system), using
the plot_genes_branched_pseudotime function, which works a lot like the plot_genes_in_pseudotime function,
except it shows two kinetic trends, one for each lineage, instead of one. We also show Ccnd2, a cell cycle gene, which
is downregulated in both branches and is not signficant by the BEAM test.

lung_genes <- row.names(subset(fData(lung), gene_short_name %in% c("Ccnd2", "Sftpb", "Pdpn")))

plot_genes_branched_pseudotime(lung[lung_genes,],

branch_point=1,

color_by="Time",

ncol=1)
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The plot_clusters function returns a ggplot2 object showing the shapes of the expression patterns followed by
the 100 genes we’ve picked out. The topographic lines highlight the distributions of the kinetic patterns relative to
the overall trend lines, shown in red.

8 Major changes between Monocle version 1 and version 2

Monocle 2 is a near-complete re-write of Monocle 1. Monocle 2 is geared towards larger, more complex single-cell
RNA-Seq experiments than those possible at the time Monocle 1 was written. It’s also redesigned to support analysis
of mRNA counts, which were hard to estimate experimentally in early versions of single-cell RNA-Seq. Now, with
spike controls or UMIs, gene expression can be measured in mRNA counts. Analysis of these counts is typically easier
and more accurate than relative expression values, and we encourage all users to adopt an mRNA-count centered
workflow. Numerous Monocle functions have been re-written to take advantage of the nicer statistical properties of
mRNA counts. For example, we adopt the dispersion modeling and variance-stabilization techniques introduced by
DESeq [6] during differential analysis, dimensionality reduction, and other steps.

Trajectory reconstruction in Monocle 2 is vastly more robust, faster, and more powerful than in Monocle 1. Monocle
2 uses an advanced nonlinear reconstruction algorithm called DDRTree [7], described below in section 9. This algorithm
can expose branches that are hard to see with the less powerful linear technique used in Monocle 1. The algorithm is
also far less sensitive to outliers, so careful QC and selection of high quality cells is less critical. Finally, DDRTree is
much more robust in that it reports qualititatively similar trajectories more consistently when you vary the number of
cells in the experiment. Although which genes are included in the ordering still greatly impact the trajectory, varying
them also produces more qualititatively consistent trajectories than the previous linear technique.

Because Monocle 2 is so much better at finding branches, it also includes some additional tools to help you interpret
them. Branch expression analysis modeling (BEAM) is a new test for analyzing specific branch points [8]. BEAM
reports branch-dependent genes, and Monocle 2 includes some new visualization functions to help you inspect these
genes. Overall, we find that branching is pervasive in diverse biological processes, and thus we expect BEAM will be
very useful to those analyzing single-cell RNA-Seq data in many settings.

Monocle 2 also includes functionality that is inspired by other packages that weren’t available when Monocle 1 was
written. For example, much of Monocle 2’s clustering strategy is similar to Seurat [9] from Rahul Satija’s lab.

A manuscript describing Monocle 2 and the general stragegy of using reversed graph embedding for single-cell
trajectory analysis is available on the bioRxiv [10].

9 Theory behind Monocle
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9.1 dpFeature: selecting features from dense cell clusters

Appling algorithms like t-SNE to cells transiting through a continuous process like cell differentiation often groups the
cells into clusters that do not necessarily reflect their progression through the process. Nevertheless, the genes that
are differentially expressed by cells the clusters are often highly informative markers of each cell’s progress through the
trajectory. That is, clustering algorithms like t-SNE can find often genes that vary over the trajectory, but not the
trajectory itself. We designed a simple procedure to identify these genes for use in trajectory reconstruction.

The dpFeature procedure works as follows. First, dpFeature excludes genes that only expressed in a very small
percentage of cells (by default, 5%). Second, dpFeature performs PCA on the remaining genes in order to identify
the principal components that explain a substantial amount of variance in the data. These top PCs are then used to
initialize t-SNE, which projects the cells into two-dimensional t-SNE space. Next, dpFeature uses a recently developed
clustering algorithm, called “density peak” clustering [?] to cluster the cells in the two-dimensional t-SNE space. The
density peak clustering algorithm calculates each cell’s local density (ρ) and its distance (δ) to another cell with higher
density. The ρ and δ values for each cell can be plotted in a so-called “decision plot” in order to select thresholds
that define “peaks” in the t-SNE space. Cells with high local density that are far away from other cells with high local
density correspond to the density peaks. These density peaks nucleate clusters: all other cells will be associated with
the nearest density peak cell. Finally, we identify genes that differ between the clusters by performing a likelihood ratio
test between using a generalized linear model that knows the cluster to which each cell is assigned and a model that
doesn’t. We then select (by default) the top 1,000 significantly differentially expressed genes as the ordering genes for
the trajectory reconstruction.

9.2 Reversed graph embedding

Single-cell expression datasets are some of the largest and most complex encountered in genomics. Even the smallest
single-cell RNA-Seq experiments sample hundreds of cells, measuring the expression level of the more than 20,000
genes in each cell. Visualizing these datasets, identifying cells of different types, and comparing them to one another
all pose major bioinformatics challenges.

Manifold learning is a common strategy for dealing with complex, high-dimensional data. The premise of this
approach is simple: the data may reside in a very high-dimensional space, but the intrinsic structure of the dataset
is much simpler. Moreover, the data are not random - they are generated by a process that can be understood by
inspecting the global structure of the dataset. For example, a single single-cell RNA-Seq experiment may reside in
20,000 dimensions, but the cells might all lie on or “near” a curve embedded within a much lower dimensional space.
For example, we might expect that cells in different phases of the cell cycle be distributed along a closed loop. Indeed
a recent large-scale single-cell RNA-Seq study found exactly that [11].

Manifold learning often involves dimensionality reduction techniques as a first step. Conventional, dimensionality
reduction approaches (for example, PCA, ICA, Isomap, LLE, etc.) are limited in their ability to explictly recover the
intrinisic structure from the data.

Monocle 2 uses a technique called reversed graph embedding [10, 12] to learn the structure of the manifold that
describes a single-cell experiment. It simultaneously:

1. Reduces high dimensional expression data into a lower dimension space.

2. Learns an explicit, smooth manifold that generates the data.

3. Assigns each cell to its position on that manifold

Together, these tasks allow Monocle 2 to order cells in pseudotime in an entirely unsupervised, data-driven way.
Importantly, Monocle 2 learns manifolds that are trees without needing any a priori information about the structure of
the tree. Users do not need to provide Monocle 2 with constraints on the number of branches, etc. These are learned
from the data. This allows Monocle 2 to to discriminate between linear and branched trajectories automatically. To
our knowledge, Monocle 2 is the first trajectory reconstruction algorithm to learn smooth tree-like manifolds without
needing to know its high-level structure ahead of time.

Reversed graph embedding simultaneously learns a principal graph that approximates the manifold, as well as a
function that maps points on the graph (which is embedded in low dimensions) back to the original high dimensional
space. Reversed graph embedding aims to learn both a set of latent points Z = {z1, ..., zM} corresponding to the
input data that reside in the low-dimensional space along with a graph G that connects them. This graph approximates
the manifold. In order to map points on the manifold back to the original high-dimensional input space, we also need
to learn a function fG .

Learning a good reversed graph embedding can be described as an optimization problem that joint captures the
positions of the latent points z, the graph G, and the function fG .

To learn the positions of the latent points z, we must optimize:
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min
fg∈F

min
{z1,...,zM}

N∑
i=1

||xi − fg(zi)||2 (1)

Given a set of latent point coordinates, the optimization of graph inference can be represented as:

min
fG∈F

min
{z1,...,zM}

∑
(Vi,Vj)∈E

bi,j ||fg(zi)− fg(zj)||2 (2)

where X = {x1, ...,xN} are the original single-cell expression profiles. The Vi are the the vertices of the undirected
graph G = (V, E). The weights for the edge in E are encoded as bij .

The first optimization problem aims to position the latent points such that their image under fG (that is, their
corresponding positions in the high-dimensional space) will be ”close” to the input data. The second optimization
aims to keep latent points that are close to one another in the low dimensional space close to one another in the
high dimensional space as well. These two goals must be balanced against one another. Reversed graph embedding
achieves this through the parameter λ

min
G∈Ĝb

min
fg∈F

min
{z1,...,zM}

N∑
i=1

||xi − fg(zi)||2 +
λ

2

∑
(Vi,Vj)∈E

bi,j ||fg(zi)− fg(zj)||2 (3)

Reversed graph embedding requires a feasible set Ĝb of graphs and a mapping function fG . In practice, implementing
reversed graph embedding requires that we place some constraints on Ĝb and fG . As work on reversed graph embedding
continues, we anticipate that more general schemes that consider a wider range of feasible graphs and mapping functions
will become available. Monocle users should expect more general reversed graph embedding schemes in future versions.

Mao et al initially described two specific ways to implement the general framework of reversed graph embedding.
Both are briefly summarized below. See the original paper on DDRTree for more details. Monocle 2 uses the second
scheme, but can easily be run in a mode that corresponds to the first.

9.3 DRTree: Dimensionality reduction via learning a tree

The first scheme, called “DRTree” described by Mao et al learns principal graphs that are undirected trees, with one
node per input data point, along with a linear function fG . Because the algorithm restricts the feasible set to trees,
optimization problem 2 is solved by simply finding the minimum spanning tree. This can be solved quickly via Kruskal’s
algoritm. DRTree uses a linear projection model fG(z) = Wz as the mapping function. The scheme optimizes:

min
W,Z,B

N∑
i=1

||xi −Wzi||2 +
λ

2

∑
i,j

bi,j ||Wzi −Wzj ||2 (4)

where W = [w1, ...,wd] ∈ RD×d is an orthogonal set of d linear basis vectors. Because several key steps of the
above optimization can be solved analytically, and because the two terms can be minimized in an alternating fashion,
solving it is generally very fast. However, for large input datasets, the graph can become complex, and so DRTree can
run into scalability problems.

9.4 DDRTree: Discriminative dimensionality reduction via learning a tree

To overcome problems posed by large complex input datasets, Mao et al proposed a second scheme, ”DDRTree”. that
Monocle 2 uses instead of DRTree. Recall that the graph in DRTree contains one node per input data point. To
avoid long computations and large memory footprints that come with DRTree, the second scheme learns a graph on a
second, smaller set of latent points {yk}Kk=1. These points are treated by the algorithm as the centers of {zi}Ni=1. The
number of these points is controlled through the ncenter argument to reduceDimension() in Monocle 2. Using this
algorithm drastically speeds up the computations in reduceDimension(), and also serves to regularize the manifold,
often producing cleaner, more accurate single-cell trajectories.

The DDRTree scheme works via the following optimization:

min
W,Z,B,Y,R

N∑
i=1

||xi −Wzi||2 +
λ

2

∑
k,k′

bk,k′ ||Wyk −Wy′k||2 + γ
[ K∑
k=1

N∑
i=1

ri,k||zi − yk||2 + σΩ(R)
]

(5)

The optimization is constrained such that WTW = I,
∑K
k=1 ri,k = 1, ri,k ≤ 0,∀i,∀k. The matrix R ∈ RN×N is

used to regularize the graph, through the negative entropy regularization Ω(R) =
∑N
i=1

∑k
k=1 ri,k log ri,k. In effect,

DDRTree uses the latent points {yk}Kk=1 as the centers of K clusters. That is, the algorithm acts as soft K-means
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clustering on the points {zi}Ni=1, and jointly learns a graph on the K cluster centers. The matrix R transforms the
hard assignments used in K-means into soft assignments with σ > 0 as a regularization parameter.

Problem 5 again contains a number of analytical steps, and can be solved by alternating between the terms.
Moreover, because some of the more expensive numerical operations involve matrices that are K dimensional (instead
of N dimensional), they have complexity that is invariant of the size of the input data.

Our accessory package DDRTree implements the DDRTree algorithm using a number of key performance optimiza-
tions. Monocle 2 calls DDRTree to learn the core manifold describing a CellDataSet, and then computes pseudotime
coordinates and branch assignments using this manifold. Monocle also uses the manifold in downstream analysis
steps such as BEAM. A manuscript describing the general stragegy of using reversed graph embedding for single-cell
trajectory analysis is available on bioRxiv ( [10]).

9.5 Census

In [8], we introduced Census, a normalization method to convert of single-cell mRNA transcript to relative transcript
counts. Using relative transcript counts (or spike-in derived counts or UMI counts if available) with the negative
binomial distribution can dramatically improve the differential expression test compared to using the negative binomial
with read counts or the Tobit with TPM/FPKM values.

Census aims to convert relative abundances Xij into lysate transcript counts Yij . Without loss of generality,
we consider relative abundances is on the TPM scale, and assume that a gene’s TPM value is proportional to the
relative frequencies of its mRNA within the total pool of mRNA in a given cell’s lysate, i.e., TPMij ∝ Yij∑

j=1
Yij

. The

generative model discussed in Qiu et al. predicts that when only a minority of the transcripts in a cell is captured
in the library, signal from most detectably expressed genes will originate from a single mRNA. Because the number
of sequencing reads per transcript is proportionate to molecular frequency after normalizing for length (i.e. TPM or
FPKM), all such genes in a given cell should have similar TPM values.

Census works by first identifying the (log-transformed) TPM value in each cell i, written as x∗i , that corresponds
to genes from which signal originates from a single transcript. Because our generative model predicts that these
most detectable genes should fall into this category, we simply estimate x∗i as the mode of the log-transformed TPM
distribution for cell i. This mode is obtained by log-transforming the TPM values, performing a Gaussian kernel density
estimation and then identifying the peak of the distribution. Given the TPM value for a single transcript in cell i, it
is straightforward to convert all relative abundances to their lysate transcript counts. The total number of mRNAs
captured for cell i can be estimated as:

Mi =
1

θ
· ni

1
T

∫X∗
i

ε
Xi,jdX

(6)

where ε is a TPM value below which no mRNA is believed to be present (by default, 0.1), ni is the number of
genes with TPM values in the interval (ε, x∗i ) and T is the sum of TPM values of all expressed genes in a single
cell. That is, we could estimate the total mRNA counts as the total number of single-mRNA genes divided by their
combined expression relative to all genes, as illustrated in Figure 1A of [8]. However, cDNA and PCR amplification
steps during library prep can lead to superlinear growth in the relative abundance of a transcript as a function of copy
number. In practice, the above formula often over-estimates total mRNAs in the lysate. To alleviate this issue, we
used an alternative formula in Census:

Mi =
1

θ
· ni
FXi

(X∗i )− FXi
(ε)

=
1

θ
· ni
FXi

(X∗i )
(x ≥ ε) (7)

where FXi represents the cumulative distribution function for the TPM values of genes expressed above ε for cell i.
Effectively, this simple approach estimates the pre-amplification cDNA count as the number of genes expressed above
ε. Although this is necessarily an underestimate, in practice it is typically close to the true total (as shown in Figure
1c in [8]), since a large fraction of genes are expressed at 1 cDNA copy. Note that we also scale the cDNA count by
1
θ to yield an estimate for the number of mRNAs that were in the cell’s lysate, including those that were not actually
captured. This scaling step is performed mainly to facilitate comparison with spike-in derived estimates. While we do
not know the capture rate θ a priori, it is a highly protocol-dependent quantity that appears to have little dependence
on cell type or state. In the original study [8], we assume a value of 0.25, which is close to the lung and neuron
experiments of Truetlein et al.

With an estimate of the total lysate mRNAs Mi in cell i, we simply rescale its TPM values into mRNA counts for
each gene:

Ŷij = Xij ·
Mi

106
(8)
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For more details about Census, including a generative model of the single-cell RNA-seq process, and some discussion
of Census’s limitations, please see the original study [8]. Importantly, Census cannot control for non-linear amplification,
and should therefore be considered as a simple but effective way to normalize relative expression levels so that they
work better with the negative binomial distribution. Census counts should not be treated as absolute transcript counts.

9.6 BEAM

Monocle 2 assigns each cell a pseudotime value and a ”State” encoding the segment of the trajectory it resides upon
based on a trajectory learning algorithm (See below). In Monocle 2, we develop BEAM to test for branch-dependent
gene expression by formulating the problem as a contrast between two negative binomial GLMs.

The null model
expression ∼ sm.ns(Pseudotime) (9)

for the test assumes the gene being tested is not a branch specific gene, whereas the alternative model:

expression ∼ sm.ns(Pseudotime) +Branch+ sm.ns(Pseudotime) : Branch (10)

assumes that the gene is a branch specific gene where : represents an interaction term between branch and
transformed pseudotime. Each model includes a natural spline (here with three degrees of freedom) describing smooth
changes in mean expression as a function of pseudotime. The null model fits only a single curve, whereas the alternative
will fit a distinct curve for each branch. Our current implementation of Monocle 2 relies on VGAM’s ”smart” spline
fitting functionality, hence the use of the sm.ns() function instead of the more widely used ns() function from the
splines package in R. Likelihood ratio testing was performed with the VGAM lrtest() function, similar to Monocle’s
other differential expression tests. A significant branch-dependent genes means that the gene has distinct expression
dynamics along each branch, with smoothed curves that have different shapes.

To fit the full model, each cell must be assigned to the appropriate branch, which is coded through the factor
”Branch”in the above model formula. Monocle’s function for testing branch dependence accepts an argument specifying
which branches are to be compared. These arguments are specified using the ’State’ attribute assigned by Monocle
during trajectory reconstructions. For example, in our analysis of the Truetlein et al data, Monocle 2 reconstructed a
trajectory with two branches (LAT1, LAT2 for AT1 and AT2 lineages, respectively), and three states (SBP , SAT1, SAT2

for progenitor, AT1, or AT2 cells). The user specifies that he or she wants to compare LAT1 and LAT2 by providing
SAT1 and SAT2 as arguments to the function. Alternatively, the user can specify a branch point leading to the two
states. Monocle then assigns all the cells with state SAT1 to branch LAT1 and similarly for the AT2 cells. However,
the cells with SBP must be members of both branches, because they are on the path from each branch back to the
root of the tree. In order to ensure the independence of data points required for the LRT as well as the robustness
and stability of our algorithm, we implemented a strategy to partition the progenitor cells into two groups, with each
branch receiving a group. The groups are computed by simply ranking the progenitor cells by pseudotime and assigning
the odd-numbered cells to one group and the even numbered cells to the other. We assign the first progenitor to both
branches to ensure they start at the same time which is required for spline fitting involved in the test.

In order to facilitate downstream branch kinetic curve clusterin as well as branch time point detection. In the
current implmentation of monocle 2, we duplicate the progenitor cells and assign it to both lineage before spline
fitting. The branch plots in section Analyzing branches in single-cell trajectories use this method.

9.7 Branch time point detection

The branching time point for each gene can be quantified by fitting a separate spline curves for each branch from
all the progenitor to each cell fate. To robustly detect the pseudotime point (tiβ) when a gene i with a branching
expression pattern starts to diverge between two cell fates L1, L2, we developed the branch time point detection
algorithm. The algorithm starts from the end of stretched pseudotime (pseudotime t = 10 , see the supplementary
note 1 for details) to calculate the divergence (Di(t = 100) = xL1

(t = 100) − xL2
(t = 100)) of gene i’s expression

(xL1
(t = 100), xL2

(t = 100)) between two cell fates, L1, L2 , (for a branching gene, the divergence at this moment
should be large if not the largest across pseudotime). It then moves backwards to find the latest intersection point
between two fitted spline curves, which corresponds to the time when the gene starts to diverge between two branches.
To add further flexibility, the algorithm moves forward to find the time point when the gene expression diverges up to
a user controllable threshold (ε), or Di(t) ≥ ε(t), and defines this time point as the branch time point, tiβ , for that
particular gene i.
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?? If you use Monocle to analyze your experiments, please cite:
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citation("monocle")

##

## Cole Trapnell and Davide Cacchiarelli et al (2014): The dynamics

## and regulators of cell fate decisions are revealed by

## pseudo-temporal ordering of single cells. Nature Biotechnology

##

## Xiaojie Qiu, Andrew Hill, Cole Trapnell et al (2017):

## Single-cell mRNA quantification and differential analysis with

## Census. Nature Methods

##

## Xiaojie Qiu, Cole Trapnell et al (2017): Reverse graph embedding

## resolves complex single-cell developmental trajectories. BioRxiv

##

## To see these entries in BibTeX format, use 'print(<citation>,
## bibtex=TRUE)', 'toBibtex(.)', or set

## 'options(citation.bibtex.max=999)'.
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12 Session Info

sessionInfo()

## R version 3.4.0 (2017-04-21)

## Platform: x86_64-apple-darwin15.6.0 (64-bit)

## Running under: macOS Sierra 10.12.1

##

## Matrix products: default

## BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib

## LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib

##

## locale:

## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

##

## attached base packages:

## [1] splines stats4 parallel stats graphics grDevices utils

## [8] datasets methods base

##

## other attached packages:

## [1] monocle_2.5.1 DDRTree_0.1.5 irlba_2.2.1

## [4] VGAM_1.0-3 Matrix_1.2-9 HSMMSingleCell_0.110.0

## [7] ggplot2_2.2.1 reshape2_1.4.2 Biobase_2.36.2

## [10] BiocGenerics_0.22.0 knitr_1.16
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##

## loaded via a namespace (and not attached):

## [1] slam_0.1-40 lattice_0.20-35 colorspace_1.3-2

## [4] htmltools_0.3.6 fastICA_1.2-0 base64enc_0.1-3

## [7] survival_2.41-3 rlang_0.1.1 foreign_0.8-67

## [10] DBI_0.6-1 RColorBrewer_1.1-2 matrixStats_0.52.2

## [13] plyr_1.8.4 stringr_1.2.0 munsell_0.4.3

## [16] combinat_0.0-8 gtable_0.2.0 htmlwidgets_0.8

## [19] evaluate_0.10 labeling_0.3 latticeExtra_0.6-28

## [22] htmlTable_1.9 highr_0.6 Rcpp_0.12.11

## [25] acepack_1.4.1 backports_1.1.0 checkmate_1.8.2

## [28] scales_0.4.1 limma_3.32.2 densityClust_0.2.1

## [31] Hmisc_4.0-3 gridExtra_2.2.1 digest_0.6.12

## [34] stringi_1.1.5 Rtsne_0.13 qlcMatrix_0.9.5

## [37] dplyr_0.5.0 grid_3.4.0 tools_3.4.0

## [40] magrittr_1.5 lazyeval_0.2.0 proxy_0.4-17

## [43] tibble_1.3.1 Formula_1.2-1 cluster_2.0.6

## [46] pheatmap_1.0.8 data.table_1.10.4 assertthat_0.2.0

## [49] R6_2.2.1 rpart_4.1-11 nnet_7.3-12

## [52] igraph_1.0.1 compiler_3.4.0
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