
Package ‘glmGamPoi’
October 17, 2020

Type Package

Title Fit a Gamma-Poisson Generalized Linear Model

Version 1.0.0

Description Fit linear models to overdispersed count data.
The package can estimate the overdispersion and fit repeated models
for matrix input. It is designed to handle large input datasets as they
typically occur in single cell RNA-seq experiments.

License GPL-3

Encoding UTF-8

SystemRequirements C++11

Suggests testthat (>= 2.1.0), zoo, DESeq2, edgeR, beachmat, MASS,
statmod, ggplot2, bench, BiocParallel, knitr, rmarkdown,
BiocStyle, TENxPBMCData

LinkingTo Rcpp, RcppArmadillo, beachmat (>= 2.0.0)

Imports Rcpp, pracma, DelayedMatrixStats, DelayedArray, HDF5Array,
SummarizedExperiment, methods, stats, utils

Roxygen list(markdown = TRUE)

RoxygenNote 7.0.2

URL https://github.com/const-ae/glmGamPoi

BugReports https://github.com/const-ae/glmGamPoi/issues

biocViews Regression, RNASeq, Software, SingleCell

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/glmGamPoi

git_branch RELEASE_3_11

git_last_commit ea2224c

git_last_commit_date 2020-04-27

Date/Publication 2020-10-16

Author Constantin Ahlmann-Eltze [aut, cre]
(<https://orcid.org/0000-0002-3762-068X>),
Michael Love [ctb]

Maintainer Constantin Ahlmann-Eltze <artjom31415@googlemail.com>

1

https://github.com/const-ae/glmGamPoi
https://github.com/const-ae/glmGamPoi/issues

2 as.list.glmGamPoi

R topics documented:

as.list.glmGamPoi . 2
gampoi_overdispersion_mle . 3
glm_gp . 4
print.glmGamPoi . 8
residuals.glmGamPoi . 9

Index 11

as.list.glmGamPoi Convert glmGamPoi object to a list

Description

Convert glmGamPoi object to a list

Usage

S3 method for class 'glmGamPoi'
as.list(x, ...)

Arguments

x an object with class glmGamPoi

... not used

Value

The method returns a list with the following elements:

Beta a matrix with dimensions nrow(data) x n_coefficients where n_coefficients is based on the
design argument. It contains the estimated coefficients for each gene.

overdispersions a vector with length nrow(data). The overdispersion parameter for each gene.
It describes how much more the counts vary than one would expect according to the Poisson
model.

Mu a matrix with the same dimensions as dim(data). If the calculation happened on disk, than Mu
is a HDF5Matrix. It contains the estimated mean value for each gene and sample.

size_factors a vector with length ncol(data). The size factors are the inferred correction fac-
tors for different sizes of each sample. They are also sometimes called the exposure factor.

model_matrix a matrix with dimensions ncol(data) x n_coefficients. It is build based on the
design argument.

gampoi_overdispersion_mle 3

gampoi_overdispersion_mle

Estimate the Overdispersion for a Vector of Counts

Description

Estimate the Overdispersion for a Vector of Counts

Usage

gampoi_overdispersion_mle(
y,
mean = base::mean(y),
model_matrix = matrix(1, nrow = length(y), ncol = 1),
do_cox_reid_adjustment = TRUE,
subsample = FALSE,
verbose = FALSE

)

Arguments

y a numeric or integer vector with the counts for which the overdispersion is esti-
mated

mean a numeric vector of either length 1 or length(y) with the predicted value for
that sample. Default: mean(y).

model_matrix a numeric matrix that specifies the experimental design. It can be produced
using stats::model.matrix(). Default: matrix(1,nrow = length(y),ncol
= 1), which is the model matrix for a ’just-intercept-model’.

do_cox_reid_adjustment

the classical maximum likelihood estimator of the overdisperion is biased
towards small values. McCarthy et al. (2012) showed that it is preferable to
optimize the Cox-Reid adjusted profile likelihood.
do_cox_reid_adjustment can be either be TRUE or FALSE to indicate if the
adjustment is added during the optimization of the overdispersion parameter.
Default: TRUE.

subsample the estimation of the overdispersion is the slowest step when fitting a Gamma-
Poisson GLM. For datasets with many samples, the estimation can be consider-
ably sped up without loosing much precision by fitting the overdispersion only
on a random subset of the samples. Default: FALSE which means that the data is
not subsampled. If set to TRUE, at most 1,000 samples are considered. Otherwise
the parameter just specifies the number of samples that are considered for each
gene to estimate the overdispersion.

verbose a boolean that indicates if information about the individual steps are printed
while fitting the GLM. Default: FALSE.

Details

The function employs a rough heuristic to decide if the iterative or the Bandara approach is used
to calculate the overdispersion. If max(y) < length(y) Bandara’s approach is used, otherwise the
conventional one is used.

4 glm_gp

Value

The function returs a list with the following elements:

estimate the numerical estimate of the overdispersion.

iterations the number of iterations it took to calculate the result.

method the method that was used to calculate the overdispersion: either "conventional" or "bandara".

message additional information about the fitting process.

See Also

glm_gp()

Examples

set.seed(1)
true overdispersion = 2.4
y <- rnbinom(n = 10, mu = 3, size = 1/2.4)
estimate = 1.7
gampoi_overdispersion_mle(y)

true overdispersion = 0
y <- rpois(n = 10, lambda = 3)
estimate = 0
gampoi_overdispersion_mle(y)
with different mu, overdispersion estimate changes
gampoi_overdispersion_mle(y, mean = 15)
Cox-Reid adjustment changes the result
gampoi_overdispersion_mle(y, mean = 15, do_cox_reid_adjustment = FALSE)

Many very small counts, true overdispersion = 50
y <- rnbinom(n = 1000, mu = 0.01, size = 1/50)
summary(y)
estimate = 31
gampoi_overdispersion_mle(y)

glm_gp Fit a Gamma-Poisson Generalized Linear Model

Description

This function provides a simple to use interface to fit Gamma-Poisson generalized linear models. It
works equally well for small scale (a single model) and large scale data (e.g. thousands of rows and
columns, potentially stored on disk). The function automatically determines the appropriate size
factors for each sample and efficiently finds the best overdispersion parameter for each gene.

glm_gp 5

Usage

glm_gp(
data,
design = ~1,
col_data = NULL,
reference_level = NULL,
offset = 0,
size_factors = TRUE,
overdispersion = TRUE,
do_cox_reid_adjustment = TRUE,
subsample = FALSE,
on_disk = NULL,
verbose = FALSE

)

Arguments

data any matrix-like object (e.g. matrix, DelayedArray, HDF5Matrix) or anything
that can be cast to a SummarizedExperiment (e.g. MSnSet, eSet etc.) with one
column per sample and row per gene.

design a specification of the experimental design used to fit the Gamma-Poisson GLM.
It can be a model.matrix() with one row for each sample and one column for
each coefficient.
Alternatively, design can be a formula. The entries in the formula can refer to
global objects, columns in the col_data parameter, or the colData(data) of
data if it is a SummarizedExperiment.
The third option is that design is a vector where each element specifies to which
condition a sample belongs.
Default: design = ~ 1, which means that all samples are treated as if they belong
to the same condition. Note that this is the fasted option.

col_data a dataframe with one row for each sample in data. Default: NULL.
reference_level

a single string that specifies which level is used as reference when the model
matrix is created. The reference level becomes the intercept and all other coeffi-
cients are calculated with respect to the reference_level. Default: NULL.

offset Constant offset in the model in addition to log(size_factors). It can either
be a single number, a vector of length ncol(data) or a matrix with the same
dimensions as dim(data). Note that if data is a DelayedArray or HDF5Matrix,
offset must be as well. Default: 0.

size_factors in large scale experiments, each sample is typically of different size (for example
different sequencing depths). A size factor is an internal mechanism of GLMs
to correct for this effect.
size_factors can either be a single boolean that indicates if the size factor for
each sample should be calculated. Or it is a numeric vector that specifies the
size factor for each sample. Note that size_factors = 1 and size_factors =
FALSE are equivalent. Default: TRUE.

overdispersion the simplest count model is the Poisson model. However, the Poisson model
assumes that variance = mean. For many applications this is too rigid and the
Gamma-Poisson allows a more flexible mean-variance relation (variance =
mean+mean2 ∗ overdispersion).

6 glm_gp

overdispersion can either be a single boolean that indicates if an overdis-
persion is estimated for each gene. Or it can be a numeric vector of length
nrow(data). Note that overdispersion = 0 and overdispersion = FALSE are
equivalent and both reduce the Gamma-Poisson to the classical Poisson model.
Default: TRUE.

do_cox_reid_adjustment

the classical maximum likelihood estimator of the overdisperion is biased
towards small values. McCarthy et al. (2012) showed that it is preferable to
optimize the Cox-Reid adjusted profile likelihood.
do_cox_reid_adjustment can be either be TRUE or FALSE to indicate if the
adjustment is added during the optimization of the overdispersion parameter.
Default: TRUE.

subsample the estimation of the overdispersion is the slowest step when fitting a Gamma-
Poisson GLM. For datasets with many samples, the estimation can be consider-
ably sped up without loosing much precision by fitting the overdispersion only
on a random subset of the samples. Default: FALSE which means that the data is
not subsampled. If set to TRUE, at most 1,000 samples are considered. Otherwise
the parameter just specifies the number of samples that are considered for each
gene to estimate the overdispersion.

on_disk a boolean that indicates if the dataset is loaded into memory or if it is kept on
disk to reduce the memory usage. Processing in memory can be significantly
faster than on disk. Default: NULL which means that the data is only processed
in memory if data is an in-memory data structure.

verbose a boolean that indicates if information about the individual steps are printed
while fitting the GLM. Default: FALSE.

Details

The method follows the following steps:

1. The size factors are estimated.
The code is a slightly adapted version of the procedure proposed by Anders and Huber (2010)
in equation (5). To handle the large number of zeros the geometric means are calculated for
Y +0.5 and ignored during the calculation of the median. Columns with all zeros get a default
size factor of 0.001.

2. The dispersion estimates are initialized based on the moments of each row of Y .

3. The coefficients of the model are estimated.
If all samples belong to the same condition (i.e. design = ~ 1), the betas are estimated using a
quick Newton-Raphson algorithm. This is similar to the behavior of edgeR. For more complex
designs, the general Fisher-scoring algorithm is used. Here, the code is based on a fork of the
internal function fitBeta() from DESeq2. It does however contain some modification to
make the fit more robust and faster.

4. The mean for each gene and sample is calculate.
Note that this step can be very IO intensive if data is or contains a DelayedArray.

5. The overdispersion is estimated.
The classical method for estimating the overdispersion for each gene is to maximize the
Gamma-Poisson log-likelihood by iterating over each count and summing the the correspond-
ing log-likelihood. It is however, much more efficient for genes with many small counts
to work on the contingency table of the counts. Originally, this approach had already been
used by Anscombe (1950), but only recently it has been formulated with an efficient Newton-
Raphson approach by Bandara et al. (2019). In this package, I have implemented an extension

glm_gp 7

of their method that can handle general offsets.
See also gampoi_overdispersion_mle().

6. The beta coefficients are estimated once more with the updated overdispersion estimates

7. The mean for each gene and sample is calculated again.

This method can handle not just in memory data, but also data stored on disk. This is essential for
large scale datasets with thousands of samples, as they sometimes encountered in modern single-
cell RNA-seq analysis. glmGamPoi relies on the DelayedArray and beachmat package to efficiently
implement the access to the on-disk data.

Value

The method returns a list with the following elements:

Beta a matrix with dimensions nrow(data) x n_coefficients where n_coefficients is based on the
design argument. It contains the estimated coefficients for each gene.

overdispersions a vector with length nrow(data). The overdispersion parameter for each gene.
It describes how much more the counts vary than one would expect according to the Poisson
model.

Mu a matrix with the same dimensions as dim(data). If the calculation happened on disk, than Mu
is a HDF5Matrix. It contains the estimated mean value for each gene and sample.

size_factors a vector with length ncol(data). The size factors are the inferred correction fac-
tors for different sizes of each sample. They are also sometimes called the exposure factor.

model_matrix a matrix with dimensions ncol(data) x n_coefficients. It is build based on the
design argument.

References

• McCarthy, D. J., Chen, Y., & Smyth, G. K. (2012). Differential expression analysis of mul-
tifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Research,
40(10), 4288–4297. https://doi.org/10.1093/nar/gks042.

• Anders Simon, & Huber Wolfgang. (2010). Differential expression analysis for sequence
count data. Genome Biology. https://doi.org/10.1016/j.jcf.2018.05.006.

• Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dis-
persion for RNA-seq data with DESeq2. Genome Biology, 15(12), 550. https://doi.org/
10.1186/s13059-014-0550-8.

• Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2009). edgeR: A Bioconductor package
for differential expression analysis of digital gene expression data. Bioinformatics, 26(1),
139–140. https://doi.org/10.1093/bioinformatics/btp616.

• Bandara, U., Gill, R., & Mitra, R. (2019). On computing maximum likelihood estimates for
the negative binomial distribution. Statistics and Probability Letters, 148, 54–58. https:
//doi.org/10.1016/j.spl.2019.01.009

• Lun ATL, Pagès H, Smith ML (2018). “beachmat: A Bioconductor C++ API for accessing
high-throughput biological data from a variety of R matrix types.” PLoS Comput. Biol., 14(5),
e1006135. doi: 10.1371/journal.pcbi.1006135..

See Also

glm_gp_impl() and gampoi_overdispersion_mle() for the internal functions that do the work.

https://doi.org/10.1093/nar/gks042
https://doi.org/10.1016/j.jcf.2018.05.006
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1016/j.spl.2019.01.009
https://doi.org/10.1016/j.spl.2019.01.009
https://doi.org/10.1371/journal.pcbi.1006135

8 print.glmGamPoi

Examples

set.seed(1)
The simplest example
y <- rnbinom(n = 10, mu = 3, size = 1/2.4)
c(glm_gp(y, size_factors = FALSE))

Fitting a whole matrix
model_matrix <- cbind(1, rnorm(5))
true_Beta <- cbind(rnorm(n = 30), rnorm(n = 30, mean = 3))
sf <- exp(rnorm(n = 5, mean = 0.7))
model_matrix
Y <- matrix(rnbinom(n = 30 * 5, mu = sf * exp(true_Beta %*% t(model_matrix)), size = 1/2.4),

nrow = 30, ncol = 5)

fit <- glm_gp(Y, design = model_matrix, size_factors = sf, verbose = TRUE)
summary(fit)

Fitting a model with covariates
data <- data.frame(fav_food = sample(c("apple", "banana", "cherry"), size = 50, replace = TRUE),
city = sample(c("heidelberg", "paris", "new york"), size = 50, replace = TRUE),
age = rnorm(n = 50, mean = 40, sd = 15))
Y <- matrix(rnbinom(n = 100 * 50, mu = 3, size = 1/3.1), nrow = 100, ncol = 50)
fit <- glm_gp(Y, design = ~ fav_food + city + age, col_data = data)
summary(fit)

print.glmGamPoi Pretty print the result from glm_gp()

Description

Pretty print the result from glm_gp()

Usage

S3 method for class 'glmGamPoi'
print(x, ...)

S3 method for class 'glmGamPoi'
format(x, ...)

S3 method for class 'glmGamPoi'
summary(object, ...)

S3 method for class 'summary.glmGamPoi'
print(x, ...)

S3 method for class 'summary.glmGamPoi'
format(x, ...)

residuals.glmGamPoi 9

Arguments

x the glmGamPoi object
... additional parameters, currently ignored
object the glmGamPoi object that is summarized

Value

The print() methods return the object x. The format() method returns a string. The summary()
method returns an object of class summary.glmGamPoi.

residuals.glmGamPoi Extract Residuals of Gamma Poisson Model

Description

Extract Residuals of Gamma Poisson Model

Usage

S3 method for class 'glmGamPoi'
residuals(
object,
Y,
type = c("deviance", "pearson", "randomized_quantile", "working", "response"),
...

)

Arguments

object a fit of type glmGamPoi. It is usually produced with a call to glm_gp().
Y any matrix-like object (e.g. matrix(), DelayedArray(), HDF5Matrix()) with

one column per sample and row per gene.
type the type of residual that is calculated. See details for more information. Default:

"deviance".
... currently ignored.

Details

This method can calculate a range of different residuals:

deviance The deviance for the Gamma-Poisson model is

dev = 2∗(1/theta∗log((1+m∗theta)/(1+y∗theta))−ylog((m+y∗theta)/(y+y∗m∗theta)))

and the residual accordingly is

res = sign(y −m)sqrt(dev).

pearson The Pearson residual is res = (y −m)/sqrt(m+m2 ∗ theta)
randomized_quantile The randomized quantile residual was originally developed by Dunn &

Smyth, 1995. Please see that publication or statmod::qresiduals() for more information.
working The working residuals are res = (y −m)/m.
response The response residuals are res = y −m

10 residuals.glmGamPoi

Value

a matrix with the same size as Y. If Y is a DelayedArray than the result will be as well.

See Also

glm_gp() and ‘stats::residuals.glm()

Index

as.list.glmGamPoi, 2

DelayedArray, 5

format.glmGamPoi (print.glmGamPoi), 8
format.summary.glmGamPoi

(print.glmGamPoi), 8

gampoi_overdispersion_mle, 3
gampoi_overdispersion_mle(), 7
glm_gp, 4
glm_gp(), 4, 10
glm_gp_impl(), 7

HDF5Matrix, 5

matrix, 5
model.matrix(), 5

print.glmGamPoi, 8
print.summary.glmGamPoi

(print.glmGamPoi), 8

residuals.glmGamPoi, 9

statmod::qresiduals(), 9
SummarizedExperiment, 5
summary.glmGamPoi (print.glmGamPoi), 8

11

	as.list.glmGamPoi
	gampoi_overdispersion_mle
	glm_gp
	print.glmGamPoi
	residuals.glmGamPoi
	Index

