
Package ‘dittoSeq’
October 17, 2020

Type Package

Title User Friendly Single-Cell and Bulk RNA Sequencing Visualization

Version 1.0.2

Author Daniel Bunis

Maintainer Daniel Bunis <daniel.bunis@ucsf.edu>

Description A universal, user friendly, single-cell and bulk RNA sequencing
visualization toolkit that allows highly customizable creation of color
blindness friendly, publication-quality figures. dittoSeq accepts both
SingleCellExperiment (SCE) and Seurat objects, as well as the import and
usage, via conversion to an SCE, of SummarizedExperiment or DGEList bulk
data. Visualizations include dimensionality reduction plots, heatmaps,
scatterplots, percent composition or expression across groups, and more.
Customizations range from size and title adjustments to automatic
generation of annotations for heatmaps, overlay of trajectory analysis
onto any dimensionality reduciton plot, hidden data overlay upon cursor
hovering via ggplotly conversion, and many more. All with simple, discrete
inputs. Color blindness friendliness is powered by legend adjustments
(enlarged keys), and by allowing the use of shapes or letter-overlay in
addition to the carefully selected dittoColors().

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.1.0

Depends ggplot2

Imports methods, colorspace (>= 1.4), gridExtra, cowplot, reshape2,
pheatmap, grDevices, ggrepel, ggridges, stats, utils,
SummarizedExperiment, SingleCellExperiment, edgeR, S4Vectors

Suggests plotly, testthat, Seurat (>= 2.2), DESeq2, knitr, BiocStyle,
scRNAseq

biocViews Software, Visualization, RNASeq, SingleCell, GeneExpression,
Transcriptomics, DataImport

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/dittoSeq

git_branch RELEASE_3_11

git_last_commit 28a884c

1



2 addDimReduction

git_last_commit_date 2020-06-04

Date/Publication 2020-10-16

R topics documented:
addDimReduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
addPrcomp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Darken . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
demux.calls.summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
demux.SNP.summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
demuxlet.example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
dittoBarPlot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
dittoColors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
dittoDimPlot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
dittoHeatmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
dittoPlot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
dittoPlotVarsAcrossGroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
dittoScatterPlot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
dittoSeq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
gene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
getGenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
getMetas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
getReductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
importDemux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
importDittoBulk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
isBulk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
isGene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
isMeta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Lighten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
meta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
metaLevels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
multi_dittoDimPlot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
multi_dittoDimPlotVaryCells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
multi_dittoPlot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
setBulk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Simulate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Index 67

addDimReduction Add any dimensionality reduction space to a SingleCellExperiment
object containing bulk or single-cell data

Description

Add any dimensionality reduction space to a SingleCellExperiment object containing bulk or single-
cell data

Usage

addDimReduction(object, embeddings, name, key = .gen_key(name))



addDimReduction 3

Arguments

object the bulk or single-cell SingleCellExperiment object to add the dimensionality
reduction to. (dittoSeq utilizes the SingleCellExperiment object even for bulk
data because it provides a convenient slots for all data that dittoSeq requires)

embeddings a numeric matrix or matrix-like object, with number of rows equal to ncol(object),
containing the coordinates of all cells / samples within the dimensionality reduc-
tion space.

name String name for the reduction slot. Example: "pca". This will become the name
of the slot, and what should be provided to the reduction.use input when
making a dittoDimPlot. When the name given is the same as that of a slot that
already exists inside the object, the previous slot is replaced with the newly
provided data.

key String, like "PC", which sets the default axes-label prefix when this reduction is
used for making a dittoDimPlot. If nothing is provided, a key will be automat-
ically generated.

Value

Outputs a SingleCellExperiment object with an added or replaced dimensionality reduction slot.

Author(s)

Daniel Bunis

See Also

addPrcomp for a prcomp specific PCA import wrapper

importDittoBulk for initial import of bulk RNAseq data into dittoSeq as a SingleCellExperiment.

dittoDimPlot for visualizing how samples group within added dimensionality reduction spaces

Examples

example("importDittoBulk", echo = FALSE)

# Calculate PCA
# NOTE: This is typically not done with all genes in the dataset.
# The inclusion of this example code is not an endorsement of a particular
# method of PCA. Consult yourself, a bioinformatician, or literature for
# tips on proper techniques.
embeds <- prcomp(t(logcounts(myRNA)), center = TRUE, scale = TRUE)$x

myRNA <- addDimReduction(
object = myRNA,
embeddings = embeds,
name = "pca",
key = "PC")

# Visualize conditions metadata on a PCA plot
dittoDimPlot(myRNA, "conditions", reduction.use = "pca", size = 3)



4 addPrcomp

addPrcomp Add a prcomp pca calculation to a SingleCellExperiment object con-
taining bulk or single-cell data

Description

Add a prcomp pca calculation to a SingleCellExperiment object containing bulk or single-cell data

Usage

addPrcomp(object, prcomp, name = "pca", key = "PC")

Arguments

object the SingleCellExperiment object.

prcomp a prcomp output which will be added to the object

name String name for the reduction slot. Normally, this will be "pca", but you can
hold any number of PCA calculations so long as a unique name is given to
each. This will become the name of the slot and what should be provided to the
reduction.use input when making a dittoDimPlot. When the name given is
the same as that of a slot that already exists inside the object, the previous slot
is replaced with the newly provided data.

key String, like "PC", which sets the default axes-label prefix when this reduction is
used for making a dittoDimPlot

Value

Outputs an SingleCellExperiment object with an added or replaced pca reduction slot.

Author(s)

Daniel Bunis

See Also

addDimReduction for adding other types of dimensionality reductions

importDittoBulk for initial import of bulk RNAseq data into dittoSeq as a SingleCellExperiment.

dittoDimPlot for visualizing how samples group within added dimensionality reduction spaces

Examples

example("importDittoBulk", echo = FALSE)

# Calculate PCA with prcomp
# NOTE: This is typically not done with all genes in a dataset.
# The inclusion of this example code is not an endorsement of a particular
# method of PCA. Consult yourself, a bioinformatician, or literature for
# tips on proper techniques.
calc <- prcomp(t(logcounts(myRNA)), center = TRUE, scale = TRUE)



Darken 5

myRNA <- addPrcomp(
object = myRNA,
prcomp = calc)

# Now we can visualize conditions metadata on a PCA plot
dittoDimPlot(myRNA, "conditions", reduction.use = "pca", size = 3)

Darken Darkens input colors by a set amount

Description

A wrapper for the darken function of the colorspace package.

Usage

Darken(colors, percent.change = 0.25, relative = TRUE)

Arguments

colors the color(s) input. Can be a list of colors, for example, /codedittoColors().

percent.change # between 0 and 1. the percentage to darken by. Defaults to 0.25 if not given.

relative TRUE/FALSE. Whether the percentage should be a relative change versus an
absolute one. Default = TRUE.

Value

Return a darkened version of the color in hexadecimal color form (="#RRGGBB" in base 16)

Author(s)

Daniel Bunis

Examples

Darken("blue") #"blue" = "#0000FF"
#Output: "#0000BF"
Darken(dittoColors()[1:8]) #Works for multiple color inputs as well.



6 demux.calls.summary

demux.calls.summary Plots the number of annotations per sample, per lane

Description

Plots the number of annotations per sample, per lane

Usage

demux.calls.summary(
object,
singlets.only = FALSE,
main = "Sample Annotations by Lane",
sub = NULL,
ylab = "Annotations",
xlab = "Sample",
color = dittoColors()[2],
theme = NULL,
rotate.labels = TRUE,
data.out = FALSE

)

Arguments

object A Seurat or SingleCellExperiment object

singlets.only Whether to only show data for cells called as singlets by demuxlet. Default is
TRUE. Note: if doublets are included, only one of their sample calls will be
used.

main plot title. Default = "Sample Annotations by Lane"

sub plot subtitle

ylab y axis label, default is "Annotations"

xlab x axis label, default is "Sample"

color bars color. Default is the dittoColors skyBlue.

theme A complete ggplot theme. Default is a slightly modified theme_bw().

rotate.labels whether sample names / x-axis labels should be rotated or not. Default is TRUE.

data.out Logical, whether underlying data for the plot should be output instead of the plot
itself.

Value

A faceted ggplot summarizing how many cells in each lane were anotated to each sample. Assumes
that the Sample calls of each cell, and which lane each cell belonged to, are stored in ’Sample’ and
’Lane’ metadata slots, respectively, as would be the case if demuxlet information was imported with
importDemux.

Alternatively, value will be a data.frame containing the underlying data if data.out = TRUE is pro-
vided.



demux.SNP.summary 7

Author(s)

Daniel Bunis

See Also

demux.SNP.summary for plotting the number of SNPs measured per cell. This is the other Demuxlet-
associated QC visualization included with dittoSeq.

importDemux, for how to import relevant demuxlet information as metadata.

Kang et al. Nature Biotechnology, 2018 https://www.nature.com/articles/nbt.4042 for more
information about the demuxlet cell-sample deconvolution method.

Examples

example(importDemux, echo = FALSE)

demux.calls.summary(myRNA)

# Exclude doublets by setting 'singlets only = TRUE'
demux.calls.summary(myRNA,

singlets.only = TRUE)

# To return the underlying data.frame
demux.calls.summary(myRNA, data.out = TRUE)

demux.SNP.summary Plots the number of SNPs sequenced per droplet

Description

Plots the number of SNPs sequenced per droplet

Usage

demux.SNP.summary(
object,
group.by = "Lane",
color.by = group.by,
plots = c("jitter", "boxplot"),
boxplot.color = "grey30",
add.line = 50,
min = 0,
...

)

Arguments

object A Seurat or SingleCellExperiment object

group.by String "name" of a metadata to use for grouping values. Default is "Lane".

color.by String "name" of a metadata to use for coloring. Default is whatever was pro-
vided to group.by.

https://www.nature.com/articles/nbt.4042


8 demux.SNP.summary

plots String vector which sets the types of plots to include: possibilities = "jitter",
"boxplot", "vlnplot", "ridgeplot". NOTE: The order matters, so use c("back","middle","front")
when inputing multiple to put them in the order you want.

boxplot.color The color of the lines of the boxplot.

add.line numeric value(s) where a dashed horizontal line should go. Default = 50, a high
confidence minimum number of SNPs per cell for highly accurate demuxlet
sample deconvolution.

min numeric value which sets the minimum value shown on the y-axis.

... extra arguments passed to dittoPlot

Details

This function is a wrapper that essentially runs dittoPlot("demux.N.SNP") with a few modified
defaults. The altered defaults:

• Data is grouped and colored by the "Lane" metadata (unless group.by or color.by are ad-
justed otherwise).

• Data is displayed as boxplots with gray lines on top of dots for individual cells (unless plots
or boxplot.color are adjusted otherwise).

• The plot is set to have minimum y axis value of zero (unless min is adjusted otherwise).

• A dashed line is added at the value 50, a very conservative minimum number of SNPs for high
confidence sample calls (unless add.line is adjusted otherwise).

Value

A ggplot, made with dittoPlot showing a summary of how many SNPs were available to De-
muxlet for each cell of a dataset.

Alternatively, a plotly object if data.hover = TRUE is provided.

Alternatively, list containing a ggplot and the underlying data as a dataframe if data.out = TRUE is
provided.

Author(s)

Daniel Bunis

See Also

demux.calls.summary for plotting the number of sample annotations assigned within each lane.
This is the other Demuxlet-associated QC visualization included with dittoSeq.

dittoPlot, as demux.SNP.summary is essentially just a dittoPlot wrapper.

importDemux, for how to import relevant demuxlet information as metadata.

Kang et al. Nature Biotechnology, 2018 https://www.nature.com/articles/nbt.4042 for more
information about the demuxlet cell-sample deconvolution method.

Examples

example(importDemux, echo = FALSE)
demux.SNP.summary(myRNA)

#Function wraps dittoPlot. See dittoPlot docs for more examples

https://www.nature.com/articles/nbt.4042


demuxlet.example 9

demuxlet.example demuxlet.example

Description

A dataframe containing mock demuxlet information for the 80-cell Seurat::pbmc_small dataset

Usage

demuxlet.example

Format

An object of class data.frame with 80 rows and 7 columns.

Details

This data was created based on the structure of real demuxlet.best output files. Barcodes from the
pbmc_small dataset were used as the BARCODES column. Cells were then assigned randomly as
either SNG (singlets), DBL (doublets), or AMB (ambiguous). Cells were then randomly assign to
sample1-10 (or multiple samples for doublets), and this information was combined using the paste
function into the typical structure of a demuxlet CALL column. Random sampling of remaining
data from a separate, actual, demuxlet daatset was used for remaining columns.

Value

A dataframe

Note

This is a slightly simplified example. Real demuxlet.best data has additional columns.

Author(s)

Daniel Bunis

dittoBarPlot Outputs a stacked bar plot to show the percent composition of samples,
groups, clusters, or other groupings

Description

Outputs a stacked bar plot to show the percent composition of samples, groups, clusters, or other
groupings



10 dittoBarPlot

Usage

dittoBarPlot(
object,
var,
group.by,
scale = c("percent", "count"),
cells.use = NULL,
data.out = FALSE,
do.hover = FALSE,
color.panel = dittoColors(),
colors = seq_along(color.panel),
y.breaks = NA,
min = 0,
max = NULL,
var.labels.rename = NULL,
var.labels.reorder = NULL,
x.labels = NULL,
x.labels.rotate = TRUE,
x.reorder = NULL,
theme = theme_classic(),
xlab = group.by,
ylab = "make",
main = "make",
sub = NULL,
legend.show = TRUE,
legend.title = NULL

)

Arguments

object A Seurat or SingleCellExperiment object.
var String name of a metadata that contains discrete data, or a factor or vector con-

taining such data for all cells/samples in the target object.
group.by String name of a metadata to use for separating the cells/samples into discrete

groups.
scale "count" or "percent". Sets whether data should be shown as raw counts or scaled

to 1 and shown as a percentage.
cells.use String vector of cells’/samples’ names which should be included. Alternatively,

a Logical vector, the same length as the number of cells in the object, which sets
which cells to include. For the typically easier logical method, provide USE in
colnames(object)[USE] OR object@cell.names[USE].
Note: When cells.use is combined with scale = "percent", left out cells are
not considered in calculating percentages. Percents will always total to 1.

data.out Logical. When set to TRUE, changes the output, from the plot alone, to a list
containing the plot ("p") and a data.frame ("data") containing the underlying
data.
Note: plotly output is turned off in the data.out = TRUE setting, but hover.data
is still calculated.

do.hover Logical which sets whether the ggplot output should be converted to a ggplotly
object with data about individual bars displayed when you hover your cursor
over them.



dittoBarPlot 11

color.panel String vector which sets the colors to draw from. dittoColors() by default.

colors Integer vector, which sets the indexes / order, of colors from color.panel to actu-
ally use. (Provides an alternative to directly modifying color.panel.)

y.breaks Numeric vector which sets the plot’s tick marks / major gridlines. c(break1,break2,break3,etc.)

min, max Scalars which control the zoom of the plot. These inputs set the minimum /
maximum values of the y-axis. Default = set based on the limits of the data,
0 to 1 for scale = "percent", or 0 to maximum count for 0 to 1 for scale =
"count".

var.labels.rename

String vector for renaming the distinct identities of var values.

var.labels.reorder

Integer vector. A sequence of numbers, from 1 to the number of distinct var
value idententities, for rearranging the order of labels’ groupings within the plot.
Method: Make a first plot without this input. Then, treating the top-most group-
ing as index 1, and the bottom-most as index n. Values of var.labels.reorder
should be these indices, but in the order that you would like them rearranged to
be.

x.labels String vector which will replaceme the x-axis groupings’ labels. Regardless of
x.reorder, the first component of x.labels sets the name for the left-most
x-axis grouping.

x.labels.rotate

Logical which sets whether the x-axis grouping labels should be rotated.

x.reorder Integer vector. A sequence of numbers, from 1 to the number of groupings, for
rearranging the order of x-axis groupings.
Method: Make a first plot without this input. Then, treating the leftmost group-
ing as index 1, and the rightmost as index n. Values of x.reorder should be
these indices, but in the order that you would like them rearranged to be.

theme A ggplot theme which will be applied before dittoSeq adjustments. Default =
theme_classic(). See https://ggplot2.tidyverse.org/reference/ggtheme.
html for other options and ideas.

xlab String which sets the x-axis title. Default is group.by so it defaults to the name
of the grouping information. Set to NULL to remove.

ylab String which sets the y-axis title.

main String, sets the plot title

sub String, sets the plot subtitle

legend.show Logical which sets whether the legend should be displayed.

legend.title String which adds a title to the legend.

Details

The function creates a dataframe containing counts and percent makeup of var identities for each x-
axis grouping (determined by the group.by input). If a set of cells/samples to use is indicated with
the cells.use input, only those cells/samples are used for counts and percent makeup calculations.
Then, a vertical bar plot is generated (ggplot2::geom_col()) showing either percent makeup if
scale = "percent", which is the default, or raw counts if scale = "count".

https://ggplot2.tidyverse.org/reference/ggtheme.html
https://ggplot2.tidyverse.org/reference/ggtheme.html


12 dittoBarPlot

Value

A ggplot plot where discrete data, grouped by sample, condition, cluster, etc. on the x-axis, is
shown on the y-axis as either counts or percent-of-total-per-grouping in a stacked barplot.

Alternatively, if data.out = TRUE, a list containing the plot ("p") and a dataframe of the underlying
data ("data").

Alternatively, if do.hover = TRUE, a plotly conversion of the ggplot output in which underlying data
can be retrieved upon hovering the cursor over the plot.

Many characteristics of the plot can be adjusted using discrete inputs

• Colors can be adjusted with color.panel and/or colors.

• y-axis zoom and tick marks can be adjusted using min, max, and y.breaks.

• Titles can be adjusted with main, sub, xlab, ylab, and legend.title arguments.

• The legend can be removed by setting legend.show = FALSE.

• x-axis labels and groupings can be changed / reordered using x.labels and x.reorder, and
rotation of these labels can be turned off with x.labels.rotate = FALSE.

• y-axis var-group labels and their order can be changed / reordered using var.labels and
var.labels.reorder.

Author(s)

Daniel Bunis

Examples

# dittoSeq handles bulk and single-cell data quit similarly.
# The SingleCellExperiment object structure is used for both,
# but all functions can be used similarly directly on Seurat
# objects as well.

example(importDittoBulk, echo = FALSE)
myRNA

dittoBarPlot(myRNA, "clustering", group.by = "groups")
dittoBarPlot(myRNA, "clustering", group.by = "groups",

scale = "count")

# Reordering the x-axis groupings to have "C" (#3) come first
dittoBarPlot(myRNA, "clustering", group.by = "groups",

x.reorder = c(3,1,2,4))

### Accessing underlying data:
# as dataframe
dittoBarPlot(myRNA, "clustering", group.by = "groups",

data.out = TRUE)
# through hovering the cursor over the relevant parts of the plot
if (requireNamespace("plotly", quietly = TRUE)) {

dittoBarPlot(myRNA, "clustering", group.by = "groups",
do.hover = TRUE)

}



dittoColors 13

dittoColors Extracts the dittoSeq default colors

Description

Creates a string vector of 40 unique colors, in hexadecimal form, repeated 100 times. Or, if
get.names is set to TRUE, outputs the names of the colors which can be helpful as reference when
adjusting how colors get used.

These colors are a modification of the protanope and deuteranope friendly colors from Wong, B.
Nature Methods, 2011.

Truly, only the first 1-7 are maximally (red-green) color-blindness friendly, but the lightened and
darkened versions (plus grey) in slots 8-40 still work releatively well at extending their utility fur-
ther. Note that past 40, the colors simply repeat in order to most easily allow dittoSeq visualizations
to handle situations requiring even more colors.

The colors are:

1-7 = Suggested color panel from Wong, B. Nature Methods, 2011, minus black

• 1- orange = "#E69F00"

• 2- skyBlue = "#56B4E9"

• 3- bluishGreen = "#009E73"

• 4- yellow = "#F0E442"

• 5- blue = "#0072B2"

• 6- vermillion = "#D55E00"

• 7- reddishPurple = "#CC79A7"

8 = gray40

9-16 = 25% darker versions of colors 1-8

17-24 = 25% lighter versions of colors 1-8

25-32 = 40% lighter versions of colors 1-8

33-40 = 40% darker versions of colors 1-8

Usage

dittoColors(reps = 100, get.names = FALSE)

Arguments

reps Integer which sets how many times the original set of colors should be repeated

get.names Logical, whether only the names of the default dittoSeq color panel should be
returned instead

Value

A string vector with length = 24.

Author(s)

Daniel Bunis



14 dittoDimPlot

Examples

dittoColors()

#To retrieve names:
dittoColors(get.names = TRUE)

dittoDimPlot Shows data overlayed on a tsne, pca, or similar type of plot

Description

Shows data overlayed on a tsne, pca, or similar type of plot

Usage

dittoDimPlot(
object,
var,
reduction.use = .default_reduction(object),
size = 1,
opacity = 1,
dim.1 = 1,
dim.2 = 2,
cells.use = NULL,
shape.by = NULL,
split.by = NULL,
extra.vars = NULL,
split.nrow = NULL,
split.ncol = NULL,
assay = .default_assay(object),
slot = .default_slot(object),
adjustment = NULL,
color.panel = dittoColors(),
colors = seq_along(color.panel),
shape.panel = c(16, 15, 17, 23, 25, 8),
show.others = TRUE,
show.axes.numbers = TRUE,
show.grid.lines = !grepl("umap|tsne", tolower(reduction.use)),
main = "make",
sub = NULL,
xlab = "make",
ylab = "make",
theme = theme_bw(),
legend.show = TRUE,
legend.size = 5,
legend.title = "make",
shape.legend.size = 5,
shape.legend.title = shape.by,
do.ellipse = FALSE,
do.label = FALSE,
labels.size = 5,



dittoDimPlot 15

labels.highlight = TRUE,
labels.repel = TRUE,
rename.var.groups = NULL,
rename.shape.groups = NULL,
min.color = "#F0E442",
max.color = "#0072B2",
min = NULL,
max = NULL,
legend.breaks = waiver(),
legend.breaks.labels = waiver(),
do.letter = FALSE,
do.hover = FALSE,
hover.data = var,
hover.assay = .default_assay(object),
hover.slot = .default_slot(object),
hover.adjustment = NULL,
add.trajectory.lineages = NULL,
add.trajectory.curves = NULL,
trajectory.cluster.meta,
trajectory.arrow.size = 0.15,
data.out = FALSE

)

Arguments

object A Seurat or SingleCellExperiment object to work with

var String name of a "gene" or "metadata" (or "ident" for a Seurat object) to use for
coloring the plots. This is the data that will be displayed for each cell/sample.
Discrete or continuous data both work.
Alternatively, can be a vector of same length as there are cells/samples in the
object.

reduction.use String, such as "pca", "tsne", "umap", or "PCA", etc, which is the name of a
dimensionality reduction slot within the object, and which sets what dimension-
ality reduction space within the object to use.
Default = the first dimensionality reduction slot inside the object named "umap",
"tsne", or "pca", or the first dimensionality reduction slot if none of those exist.

size Number which sets the size of data points. Default = 1.

opacity Number between 0 and 1. Great for when you have MANY overlapping points,
this sets how solid the points should be: 1 = not see-through at all. 0 = invisible.
Default = 1. (In terms of typical ggplot variables, = alpha)

dim.1 The component number to use on the x-axis. Default = 1

dim.2 The component number to use on the y-axis. Default = 2

cells.use String vector of cells’/samples’ names which should be included. Alternatively,
a Logical vector, the same length as the number of cells in the object, which sets
which cells to include. For the typically easier logical method, provide USE in
colnames(object)[USE] OR object@cell.names[USE].

shape.by Variable for setting the shape of cells/samples in the plot. Note: must be discrete.
Can be the name of a gene or meta-data. Alternatively, can be "ident" for clusters
of a Seurat object. Alternatively, can be a numeric of length equal to the total
number of cells/samples in object.



16 dittoDimPlot

Note: shapes can be harder to see, and to process mentally, than colors. Even
as a color blind person myself writing this code, I recommend use of colors for
variables with many discrete values.

split.by 1 or 2 strings naming discrete metadata to use for splitting the cells/samples into
multiple plots with ggplot faceting.
When 2 metadatas are named, c(row,col), the first is used as rows and the second
is used for columns of the resulting grid.
When 1 metadata is named, shape control can be achieved with split.nrow and
split.ncol

extra.vars String vector providing names of any extra metadata to be stashed in the dataframe
supplied to ggplot(data).
Useful for making custom spliting/faceting or other additional alterations after
dittoSeq plot generation.

split.nrow, split.ncol

Integers which set the dimensions of faceting/splitting when a single metadata
is given to split.by.

assay, slot single strings or integer that set which data to use when plotting gene expression.
See gene for more information.

adjustment When plotting gene expression (or antibody, or other forms of counts data),
should that data be used directly (default) or should it be adjusted to be

• "z-score": scaled with the scale() function to produce a relative-to-mean
z-score representation

• "relative.to.max": divided by the maximum expression value to give percent
of max values between [0,1]

color.panel String vector which sets the colors to draw from. dittoColors() by default,
see dittoColors for contents.

colors Integer vector, the indexes / order, of colors from color.panel to actually use.
Useful for quickly swapping the colors of nearby clusters.

shape.panel Vector of integers corresponding to ggplot shapes which sets what shapes to use.
When discrete groupings are supplied by shape.by, this sets the panel of shapes.
When nothing is supplied to shape.by, only the first value is used. Default is a
set of 6, c(16,15,17,23,25,8), the first being a simple, solid, circle.
Note: Unfortunately, shapes can be hard to see when points are on top of each
other & they are more slowly processed by the brain. For these reasons, even
as a color blind person myself writing this code, I recommend use of colors for
variables with many discrete values.

show.others Logical. Whether other cells should be shown in the background in light gray.
Default = TRUE.

show.axes.numbers

Logical which controls whether the axes values should be displayed.
show.grid.lines

Logical which sets whether gridlines of the plot should be shown. They are re-
moved when set to FALSE. Default = TRUE for umap and tsne reduction.use,
FALSE otherwise.

main String, sets the plot title. Default title is automatically generated if not given a
specific value. To remove, set to NULL.

sub String, sets the plot subtitle



dittoDimPlot 17

xlab, ylab Strings which set the labels for the axes. Default labels are generated if you do
not give this a specific value. To remove, set to NULL.

theme A ggplot theme which will be applied before dittoSeq adjustments. Default =
theme_bw(). See https://ggplot2.tidyverse.org/reference/ggtheme.
html for other options and ideas.

legend.show Logical. Whether the legend should be displayed. Default = TRUE.

legend.size Number representing the size at which color legend shapes should be plotted
(for discrete variable plotting) in the color legend. Default = 5. *Enlarging the
colors legend is incredibly helpful for making colors more distinguishable by
color blind individuals.

legend.title String which sets the title for the color legend. Default = NULL normally, but var
when a shape legend will also be shown.

shape.legend.size

Number representing the size at which shapes should be plotted in the shape
legend.

shape.legend.title

String which sets the title of the shapes legend. Default is shape.by

do.ellipse Logical. Whether the groups should be surrounded by median-centered ellipses.

do.label Logical. Whether to add text labels near the center (median) of clusters for
grouping vars.

labels.size Size of the the labels text
labels.highlight

Logical. Whether the labels should have a box behind them

labels.repel Logical, that sets whether the labels’ placements will be adjusted with ggrepel
to avoid intersections between labels and plot bounds. TRUE by default.

rename.var.groups

String vector which sets new names for the identities of var groups.
rename.shape.groups

String vector which sets new names for the identities of shape.by groups.

min.color color for lowest values of var/min. Default = yellow

max.color color for highest values of var/max. Default = blue

min Number which sets the value associated with the minimum color.

max Number which sets the value associated with the maximum color.

legend.breaks Numeric vector which sets the discrete values to show in the color-scale legend
for continuous data.

legend.breaks.labels

String vector, with same length as legend.breaks, which renames what’s dis-
played next to the tick marks of the color-scale.

do.letter Logical which sets whether letters should be added on top of the colored dots.
For extended colorblindness compatibility. NOTE: do.letter is ignored if
do.hover = TRUE or shape.by is provided a metadata because lettering is in-
compatible with plotly and with changing the dots’ to be different shapes.

do.hover Logical which controls whether the output will be converted to a plotly object so
that data about individual points will be displayed when you hover your cursor
over them. hover.data argument is used to determine what data to use.

hover.data String vector of gene and metadata names, example: c("meta1","gene1","meta2")
which determines what data to show on hover when do.hover is set to TRUE.

https://ggplot2.tidyverse.org/reference/ggtheme.html
https://ggplot2.tidyverse.org/reference/ggtheme.html


18 dittoDimPlot

hover.assay, hover.slot, hover.adjustment

Similar to the non-hover versions of these inputs, when showing expression data
upon hover, these set what data will be shown.

add.trajectory.lineages

List of vectors representing trajectory paths, each from start-cluster to end-
cluster, where vector contents are the names of clusters provided in the trajectory.cluster.meta
input.
If the slingshot package was used for trajectory analysis, you can use add.trajectory.lineages
= SlingshotDataSet(SCE_with_slingshot)$lineages. In future versions, I
might build such retrieval in by default for SCEs.

add.trajectory.curves

List of matrices, each representing coordinates for a trajectory path, from start
to end, where matrix columns represent x (dim.1) and y (dim.2) coordinates of
the paths.
Alternatively, a list of lists(/princurve objects) can be provided. Thus, if the
slingshot package was used for trajectory analysis, you can provide add.trajectory.curves
= SlingshotDataSet(SCE_with_slingshot)$curves

trajectory.cluster.meta

String name of metadata containing the clusters that were used for generating
trajectories. Required when plotting trajectories using the add.trajectory.lineages
method. Names of clusters inside the metadata should be the same as the con-
tents of add.trajectory.lineages vectors.

trajectory.arrow.size

Number representing the size of trajectory arrows, in inches. Default = 0.15.

data.out Logical. When set to TRUE, changes the output, from the plot alone, to a list
containing the plot ("p"), a data.frame containing the underlying data for target
cells ("Target_data"), and a data.frame containing the underlying data for non-
target cells ("Others_data").
Note: do.hover plotly conversion is turned off in this setting, but hover.data is
still calculated.

Details

The function creates a dataframe containing the metadata or expression data associated with the
given var (or if a vector of data is provided directly, it just uses that), plus X and Y coordinates data
determined by the reduction.use and dim.1 (x-axis) and dim.2 (y-axis) inputs. Any extra data
requested with shape.by, split.by or extra.var is added as well. For expression/counts data,
assay, slot, and adjustment inputs can be used to change which data is used, and if it should be
adjusted in some way.

Next, if a set of cells or samples to use is indicated with the cells.use input, then the dataframe is
split into Target_data and Others_data based on subsetting by the target cells/samples.

Finally, a scatter plot is then created using these dataframes where non-target cells will be displayed
in gray if show.others=TRUE, and target cell data is displayed on top, colored based on the var-
associated data, and with shapes determined by the shape.by-associated data. If split.by was
used, the plot will be split into a matrix of panels based on the associated groupings.

Value

A ggplot or plotly object where colored dots (or other shapes) are overlayed onto a tSNE, PCA,
UMAP, ..., plot of choice.



dittoDimPlot 19

Alternatively, if data.out=TRUE, a list containing three slots is output: the plot (named ’p’), a
data.table containing the underlying data for target cells (named ’Target_data’), and a data.table
containing the underlying data for non-target cells (named ’Others_data’).

Alternatively, if do.hover is set to TRUE, the plot is coverted from ggplot to plotly & cell/sample in-
formation, determined by the hover.data input, is retrieved, added to the dataframe, and displayed
upon hovering the cursor over the plot.

Many characteristics of the plot can be adjusted using discrete inputs

• size and opacity can be used to adjust the size and transparency of the data points.

• Color can be adjusted with color.panel and/or colors for discrete data, or min, max, min.color,
and max.color for continuous data.

• Shapes can be adjusted with shape.panel.

• Color and shape labels can be changed using rename.var.groups and rename.shape.groups.

• Titles and axes labels can be adjusted with main, sub, xlab, ylab, and legend.title argu-
ments.

• Legends can also be adjusted in other ways, using variables that all start with "legend." for
easy tab-completion lookup.

Additional Features

Many other tweaks and features can be added as well. Each is accessible through ’tab’ autocomple-
tion starting with "do."--- or "add."---, and if additional inputs are involved in implementing or
tweaking these, the associated inputs will start with the "---.":

• If do.label is set to TRUE, labels will be added based on median centers of the discrete var-
data groupings. The size of the text in the labels can be adjusted using the labels.size input.
By default labels will repel eachother and the bounds of the plot, and labels will be highlighted
with a white background. Either of these can be turned off by setting labels.repel = FALSE
or labels.highlight = FALSE,

• If do.ellipse is set to TRUE, ellipses will be added to highlight distinct var-data groups’
positions based on median positions of their cell/sample components.

• If add.trajectory.lineages is provided a list of vectors (each vector being cluster names
from start-cluster-name to end-cluster-name), and a metadata name pointing to the relevant
clustering information is provided to trajectory.cluster.meta, then median centers of the
clusters will be calculated and arrows will be overlayed to show trajectory inference paths in
the current dimmenionality reduction space.

• If add.trajectory.curves is provided a list of matrices (each matrix containing x, y co-
ordinates from start to end), paths and arrows will be overlayed to show trajectory infer-
ence curves in the current dimmenionality reduction space. Arrow size is controlled with the
trajectory.arrow.size input.

Author(s)

Daniel Bunis

See Also

getGenes and getMetas to see what the var, shape.by, etc. options are.



20 dittoDimPlot

importDittoBulk for how to create a SingleCellExperiment object from bulk seq data that dit-
toSeq functions can use & addDimReduction for how to specifically add calculated dimensionality
reductions that dittoDimPlot can utilize.

dittoScatterPlot for showing very similar data representations, but where genes or metadata are
wanted as the axes.

dittoPlot for an alternative continuous data display method where data is shown on a y- (or x-)
axis.

dittoBarPlot for an alternative discrete data display and quantification method.

Examples

# dittoSeq handles bulk and single-cell data quit similarly.
# The SingleCellExperiment object structure is used for both,
# but all functions can be used similarly directly on Seurat
# objects as well.

example(importDittoBulk, echo = FALSE)
myRNA

# Display discrete data:
dittoDimPlot(myRNA, "clustering")
# Display continuous data:
dittoDimPlot(myRNA, "gene1")

# To show currently set clustering for seurat objects, you can use "ident".
# To change the dimensional reduction type, use 'reduction.use'.
dittoDimPlot(myRNA, "clustering",

reduction.use = "pca",
dim.1 = 3,
dim.2 = 4)

# Subset to certain cells with cells.use
dittoDimPlot(myRNA, "clustering",

cells.us = !myRNA$SNP)

# Data can also be split in other ways with 'shape.by' or 'split.by'
dittoDimPlot(myRNA, "gene1",

shape.by = "clustering",
split.by = "SNP") # single split.by element

dittoDimPlot(myRNA, "gene1",
split.by = c("groups","SNP")) # row and col split.by elements

# Modify the look with intuitive inputs
dittoDimPlot(myRNA, "clustering",

size = 2, opacity = 0.7, show.axes.numbers = FALSE,
ylab = NULL, xlab = "tSNE",
main = "Plot Title",
sub = "subtitle",
legend.title = "clustering")

# MANY addtional tweaks are possible.
# Also, many extra features are easy to add as well:
dittoDimPlot(myRNA, "clustering",

do.label = TRUE, do.ellipse = TRUE)
dittoDimPlot(myRNA, "clustering",

do.label = TRUE, labels.highlight = FALSE, labels.size = 8)



dittoHeatmap 21

if (requireNamespace("plotly", quietly = TRUE)) {
dittoDimPlot(myRNA, "gene1", do.hover = TRUE,

hover.data = c("gene2", "clustering", "timepoint"))
}
dittoDimPlot(myRNA, "gene1", add.trajectory.lineages = list(c(1,2,4), c(1,3)),

trajectory.cluster.meta = "clustering",
sub = "Pseudotime Trajectories")

dittoHeatmap Outputs a heatmap of given genes

Description

Given a set of genes, cells/samples, and metadata names for column annotations, this function will
retrieve the expression data for those genes and cells, and the annotation data for those cells. It will
then utilize these data to make a heatmap using the pheatmap function of the pheatmap package.

Usage

dittoHeatmap(
object,
genes = getGenes(object, assay),
cells.use = NULL,
annot.by = NULL,
order.by = .default_order(object, annot.by),
main = NA,
cell.names.meta = NULL,
assay = .default_assay(object),
slot = .default_slot(object),
heatmap.colors = colorRampPalette(c("blue", "white", "red"))(50),
scaled.to.max = FALSE,
heatmap.colors.max.scaled = colorRampPalette(c("white", "red"))(25),
annot.colors = c(dittoColors(), dittoColors(1)[seq_len(7)]),
annotation_col = NULL,
annotation_colors = NULL,
data.out = FALSE,
highlight.genes = NULL,
show_colnames = isBulk(object),
show_rownames = TRUE,
scale = "row",
cluster_cols = isBulk(object),
border_color = NA,
legend_breaks = NA,
breaks = NA,
...

)

Arguments

object A Seurat or SingleCellExperiment object to work with

genes String vector, c("gene1","gene2","gene3",...) = the list of genes to put in the
heatmap. If not provided, defaults to all genes of the object / assay.



22 dittoHeatmap

cells.use String vector of cells’/samples’ names which should be included.
Alternatively, a Logical vector, the same length as the number of cells in the
object, which sets which cells to include.
For the typically easier logical method, provide USE in colnames(object)[USE]
OR object@cell.names[USE].

annot.by String name of any metadata slots containing how the cells/samples should be
annotated.

order.by Single string or numeric vector which sets the ordering of cells/samples. Can be
the name of a gene, or metadata slot. Alternatively, can be a numeric vector of
length equal to the total number of cells/samples in object.

main String that sets the title for the heatmap.
cell.names.meta

quoted "name" of a meta.data slot to use for naming the columns instead of using
the raw cell/sample names.

assay, slot single strings or integer that set which expression data to use. See gene for more
information about how defaults for these are filled in when not provided.

heatmap.colors the colors to use within the heatmap when (default setting) scaled.to.max is
set to FALSE. Default is a ramp from navy to white to red with 50 slices.

scaled.to.max Logical, FALSE by default, which sets whether expression shoud be scaled be-
tween [0, 1]. This is recommended for single-cell datasets as they are generally
enriched in 0s.

heatmap.colors.max.scaled

the colors to use within the heatmap when scaled.to.max is set to TRUE. De-
fault is a ramp from white to red with 25 slices.

annot.colors String (color) vector where each color will be assigned to an individual annota-
tion in the generated annotation bars.

data.out Logical. When set to TRUE, changes the output from the heatmat itself, to a list
containing all arguments that would have be passed to pheatmap for heatmap
generation. (Can be useful for troubleshooting or customization.)

highlight.genes

String vector of genes whose names you would like to show. Only these genes
will be named in the resulting heatmap.

show_colnames, show_rownames, scale, annotation_col, annotation_colors

arguments passed to pheatmap that are over-ruled by certain dittoHeatmap
functionality:

• show_colnames (& labels_col): if cell.names.meta is provided, pheatmaps’s
labels_col is utilized to show these names and show_colnames parameter
is set to TRUE.

• show_rownames (& labels_row): if feature names are provided to highlight.genes,
pheatmap’s labels_row is utilized to show just these features’ names and
show_rownames parameter is set to TRUE.

• scale: when parameter scaled.to.max is set to true, pheatmap’s scale is
set to "none" and the max scaling is performed prior to the pheatmap call.

• annotation_col: Can be provided as normal by the user and any metadata
given to annot.by will then be appended.

• annotation_colors: dittoHeatmap fills this complicated-to-produce input in
automatically by pulling from the colors given to annot.colors, but it is
possible to set all or some manually. dittoSeq will just fill any left out an-
notations. Format is a named (annotation_col & annotation_row colnames)
character vector list where individual color values can also be named.



dittoHeatmap 23

cluster_cols, border_color, legend_breaks, breaks, ...

other arguments passed to pheatmap directly.

Details

This function serves as a wrapper for creating heatmaps from bulk or single-cell RNAseq data with
pheatmap, by essentially automating the data extraction and annotation building steps.

The function will extract the expression matrix for a set of genes and/or an optional subset of
cells / samples to use via cells.use, This matrix is either left as is, default (for scaling within
the ultimate call to pheatmap), or if scaled.to.max = TRUE, is scaled by dividing each row by its
maximum value.

When provided with a set of metadata slot names to use for building annotations (with the annot.by
input), the relevant metadata is retrieved from the object and compiled into a pheatmap-ready
annotation_col input. The input annot.colors is used to establish the set of colors that should
be used for building a pheatmap-ready annotation_colors input as well, unless such an input has
been provided by the user. See below for further details.

Value

A pheatmap object.

Alternatively, if data.out was set to TRUE, a list containing all arguments that would have be passed
to pheatmap to generate such a heatmap.

Many additional characteristics of the plot can be adjusted using discrete inputs

• The cells can be ordered in a set way using the order.by input.
Such ordering happens by default for single-cell RNAseq data when any metadata are provided
to annot.by as it is often unfeasible to cluster thousands of cells.

• A plot title can be added with main.

• Gene or cell/sample names can be hidden with show_rownames and show_colnames, respec-
tively, or...

– Particular genes can also be selected for labeling using the highlight.genes input.
– Names of all cells/samples can be replaced with the contents of a metadata slot using the
cell.names.meta input.

• Additional tweaks are possible through use of pheatmap inputs which will be directly passed
through. Some examples of useful pheatmap parameters are:

– cluster_cols and cluster_rows for controlling clustering. Note: cluster_cols will
always be over-written to be FALSE when the input order.by is used above.

– treeheight_row and treeheight_col for setting how large the trees on the side/top
should be drawn.

– cutree_col and cutree_row for spliting the heatmap based on kmeans clustering

Customized annotations

In typical operation, dittoHeatmap pulls metadata annotations given to annot.by to build a pheatmap-
annotation_col input, then it uses the colors provided to annot.colors to create the pheatmap-
annotation_colors input which sets the annotation coloring. Specifically...

• colors for the values of discrete metadata are pulled from the start of the annot.colors
vector, in the order that they are given to annot.by



24 dittoHeatmap

• colors for the values of continuous metadata are pulled from the end of the annot.colors
vector, in the order that they are given to annot.by

To customize colors or add additional column or row annotations, users can also provide annotation_colors,
annotation_col, or annotation_row pheatmap-inputs directly. General structure is described be-
low, but see pheatmap for additional details and examples.

• annotation_col = a data.frame with rownames of the barcodes/names of all cells/samples in
the dataset & columns representing annotations. Names of columns are used as the annotation
titles. *dittoSeq will append any annot.by annotations to this dataframe.

• annotation_row = a data.frame with rownames of the genes/feature of the dataset & columns
representing annotations. Names of columns are used as the annotation titles.

• annotation_colors = a named list of string (color) vectors. Vectors must be named by the
row or column annotation title that they are associated with. Optionally, individual colors can
be named with the values that they should be associated with.
Partial annotation_colors lists (containing vectors for only certain annotations) will have
colors for left out annotations filled in automatically. For such filling, annot.colors are
pulled for column annotations first, then for row annotations.

Author(s)

Daniel Bunis

See Also

pheatmap, for how to add additional heatmap tweaks.

metaLevels for helping to create manual annotation_colors inputs. This function universally checks
the options/levels of a string, factor (filled only by default), or numerical metadata.

Examples

# dittoSeq handles bulk and single-cell data quit similarly.
# The SingleCellExperiment object structure is used for both,
# but all functions can be used similarly directly on Seurat
# objects as well.

example(importDittoBulk, echo = FALSE)
myRNA
scRNA <- setBulk(myRNA, FALSE)

# Pick a set of genes
genes <- getGenes(myRNA)[1:30]

# Make a heatmap with cells/samples annotated by their clusters
dittoHeatmap(myRNA, genes,

annot.by = "clustering")

# For single-cell data, you will typically have more cells than can be
# clustered quickly. Thus, cell clustering is turned off by default for
# single-cell data.
dittoHeatmap(scRNA, genes,

annot.by = "clustering")

# Using the 'order.by' input:
# ordering by a useful metadata or gene is generally more helpful



dittoPlot 25

# For single-cell data, order.by defaults to the first element given to
# annot.by.
# For bulk data, order.by must be set separately.
dittoHeatmap(myRNA, genes,

annot.by = "clustering",
order.by = "clustering")

# When there are many cells, showing names becomes less useful.
# Names can be turned off with the show_colnames parameter.
dittoHeatmap(myRNA, genes,

annot.by = "groups",
order.by = "groups",
show_colnames = FALSE)

# Additionally, it is recommended for single-cell data that the parameter
# scaled.to.max be set to TRUE, or scale be "none" and turned off altogether,
# because these data are generally enriched for zeros that otherwise get
# scaled to a negative value.
dittoHeatmap(myRNA, genes, annot.by = "groups",

order.by = "groups", show_colnames = FALSE,
scaled.to.max = TRUE)

dittoPlot Plots continuous data for cutomizable cells’/samples’ groupings on a
y-axis

Description

Plots continuous data for cutomizable cells’/samples’ groupings on a y-axis

Usage

dittoPlot(
object,
var,
group.by,
color.by = group.by,
shape.by = NULL,
split.by = NULL,
extra.vars = NULL,
cells.use = NULL,
plots = c("jitter", "vlnplot"),
assay = .default_assay(object),
slot = .default_slot(object),
adjustment = NULL,
do.hover = FALSE,
hover.data = var,
color.panel = dittoColors(),
colors = seq_along(color.panel),
shape.panel = c(16, 15, 17, 23, 25, 8),
theme = theme_classic(),
main = "make",



26 dittoPlot

sub = NULL,
ylab = "make",
y.breaks = NULL,
min = NULL,
max = NULL,
xlab = group.by,
x.labels = NULL,
x.labels.rotate = NA,
x.reorder = NULL,
split.nrow = NULL,
split.ncol = NULL,
jitter.size = 1,
jitter.width = 0.2,
jitter.color = "black",
jitter.shape.legend.size = NA,
jitter.shape.legend.show = TRUE,
boxplot.width = 0.2,
boxplot.color = "black",
boxplot.show.outliers = NA,
boxplot.fill = TRUE,
vlnplot.lineweight = 1,
vlnplot.width = 1,
vlnplot.scaling = "area",
ridgeplot.lineweight = 1,
ridgeplot.scale = 1.25,
add.line = NULL,
line.linetype = "dashed",
line.color = "black",
legend.show = TRUE,
legend.title = "make",
data.out = FALSE

)

dittoRidgePlot(..., plots = c("ridgeplot"))

dittoRidgeJitter(..., plots = c("ridgeplot", "jitter"))

dittoBoxPlot(..., plots = c("boxplot", "jitter"))

Arguments

object A Seurat or SingleCellExperiment object to work with

var Single string representing the name of a metadata or gene, OR a vector with
length equal to the total number of cells/samples in the dataset. This is the data
that will be displayed.

group.by String representing the name of a metadata to use for separating the cells/samples
into discrete groups.

color.by String representing the name of a metadata to use for setting fills. Great for
highlighting subgroups when wanted, but it defaults to group.by so this input
can be skipped otherwise. Affects boxplot, vlnplot, and ridgeplot fills.

shape.by Single string representing the name of a metadata to use for setting the shapes of
the jitter points. When not provided, all cells/samples will be represented with



dittoPlot 27

dots.

split.by 1 or 2 strings naming discrete metadata to use for splitting the cells/samples into
multiple plots with ggplot faceting.
When 2 metadatas are named, c(row,col), the first is used as rows and the second
is used for columns of the resulting grid.
When 1 metadata is named, shape control can be achieved with split.nrow and
split.ncol

extra.vars String vector providing names of any extra metadata to be stashed in the dataframe
supplied to ggplot(data).
Useful for making custom spliting/faceting or other additional alterations after
dittoSeq plot generation.

cells.use String vector of cells’/samples’ names which should be included. Alternatively,
a Logical vector, the same length as the number of cells in the object, which sets
which cells to include. For the typically easier logical method, provide USE in
colnames(object)[USE] OR object@cell.names[USE].

plots String vector which sets the types of plots to include: possibilities = "jitter",
"boxplot", "vlnplot", "ridgeplot". Order matters: c("vlnplot", "boxplot", "jitter")
will put a violin plot in the back, boxplot in the middle, and then individual dots
in the front. See details section for more info.

assay, slot single strings or integer that set which data to use when plotting gene expression
/ feature data. See gene for more information.

adjustment When plotting gene expression / feature counts, should that data be used directly
(default) or should it be adjusted to be

• "z-score": scaled with the scale() function to produce a relative-to-mean
z-score representation

• "relative.to.max": divided by the maximum expression value to give percent
of max values between [0,1]

do.hover Logical. Default = FALSE. If set to TRUE (and if there is a "jitter" in plots):
object will be converted to a ggplotly object so that data about individual cells
will be displayed when you hover your cursor over the jitter points,
Note: Currently, hovering is incompatible with RidgePlots as plotly does not
support the ggplot geom.

hover.data String vector, a list of variable names, c("meta1","gene1","meta2",...) which
determines what data to show upon hover when do.hover is set to TRUE.

color.panel String vector which sets the colors to draw from for plot fills. Default = dittoColors().

colors Integer vector, the indexes / order, of colors from color.panel to actually use.
(Provides an alternative to directly modifying color.panel.)

shape.panel Vector of integers corresponding to ggplot shapes which sets what shapes to use.
When discrete groupings are supplied by shape.by, this sets the panel of shapes
which will be used. When nothing is supplied to shape.by, only the first value
is used. Default is a set of 6, c(16,15,17,23,25,8), the first being a simple,
solid, circle.

theme A ggplot theme which will be applied before dittoSeq adjustments. Default =
theme_classic(). See https://ggplot2.tidyverse.org/reference/ggtheme.
html for other options and ideas.

main String, sets the plot title. Default = "make" and if left as make, a title will be
automatically generated. To remove, set to NULL.

https://ggplot2.tidyverse.org/reference/ggtheme.html
https://ggplot2.tidyverse.org/reference/ggtheme.html


28 dittoPlot

sub String, sets the plot subtitle
ylab String, sets the continuous-axis label (=y-axis for box and violin plots, x-axis

for ridgeplots). Defaults to "var" or "var expression" if var is a gene.
y.breaks Numeric vector, a set of breaks that should be used as major gridlines. c(break1,break2,break3,etc.).
min, max Scalars which control the zoom of the plot. These inputs set the minimum /

maximum values of the data to show. Default = set based on the limits of the
data in var.

xlab String which sets the grouping-axis label (=x-axis for box and violin plots, y-
axis for ridgeplots). Default is group.by so it defaults to the name of the group-
ing information. Set to NULL to remove.

x.labels String vector, c("label1","label2","label3",...) which overrides the names of the
samples/groups. NOTE: you need to give at least as many labels as there are
discrete values in the group.by data.

x.labels.rotate

Logical which sets whether the labels should be rotated. Default: TRUE for violin
and box plots, but FALSE for ridgeplots.

x.reorder Integer vector. A sequence of numbers, from 1 to the number of groupings, for
rearranging the order of x-axis groupings.
Method: Make a first plot without this input. Then, treating the leftmost group-
ing as index 1, and the rightmost as index n. Values of x.reorder should be these
indices, but in the order that you would like them rearranged to be.

split.nrow, split.ncol

Integers which set the dimensions of faceting/splitting when a single metadata
is given to split.by.

jitter.size Scalar which sets the size of the jitter shapes.
jitter.width Scalar that sets the width/spread of the jitter in the x direction. Ignored in ridge-

plots.
jitter.color String which sets the color of the jitter shapes
jitter.shape.legend.size

Scalar which changes the size of the shape key in the legend. If set to NA,
jitter.size is used.

jitter.shape.legend.show

Logical which sets whether the shapes legend will be shown when its shape is
determined by shape.by.

boxplot.width Scalar which sets the width/spread of the boxplot in the x direction
boxplot.color String which sets the color of the lines of the boxplot
boxplot.show.outliers

Logical, whether outliers should by including in the boxplot. Default is FALSE
when there is a jitter plotted, TRUE if there is no jitter.

boxplot.fill Logical, whether the boxplot should be filled in or not. Known bug: when
boxplot fill is turned off, outliers do not render.

vlnplot.lineweight

Scalar which sets the thickness of the line that outlines the violin plots.
vlnplot.width Scalar which sets the width/spread of the jitter in the x direction
vlnplot.scaling

String which sets how the widths of the of violin plots are set in relation to
eachother. Options are "area", "count", and "width". If the deafult is not right
for your data, I recommend trying "width". For a detailed explanation of each,
see geom_violin.



dittoPlot 29

ridgeplot.lineweight

Scalar which sets the thickness of the ridgeplot outline.
ridgeplot.scale

Scalar which sets the distance/overlap between ridgeplots. A value of 1 means
the tallest density curve just touches the baseline of the next higher one. Higher
numbers lead to greater overlap. Default = 1.25

add.line numeric value(s) where one or multiple line should be added

line.linetype String which sets the type of line for add.line. Defaults to "dashed", but any
ggplot linetype will work.

line.color String that sets the color(s) of the add.line line(s)

legend.show Logical. Whether the legend should be displayed. Default = TRUE.

legend.title String or NULL, sets the title for the main legend which includes colors and data
representations. This input is set to NULL by default.

data.out Logical. When set to TRUE, changes the output, from the plot alone, to a list
containing the plot (p) and data (data).
Note: plotly conversion is turned off in the data.out = TRUE setting, but hover.data
is still calculated.

... arguments passed to dittoPlot by dittoRidgePlot, dittoRidgeJitter, and dittoBox-
Plot wrappers. Options are all the ones above.

Details

The function creates a dataframe containing the metadata or expression data associated with the
given var (or if a vector of data is provided, that data). On the discrete axis, data will be grouped
by the metadata given to group.by and colored by the metadata given to color.by. The assay and
slot inputs can be used to change what expression data is used when displaying gene expression.
If a set of cells to use is indicated with the cells.use input, the data is subset to include only those
cells before plotting.

The plots argument determines the types of data representation that will be generated, as well as
their order from back to front. Options are "jitter", "boxplot", "vlnplot", and "ridgeplot".
Inclusion of "ridgeplot" overrides boxplot and violin plot and changes the plot to be horizontal.

When split.by is provided the name of a metadata containing discrete data, separate plots will be
produced representing each of the distinct groupings of the split.by data.

dittoRidgePlot, dittoRidgeJitter, and dittoBoxPlot are included as wrappers of the ba-
sic dittoPlot function that simply change the default for the plots input to be "ridgeplot",
c("ridgeplot","jitter"), or c("boxplot","jitter"), to make such plots even easier to pro-
duce.

Value

a ggplot or plotly where continuous data, grouped by sample, age, cluster, etc., shown on either the
y-axis by a violin plot, boxplot, and/or jittered points, or on the x-axis by a ridgeplot with or without
jittered points.

Alternatively when data.out=TRUE, a list containing the plot ("p") and the underlying data as a
dataframe ("data").

Alternatively when do.hover = TRUE, a plotly converted version of the plot where additional data
will be displayed when the cursor is hovered over jitter points.



30 dittoPlot

Functions

• dittoRidgePlot: Plots continuous data for cutomizable cells’/samples’ groupings horizon-
tally in a density representation

• dittoRidgeJitter: dittoRidgePlot, but with jitter overlaid

• dittoBoxPlot: Plots continuous data for cutomizable cells’/samples’ groupings in boxplot
form

Many characteristics of the plot can be adjusted using discrete inputs

• Each data representation has options which are controlled by variables that start with their
associated string. For example, all jitter adjustments, like jitter.size, start with "jitter.".

• Colors can be adjusted with color.panel.

• Shapes used in conjunction with shape.by can be adjusted with shape.panel.

• Titles and axes labels can be adjusted with main, sub, xlab, ylab, and legend.title argu-
ments.

• The legend can be hidden by setting legend.show = TRUE.

• y-axis zoom and tick marks can be adjusted using min, max, and y.breaks.

• x-axis labels and groupings can be changed / reordered using x.labels and x.reorder, and
rotation of these labels can be turned off with x.labels.rotate = FALSE.

• Line(s) can be added at single or multiple value(s) by providing these values to add.line.
Linetype and color are set with line.linetype, which is "dashed" by default, and line.color,
which is "black" by default.

• Single or multiple additional per-cell features can be retrieved and stashed within the underly-
ing data using extra.vars. This can be very useful for making manual additional alterations
after dittoSeq plot generation.

Author(s)

Daniel Bunis

See Also

multi_dittoPlot for easy creation of multiple dittoPlots each focusing on a different var.

dittoPlotVarsAcrossGroups to create dittoPlots that show summarized expression (or values for
metadata), accross groups, of multiple vars in a single plot.

dittoRidgePlot, dittoRidgeJitter, and dittoBoxPlot for shortcuts to a few ’plots’ input
shortcuts

Examples

# dittoSeq handles bulk and single-cell data quit similarly.
# The SingleCellExperiment object structure is used for both,
# but all functions can be used similarly directly on Seurat
# objects as well.

example(importDittoBulk, echo = FALSE)
myRNA

# Basic dittoplot, with jitter behind a vlnplot (looks better with more cells)
dittoPlot(object = myRNA, var = "gene1", group.by = "timepoint")



dittoPlotVarsAcrossGroups 31

# Color distinctly from the grouping variable using 'color.by'
dittoPlot(object = myRNA, var = "gene1", group.by = "timepoint",

color.by = "conditions")

# Update the 'plots' input to change / reorder the data representations
dittoPlot(myRNA, "gene1", "timepoint",

plots = c("vlnplot", "boxplot", "jitter"))

# Modify the look with intuitive inputs
dittoPlot(myRNA, "gene1", "timepoint",

plots = c("vlnplot", "boxplot", "jitter"),
boxplot.color = "white",
main = "CD3E",
legend.show = FALSE)

# Data can also be split in other ways with 'shape.by' or 'split.by'
dittoPlot(object = myRNA, var = "gene1", group.by = "timepoint",

plots = c("vlnplot", "boxplot", "jitter"),
shape.by = "clustering",
split.by = "SNP") # single split.by element

dittoPlot(object = myRNA, var = "gene1", group.by = "timepoint",
plots = c("vlnplot", "boxplot", "jitter"),
split.by = c("groups","SNP")) # row and col split.by elements

# For faceting, instead of using 'split.by', the target data can alternatively
# be given to 'extra.var' to have it added in the underlying dataframe, then
# faceting can be added manually for extra flexibility
dittoPlot(myRNA, "gene1", "clustering",

plots = c("vlnplot", "boxplot", "jitter"),
extra.var = "SNP") + facet_wrap("SNP", ncol = 1, strip.position = "left")

# Quickly make a Ridgeplot
dittoRidgePlot(myRNA, "gene1", group.by = "timepoint")

# Quickly make a Boxplot
dittoBoxPlot(myRNA, "gene1", group.by = "timepoint")

dittoPlotVarsAcrossGroups

Generates a dittoPlot where datapoints are genes/metadata summa-
rizes per groups instead of individual values per cells/samples.

Description

Generates a dittoPlot where datapoints are genes/metadata summarizes per groups instead of indi-
vidual values per cells/samples.

Usage

dittoPlotVarsAcrossGroups(
object,
vars,



32 dittoPlotVarsAcrossGroups

group.by,
color.by = group.by,
summary.fxn = mean,
cells.use = NULL,
plots = c("vlnplot", "jitter"),
assay = .default_assay(object),
slot = .default_slot(object),
adjustment = "z-score",
do.hover = FALSE,
main = NULL,
sub = NULL,
ylab = "make",
y.breaks = NULL,
min = NULL,
max = NULL,
xlab = group.by,
x.labels = NULL,
x.labels.rotate = NA,
x.reorder = NULL,
color.panel = dittoColors(),
colors = c(seq_along(color.panel)),
theme = theme_classic(),
jitter.size = 1,
jitter.width = 0.2,
jitter.color = "black",
boxplot.width = 0.2,
boxplot.color = "black",
boxplot.show.outliers = NA,
boxplot.fill = TRUE,
vlnplot.lineweight = 1,
vlnplot.width = 1,
vlnplot.scaling = "area",
ridgeplot.lineweight = 1,
ridgeplot.scale = 1.25,
add.line = NULL,
line.linetype = "dashed",
line.color = "black",
legend.show = TRUE,
legend.title = NULL,
data.out = FALSE

)

Arguments

object A Seurat or SingleCellExperiment object

vars String vector (example: c("gene1","gene2","gene3")) which selects which
variables, typically genes, to extract from the object, summarize across groups,
and add to the plot

group.by String representing the name of a metadata to use for separating the cells/samples
into discrete groups.

color.by String representing the name of a metadata to use for setting fills. Great for
highlighting subgroups when wanted, but it defaults to group.by so this input



dittoPlotVarsAcrossGroups 33

can be skipped otherwise. Affects boxplot, vlnplot, and ridgeplot fills.

summary.fxn A function which sets how variables’ data will be summarized accross the groups.
Default is mean, which will take the average value, but any function can be used
as long as it takes in a numeric vector and returns a single numeric value. Alter-
native examles: median, max, function (x) sum(x!=0)/length(x).

cells.use String vector of cells’/samples’ names which should be included. Alternatively,
a Logical vector, the same length as the number of cells in the object, which sets
which cells to include. For the typically easier logical method, provide USE in
colnames(object)[USE] OR object@cell.names[USE].

plots String vector which sets the types of plots to include: possibilities = "jitter",
"boxplot", "vlnplot", "ridgeplot". Order matters: c("vlnplot", "boxplot", "jitter")
will put a violin plot in the back, boxplot in the middle, and then individual dots
in the front. See details section for more info.

assay, slot single strings or integer that set which data to use when plotting expressin data.
See gene for more information about how defaults for these are filled in when
not provided.

adjustment When plotting gene expression (or antibody, or other forms of counts data),
should that data be used directly or should it be adjusted to be

• "z-score": DEFAULT, scaled with the scale() function to produce a relative-
to-mean z-score representation

• NULL: no adjustment, the normal method for all other ditto expression
plotting

• "relative.to.max": divided by the maximum expression value to give percent
of max values between [0,1]

do.hover Logical. Default = FALSE. If set to TRUE the object will be converted to a ggplotly
object so that data about individual points will be displayed when you hover your
cursor over them. The hover data works best for jitter data representations, so
it is recommended to have "jitter" as the last value of the plots input when
running using hover.
Note: Currently, incompatible with RidgePlots as plotly does not support the
geom.

main String which sets the plot title.

sub String which sets the plot subtitle.

ylab String which sets the y axis label. Default = a combination of then name of the
summary function + adjustment + "expression". Set to NULL to remove.

y.breaks Numeric vector, a set of breaks that should be used as major gridlines. c(break1,break2,break3,etc.).

min, max Scalars which control the zoom of the plot. These inputs set the minimum /
maximum values of the data to show. Default = set based on the limits of the
data in var.

xlab String which sets the grouping-axis label (=x-axis for box and violin plots, y-
axis for ridgeplots). Default is group.by so it defaults to the name of the group-
ing information. Set to NULL to remove.

x.labels String vector, c("label1","label2","label3",...) which overrides the names of the
samples/groups. NOTE: you need to give at least as many labels as there are
discrete values in the group.by data.

x.labels.rotate

Logical which sets whether the labels should be rotated. Default: TRUE for violin
and box plots, but FALSE for ridgeplots.



34 dittoPlotVarsAcrossGroups

x.reorder Integer vector. A sequence of numbers, from 1 to the number of groupings, for
rearranging the order of x-axis groupings.
Method: Make a first plot without this input. Then, treating the leftmost group-
ing as index 1, and the rightmost as index n. Values of x.reorder should be these
indices, but in the order that you would like them rearranged to be.

color.panel String vector which sets the colors to draw from for plot fills. Default = dittoColors().

colors Integer vector, the indexes / order, of colors from color.panel to actually use.
(Provides an alternative to directly modifying color.panel.)

theme A ggplot theme which will be applied before dittoSeq adjustments. Default =
theme_classic(). See https://ggplot2.tidyverse.org/reference/ggtheme.
html for other options and ideas.

jitter.size Scalar which sets the size of the jitter shapes.

jitter.width Scalar that sets the width/spread of the jitter in the x direction. Ignored in ridge-
plots.

jitter.color String which sets the color of the jitter shapes

boxplot.width Scalar which sets the width/spread of the boxplot in the x direction

boxplot.color String which sets the color of the lines of the boxplot
boxplot.show.outliers

Logical, whether outliers should by including in the boxplot. Default is FALSE
when there is a jitter plotted, TRUE if there is no jitter.

boxplot.fill Logical, whether the boxplot should be filled in or not. Known bug: when
boxplot fill is turned off, outliers do not render.

vlnplot.lineweight

Scalar which sets the thickness of the line that outlines the violin plots.

vlnplot.width Scalar which sets the width/spread of the jitter in the x direction
vlnplot.scaling

String which sets how the widths of the of violin plots are set in relation to
eachother. Options are "area", "count", and "width". If the deafult is not right
for your data, I recommend trying "width". For a detailed explanation of each,
see geom_violin.

ridgeplot.lineweight

Scalar which sets the thickness of the ridgeplot outline.
ridgeplot.scale

Scalar which sets the distance/overlap between ridgeplots. A value of 1 means
the tallest density curve just touches the baseline of the next higher one. Higher
numbers lead to greater overlap. Default = 1.25

add.line numeric value(s) where one or multiple line should be added

line.linetype String which sets the type of line for add.line. Defaults to "dashed", but any
ggplot linetype will work.

line.color String that sets the color(s) of the add.line line(s)

legend.show Logical. Whether the legend should be displayed. Default = TRUE.

legend.title String or NULL, sets the title for the main legend which includes colors and data
representations. This input is set to NULL by default.

data.out Logical. When set to TRUE, changes the output, from the plot alone, to a list
containing the plot (p) and data (data).
Note: plotly conversion is turned off in the data.out = TRUE setting, but hover.data
is still calculated.

https://ggplot2.tidyverse.org/reference/ggtheme.html
https://ggplot2.tidyverse.org/reference/ggtheme.html


dittoPlotVarsAcrossGroups 35

Details

Generally, this function will output a dittoPlot, grouped by sample, age, cluster, etc., where each
data point represents the summary (typically mean), accross each group, of individual variable’s
expression, but variables can be genes or metadata.

The data for each element of vars is obtained. When elements are genes/features, assay and slot
are utilized to determine which expression data to use, and adjustment determines if and how the
expression data might be adjusted.

By default, a z-score adjustment is applied to all gene/feature vars. Note that this adjustment is
applied before cells/samples subsetting.

x-axis groupings are then determined using group.by, and data for each variable is summarized
using the summary.fxn.

Finally, data is plotted with the data representation types in plots.

Value

a ggplot or plotly where continuous data, grouped by sample, age, cluster, etc., shown on either the
y-axis by a violin plot, boxplot, and/or jittered points, or on the x-axis by a ridgeplot with or without
jittered points.

Alternatively when data.out=TRUE, a list containing the plot ("p") and the underlying data as a
dataframe ("data").

Alternatively when do.hover = TRUE, a plotly converted version of the plot where additional data
will be displayed when the cursor is hovered over jitter points.

Plot Customization

The plots argument determines the types of data representation that will be generated, as well as
their order from back to front. Options are "jitter", "boxplot", "vlnplot", and "ridgeplot".
Each plot type has specific associated options which are controlled by variables that start with their
associated string, ex: jitter.size.

Inclusion of "ridgeplot" overrides boxplot and violin plot and changes the plot to be horizontal.

• Colors can be adjusted with color.panel.

• Shapes used in conjunction with shape.by can be adjusted with shape.panel.

• Titles and axes labels can be adjusted with main, sub, xlab, ylab, and legend.title argu-
ments.

• The legend can be hidden by setting legend.show = TRUE.

• y-axis zoom and tick marks can be adjusted using min, max, and y.breaks.

• x-axis labels and groupings can be changed / reordered using x.labels and x.reorder, and
rotation of these labels can be turned off with x.labels.rotate = FALSE.

• Line(s) can be added at single or multiple value(s) by providing these values to add.line.
Linetype and color are set with line.linetype, which is "dashed" by default, and line.color,
which is "black" by default.

Author(s)

Daniel Bunis



36 dittoPlotVarsAcrossGroups

See Also

dittoPlot and multi_dittoPlot for plotting of single or mutliple expression and metadata vars,
each as separate plots, on a per cell/sample basis.

Examples

# dittoSeq handles bulk and single-cell data quit similarly.
# The SingleCellExperiment object structure is used for both,
# but all functions can be used similarly directly on Seurat
# objects as well.

##########
### Generate some random data
##########
# Zero-inflated Expression
nsamples <- 60
exp <- rpois(1000*nsamples, 20)
exp[sample(c(TRUE,TRUE,FALSE),1000*nsamples, TRUE)] <- 0
exp <- matrix(exp, ncol=nsamples)
colnames(exp) <- paste0("sample", seq_len(ncol(exp)))
rownames(exp) <- paste0("gene", seq_len(nrow(exp)))
logexp <- log2(exp + 1)

# Metadata
conds <- factor(rep(c("condition1", "condition2"), each=nsamples/2))
timept <- rep(c("d0", "d3", "d6", "d9"), each = 15)
genome <- rep(c(rep(TRUE,7),rep(FALSE,8)), 4)
grps <- sample(c("A","B","C","D"), nsamples, TRUE)

# We can add these directly during import, or after.
myscRNA <- importDittoBulk(x = list(counts = exp, logcounts = logexp),

metadata = data.frame(conditions = conds, timepoint = timept,
SNP = genome, groups = grps))

# Pick a set of genes
genes <- getGenes(myscRNA)[1:30]

dittoPlotVarsAcrossGroups(
myscRNA, genes, group.by = "timepoint")

# Color can be controlled separately from grouping with 'color.by'
# Just note: all groupings must map to a single color.
dittoPlotVarsAcrossGroups(myscRNA, genes, "timepoint",

color.by = "conditions")

# To change it to have the violin plot in the back, a jitter on
# top of that, and a white boxplot with no fill in front:
dittoPlotVarsAcrossGroups(myscRNA, genes, "timepoint", "conditions",

plots = c("vlnplot","jitter","boxplot"),
boxplot.color = "white", boxplot.fill = FALSE)

## Data can be summaryized in other ways by changing the summary.fxn input.
# Often, it makes sense to turn off the z-score adjustment in such cases.
# median
dittoPlotVarsAcrossGroups(myscRNA, genes, "timepoint", "conditions",

summary.fxn = median,



dittoScatterPlot 37

adjustment = NULL)
# Percent non-zero expression
percent <- function(x) {sum(x!=0)/length(x)}
dittoPlotVarsAcrossGroups(myscRNA, genes, "timepoint", "conditions",

summary.fxn = percent,
adjustment = NULL)

# To investigate the identities of outlier genes, we can turn on hovering
# (if the plotly package is available)
if (requireNamespace("plotly", quietly = TRUE)) {

dittoPlotVarsAcrossGroups(
myscRNA, genes, "timepoint", "conditions",
do.hover = TRUE)

}

dittoScatterPlot Show RNAseq data overlayed on a scatter plot

Description

Show RNAseq data overlayed on a scatter plot

Usage

dittoScatterPlot(
object,
x.var,
y.var,
color.var = NULL,
shape.by = NULL,
split.by = NULL,
extra.vars = NULL,
cells.use = NULL,
show.others = FALSE,
size = 1,
opacity = 1,
color.panel = dittoColors(),
colors = seq_along(color.panel),
split.nrow = NULL,
split.ncol = NULL,
assay.x = .default_assay(object),
slot.x = .default_slot(object),
adjustment.x = NULL,
assay.y = .default_assay(object),
slot.y = .default_slot(object),
adjustment.y = NULL,
assay.color = .default_assay(object),
slot.color = .default_slot(object),
adjustment.color = NULL,
assay.extra = .default_assay(object),
slot.extra = .default_slot(object),



38 dittoScatterPlot

adjustment.extra = NULL,
do.hover = FALSE,
hover.data = NULL,
hover.assay = .default_assay(object),
hover.slot = .default_slot(object),
hover.adjustment = NULL,
shape.panel = c(16, 15, 17, 23, 25, 8),
rename.color.groups = NULL,
rename.shape.groups = NULL,
min.color = "#F0E442",
max.color = "#0072B2",
min = NULL,
max = NULL,
xlab = x.var,
ylab = y.var,
main = "make",
sub = NULL,
theme = theme_bw(),
legend.show = TRUE,
legend.color.title = color.var,
legend.color.size = 5,
legend.color.breaks = waiver(),
legend.color.breaks.labels = waiver(),
legend.shape.title = shape.by,
legend.shape.size = 5,
data.out = FALSE

)

Arguments

object A Seurat or SingleCellExperiment object

x.var, y.var Single string giving a gene or metadata that will be used for the x- and y-axis of
the scatterplot. Note: must be continuous.
Alternatively, can be a directly supplied numeric vector of length equal to the
total number of cells/samples in object.

color.var Single string giving a gene or metadata that will set the color of cells/samples in
the plot.
Alternatively, can be a directly supplied numeric or string, vector or a factor of
length equal to the total number of cells/samples in object.

shape.by Single string giving a metadata (Note: must be discrete.) that will set the shape
of cells/samples in the plot.
Alternatively, can be a directly supplied string vector or a factor of length equal
to the total number of cells/samples in object.

split.by 1 or 2 strings naming discrete metadata to use for splitting the cells/samples into
multiple plots with ggplot faceting.
When 2 metadatas are named, c(row,col), the first is used as rows and the second
is used for columns of the resulting grid.
When 1 metadata is named, shape control can be achieved with split.nrow and
split.ncol

extra.vars String vector providing names of any extra metadata to be stashed in the dataframe
supplied to ggplot(data).



dittoScatterPlot 39

Useful for making custom alterations after dittoSeq plot generation.

cells.use String vector of cells’/samples’ names which should be included.
Alternatively, a Logical vector, the same length as the number of cells in the
object, which sets which cells to include. For the typically easier logical method,
provide USE in object@cell.names[USE] OR colnames(object)[USE]).

show.others Logical. TRUE by default, whether other cells should be shown in the back-
ground in light gray.

size Number which sets the size of data points. Default = 1.

opacity Number between 0 and 1. Great for when you have MANY overlapping points,
this sets how solid the points should be: 1 = not see-through at all. 0 = invisible.
Default = 1. (In terms of typical ggplot variables, = alpha)

color.panel String vector which sets the colors to draw from. dittoColors() by default,
see dittoColors for contents.

colors Integer vector, the indexes / order, of colors from color.panel to actually use
split.nrow, split.ncol

Integers which set the dimensions of faceting/splitting when a single metadata
is given to split.by.

assay.x, assay.y, assay.color, assay.extra, slot.x, slot.y, slot.color, slot.extra, adjustment.x, adjustment.y, adjustment.color, adjustment.extra

assay, slot, and adjustment set which data to use when the axes, coloring, or
extra.vars are based on expression/counts data. See gene for additional infor-
mation.

do.hover Logical which controls whether the object will be converted to a plotly object so
that data about individual points will be displayed when you hover your cursor
over them. hover.data argument is used to determine what data to use.

hover.data String vector of gene and metadata names, example: c("meta1","gene1","meta2","gene2")
which determines what data to show on hover when do.hover is set to TRUE.

hover.assay, hover.slot, hover.adjustment

Similar to the x, y, color, and extra versions, when showing expression data upon
hover, these set what data will be shown.

shape.panel Vector of integers corresponding to ggplot shapes which sets what shapes to use.
When discrete groupings are supplied by shape.by, this sets the panel of shapes.
When nothing is supplied to shape.by, only the first value is used. Default is a
set of 6, c(16,15,17,23,25,8), the first being a simple, solid, circle.
Note: Unfortunately, shapes can be hard to see when points are on top of each
other & they are more slowly processed by the brain. For these reasons, even
as a color blind person myself writing this code, I recommend use of colors for
variables with many discrete values.

rename.color.groups, rename.shape.groups

String vector containing new names for the identities of the color or shape over-
lay groups.

min.color color for lowest values of var/min. Default = yellow

max.color color for highest values of var/max. Default = blue

min, max Numbers which set the values associated with the minimum and maximum col-
ors.

xlab, ylab Strings which set the labels for the axes. To remove, set to NULL.

main String, sets the plot title. A default title is automatically generated if based on
color.var and shape.by when either are provided. To remove, set to NULL.



40 dittoScatterPlot

sub String, sets the plot subtitle.

theme A ggplot theme which will be applied before dittoSeq adjustments. Default =
theme_bw(). See https://ggplot2.tidyverse.org/reference/ggtheme.
html for other options and ideas.

legend.show Logical. Whether any legend should be displayed. Default = TRUE.
legend.color.title, legend.shape.title

Strings which set the title for the color or shape legends.
legend.color.size, legend.shape.size

Numbers representing the size at which shapes should be plotted in the color and
shape legends (for discrete variable plotting). Default = 5. *Enlarging the icons
in the colors legend is incredibly helpful for making colors more distinguishable
by color blind individuals.

legend.color.breaks

Numeric vector which sets the discrete values to show in the color-scale legend
for continuous data.

legend.color.breaks.labels

String vector, with same length as legend.breaks, which renames what’s dis-
played next to the tick marks of the color-scale.

data.out Logical. When set to TRUE, changes the output, from the plot alone, to a list
containing the plot ("p"), a data.frame containing the underlying data for target
cells ("Target_data"), and a data.frame containing the underlying data for non-
target cells ("Others_data").
Note: do.hover plotly conversion is turned off in this setting, but hover.data is
still calculated.

Details

This function creates a dataframe with X, Y, color, shape, and faceting data determined by x.var,
y.var, color.var, shape.var, and split.by. Any extra gene or metadata requested with extra.var
is added as well. For expression/counts data, assay, slot, and adjustment inputs (.x, .y, and
.color) can be used to change which data is used, and if it should be adjusted in some way.

Next, if a set of cells or samples to use is indicated with the cells.use input, then the dataframe is
split into Target_data and Others_data based on subsetting by the target cells/samples.

Finally, a scatter plot is created using these dataframes. Non-target cells are colored in gray if
show.others=TRUE, and target cell data is displayed on top, colored and shaped based on the
color.var- and shape.by-associated data. If split.by was used, the plot will be split into a
matrix of panels based on the associated groupings.

Value

a ggplot scatterplot where colored dots and/or shapes represent individual cells/samples. X and Y
axes can be gene expression, numeric metadata, or manually supplied values.

Alternatively, if data.out=TRUE, a list containing three slots is output: the plot (named ’p’), a
data.table containing the underlying data for target cells (named ’Target_data’), and a data.table
containing the underlying data for non-target cells (named ’Others_data’).

Alternatively, if do.hover is set to TRUE, the plot is coverted from ggplot to plotly & cell/sample in-
formation, determined by the hover.data input, is retrieved, added to the dataframe, and displayed
upon hovering the cursor over the plot.

https://ggplot2.tidyverse.org/reference/ggtheme.html
https://ggplot2.tidyverse.org/reference/ggtheme.html


dittoScatterPlot 41

Many characteristics of the plot can be adjusted using discrete inputs

• size and opacity can be used to adjust the size and transparency of the data points.

• Colors used can be adjusted with color.panel and/or colors for discrete data, or min, max,
min.color, and max.color for continuous data.

• Shapes used can be adjusted with shape.panel.

• Color and shape labels can be changed using rename.color.groups and rename.shape.groups.

• Titles and axes labels can be adjusted with main, sub, xlab, ylab, and legend.title argu-
ments.

• Legends can also be adjusted in other ways, using variables that all start with "legend." for
easy tab completion lookup.

Author(s)

Daniel Bunis

See Also

getGenes and getMetas to see what the x.var, y.var, color.var, shape.by, and hover.data
options are.

dittoDimPlot for making very similar data representations, but where dimensionality reduction
(PCA, t-SNE, UMAP, etc.) dimensions are the scatterplot axes.

Examples

# dittoSeq handles bulk and single-cell data quit similarly.
# The SingleCellExperiment object structure is used for both,
# but all functions can be used similarly directly on Seurat
# objects as well.

example(importDittoBulk, echo = FALSE)
myRNA

# Mock up some nCount_RNA and nFeature_RNA metadata
# == the default way to extract
myRNA$nCount_RNA <- runif(60,200,1000)
myRNA$nFeature_RNA <- myRNA$nCount_RNA*runif(60,0.95,1.05)
# and also percent.mito metadata
myRNA$percent.mito <- sample(c(runif(50,0,0.05),runif(10,0.05,0.2)))

dittoScatterPlot(
myRNA, x.var = "nCount_RNA", y.var = "nFeature_RNA")

# Shapes or colors can be overlaid representing discrete metadata
# or (only colors) continuous metadata / expression data by providing
# metadata or gene names to 'color.var' and 'shape.by'
dittoScatterPlot(

myRNA, x.var = "nCount_RNA", y.var = "nFeature_RNA",
color.var = "percent.mito")

dittoScatterPlot(
myRNA, x.var = "gene1", y.var = "gene2",
color.var = "groups",
shape.by = "SNP",
size = 3)



42 dittoSeq

dittoScatterPlot(
myRNA, x.var = "gene1", y.var = "gene2",
color.var = "gene3")

# Data can be "split" or faceted by a discrete variable as well.
dittoScatterPlot(

myRNA, x.var = "gene1",
y.var = "gene2",
split.by = "timepoint") # single split.by element

dittoScatterPlot(
myRNA, x.var = "gene1",
y.var = "gene2",
split.by = c("groups","SNP")) # row and col split.by elements

# OR with 'extra.vars' plus manually faceting for added control
dittoDimPlot(myRNA, "gene1",

extra.vars = c("SNP")) +
facet_wrap("SNP", ncol = 1, strip.position = "left")

# Note: scatterplots like this can be very useful for dataset QC, especially
# with percentage of reads coming from genes as the color overlay.

dittoSeq dittoSeq

Description

This package was built to make the analysis and visualization of single-cell and bulk RNA-sequencing
data accessible for both experience and novice coders, and for colorblind individuals.

Details

Includes many plotting functions (dittoPlot, dittoDimPlot, dittoBarPlot, dittoHeatmap, ...),
color adjustment functions (Simulate, Darken, Lighten), and helper funtions (meta, gene, isMeta,
getMetas, ...) to aid in making sense of single cell or bulk RNA sequencing data. All included plot-
ting functions produce a ggplot (or plotly, or pheatmap for dittoHeatmap) and can spit out full plot
with just a few arguments. Many additional arguments are available for customization to generate
complex publication-ready figures.

Default color panel is colorblind friendly [Wong B, "Points of view: Color blindness." Nature
Methods, 2011.](https://www.nature.com/articles/nmeth.1618).

For more information, to give feedback, or to suggest new features, see the github, [here](https://github.com/dtm2451/DittoSeq).

Author(s)

Daniel Bunis



gene 43

gene Returns the expression values of a gene for all cells/samples

Description

Returns the expression values of a gene for all cells/samples

Usage

gene(
gene,
object,
assay = .default_assay(object),
slot = .default_slot(object),
adjustment = NULL

)

Arguments

gene quoted "gene" name = REQUIRED. the gene whose expression data should be
retrieved.

object A target Seurat or SingleCellExperiment object

assay, slot single strings or integer that set which data to use. Seurat and SingleCellEx-
periments deal with these differently, so be sure to check the documentation for
whichever object you are using. When not provided, these typical defaults for
the provided object class are used:

• SingleCellExperiment (single-cell or bulk data): assay = "logcounts", "norm-
counts", "counts", or the first element of assays(object), slot not used

• Seurat-v3: assay = DefaultAssay(object), slot = "data"

• Seurat-v2: assay not used, slot = "data"

adjustment Should expression data be used directly (default) or should it be adjusted to be

• "z-score": scaled with the scale() function to produce a relative-to-mean
z-score representation

• "relative.to.max": divided by the maximum expression value to give percent
of max values between [0,1]

Value

Returns the expression values of a gene for all cells/samples.

Author(s)

Daniel Bunis



44 getGenes

Examples

example(importDittoBulk, echo = FALSE)
gene("gene1", object = myRNA, assay = "counts")

# z-scored
gene("gene1", object = myRNA, assay = "counts", adjustment = "z-score")

# To see expression of the gene for the default assay that dittoSeq would use
# leave out the assay input
# (For this object, the default assay is the logcounts assay)
gene("gene1", myRNA)

# Seurat (raw counts)
if (!requireNamespace("Seurat")) {

gene("CD14", object = Seurat::pbmc, assay = "RNA", slot = "counts")
}

getGenes Returns the names of all genes of a target object.

Description

Returns the names of all genes of a target object.

Usage

getGenes(object, assay = .default_assay(object))

Arguments

object A target Seurat or SingleCellExperiment object

assay single string or integer that sets which set of seq data inside the object to check.

Value

A string vector, returns the names of all genes of the object for the requested assay.

Author(s)

Daniel Bunis

See Also

isGene for returning all genes in an object

gene for obtaining the expression data of genes



getMetas 45

Examples

example(importDittoBulk, echo = FALSE)
getGenes(object = myRNA, assay = "counts")

# To see all genes of an object for the default assay that dittoSeq would use
# leave out the assay input
getGenes(myRNA)

# Seurat
# pbmc <- Seurat::pbmc_small
# # To see all genes of an object of a particular assay
# getGenes(pbmc, assay = "RNA")

getMetas Returns the names of all meta.data slots of a target object.

Description

Returns the names of all meta.data slots of a target object.

Usage

getMetas(object, names.only = TRUE)

Arguments

object A target Seurat or SingleCellExperiment object

names.only Logical, TRUE by default, which sets whether just the names should be output
versus the entire metadata dataframe.

Value

A string vector of the names of all metadata slots of the object, or alternatively the entire dataframe
of metadatas if names.only is set to FALSE

Author(s)

Daniel Bunis

See Also

isMeta for checking if certain metadata slots exist in an object

meta for obtaining the contants of metadata slots



46 getReductions

Examples

example(importDittoBulk, echo = FALSE)

# To see all metadata slots of an object
getMetas(myRNA)

# To retrieve the entire metadata matrix
getMetas(myRNA, names.only = FALSE)

getReductions Returns the names of all dimensionality reduction slots of a target ob-
ject.

Description

Returns the names of all dimensionality reduction slots of a target object.

Usage

getReductions(object)

Arguments

object A target Seurat or SingleCellExperiment object

Value

A string vector of the names of all dimensionality reduction slots of the object. These represent
the options for the reduction.use input of dittoDimPlot.

Author(s)

Daniel Bunis

Examples

example("addDimReduction", echo = FALSE)

# To see all metadata slots of an object
getReductions(myRNA)



importDemux 47

importDemux Extracts Demuxlet information into a pre-made SingleCellExperiment
or Seurat object

Description

Extracts Demuxlet information into a pre-made SingleCellExperiment or Seurat object

Usage

importDemux(
object,
raw.cell.names = NULL,
lane.meta = NULL,
lane.names = NA,
demuxlet.best,
trim.before_ = TRUE,
bypass.check = FALSE,
verbose = TRUE

)

Arguments

object A pre-made Seurat(v3+) or SingleCellExperiment object to add demuxlet infor-
mation to.

raw.cell.names A string vector consisting of the raw cell barcodes of the object as they would
have been output by cellranger aggr. Format per cell.name = NNN...NNN-#
where NNN...NNN are the cell barcode nucleotides, and # is the lane number.
This input should be used when additional information has been added directly
into the cell names outside of Seurat’s standard merge prefix: "user-text_".

lane.meta A string which names a metadata slot that contains which cells came from which
droplet-generation wells.

lane.names String vector which sets how the lanes should be named (if you want to give
them something different from the default = Lane1, Lane2, Lane3...)

demuxlet.best String or String vector pointing to the location(s) of the .best output file from
running of demuxlet.
Alternatively, a data.frame representing an already imported .best matrix.

trim.before_ Logical which sets whether any characters in front of an "_" should be deleted
from the raw.cell.names before matching with demuxlet barcodes.

bypass.check Logical which sets whether the function should run even when meta.data slots
would be over-written.

verbose whether to print messages about the stage of this process that is currently being
run & also the summary at the end.

Details

The function takes in a previously generated Seurat or SingleCellExperiment object. It also takes
in demuxlet information either in the form of

1: the location of a single demuxlet.best out file,



48 importDemux

2: the locations of multiple demuxlet.best output files,

or 3: a user-constructed data.frame created by reading in a demuxlet.best file.

If a metadata slot name is provided to lane.meta, information in that metadata slot is copied into a
metadata slot called "Lane". Alternatively, if lane.meta is left as NULL, separate lanes are assumed
to be marked by distinct values of "-#", as is the typical output of the 10X cellranger count & aggr
pipeline. In these situations, the lane.names input can be used to set specific names for each lane.
"Lane1", "Lane2", "Lane3", etc, are used b y default.

The colnames(object) are used by default, but if these have been modified from what would have
been given to demuxlet, outside of "-#" at the end or "***_" as can be added in common merge
functions, you can alternatively provide raw.cell.names.

Barcodes in the demuxlet data are matched to barcodes in the object and then singlet/doublet/ambiguous
calls and identities are parsed and carried into metadata. (When demuxlet information is provided
as a set of separate files (recommended for use with cellranger aggr), the "-#" at the ends of bar-
codes in these files are incremented on read-in so that they can match the incrementation applied by
cellranger aggr. See note on multi-well 10X data below for more.)

Finally, a summary of the results including mean number of SNPs and percentages of singlets and
doublets is output unless verbose is set to FALSE.

Lane information and demuxlet calls and statistics are imported into the object as these metadata:

• Lane = guided by lane.meta import input or "-#"s in barcodes, represents the separate droplet-
generation lanes.

• Sample = The sample call, parsed from the BEST column

• demux.doublet.call = whether the sample was a singlet (SNG), doublet (DBL), or ambiguious
(AMB), parsed from the BEST column

• demux.RD.TOTL = RD.TOTL column

• demux.RD.PASS = RD.PASS column

• demux.RD.UNIQ = RD.UNIQ column

• demux.N.SNP = N.SNP column

• demux.PRB.DBL = PRB.DBL column

• demux.barcode.dup = (Only generated when TRUEs will exist) whether a cell’s barcode in
the demuxlet.best refered to only 1 cell in the object. (When TRUE, indicates that cells from
distinct lanes were interpretted together by demuxlet. These will often be mistakenly called
as doublets.)

Note: "-#" information added by cellranger functions is not removed. Doing so would cause cells,
from separate 10X wells, which ended up with similar barcodes to become indistinguishable. In
demuxlet itself, ignorance of lane information leads to artificial doublet calls. In importDemux,
ignorance of lane information can lead to import of improper demuxlet annotations. For this reason,
importDemux checks for whether such artificial duplicates likely happened. See the recommended
cellranger/demuxlet pipeline below for specific suggestions for how to use this function with multi-
well 10X data.

Value

The Seurat or SingleCellExperiment object with metadata added for "Sample" calls and other rele-
vant statistics.



importDemux 49

For multi-well 10X data

10X recommends running cellranger counts individually for each well/lane. This leads to creation
of separate genes x cells counts matrices for each lane. *Demuxlet should also be run separately
for each lane in order to minimize the informatic generation of artificial doublets. Afterwards, there
are many common methods of importing/merging such multi-well 10X data into a single object in
R. Technical differences: All options will alter the cell barcode names in a way that makes them
unique across lanes, but how they do can be different. Technical issue: Neither method adjusts the
bacode names that are embedded within the BAM files which a user must supply to Demuxlet, so
that data needs to be modified in a proper way in order to make the object cellnames and demuxlet
BARCODEs match.

importDemux is built for working with the cellranger aggr barcodes output, but can be used for
demuxlet datasets processed differently as well.

• Option 1: merging matrices of all lanes with cellranger aggr before R import. Barcode
uniquification method: A "-1", "-2", "-3", ... "-#" is appended to the end of all barcode names.
The number is incremented for each succesive lane. (Note: lane-numbers depend on the order
in which they were supplied to cellranger aggr.)

• Option 2: Importing into Seurat or SingleCellExperiment, then merging these objects. Bar-
code uniquifiction method: user-defined strings are appended to the start of the barcodes,
followed by an "_", for Seurat merge, and importDemux will ignore these. Alternatively,
consistent barcodes can be supplied separately to the raw.cell.names input.

The fix: importDemux ignores all information before a "_" in cellnames when trim.before_ is left
as TRUE, but utilizes the "-#" information at the ends of Seurat cellnames.

• Option 1: importDemux can adjust the "-#" in the Demuxlet BARCODEs automatically for
users before performing the matching step. In order to take advantage of the automatic bar-
codes adjustment, just supply a vector containing the locations of the sepearate .best outputs
for each lane, in the same order that lanes were combined in cellranger aggr.

• Option 2: To use with this method, it’s easiest to run importDemux on each lane’s Seurat
or SingleCellExperiment object separately & provide a unique name for each lane to the
lane.names input, BEFORE merging into a single Seurat object.

Run in these ways, demuxlet information can be matched to proper cells, and lane assignments can
be properly reported in the "Lane" metadata slot.

Author(s)

Daniel Bunis

See Also

Included QC visualizations:

demux.calls.summary for plotting the number of sample annotations assigned within each lane.

demux.SNP.summary for plotting the number of SNPs measured per cell.

Or, see Kang et al. Nature Biotechnology, 2018 https://www.nature.com/articles/nbt.4042
for more information about the demuxlet cell-sample deconvolution method.

https://www.nature.com/articles/nbt.4042


50 importDittoBulk

Examples

#Prep: loading in an example dataset and sample demuxlet data
example("importDittoBulk", echo = FALSE)
demux <- demuxlet.example
colnames(myRNA) <- demux$BARCODE[seq_len(ncol(myRNA))]

###
### Method 1: Lanes info stored in a metadata
###

# Notice there is a groups metadata in this Seurat object.
getMetas(myRNA)
# We will treat these as if that holds Lane information

# Now, running importDemux:
myRNA <- importDemux(

myRNA,
lane.meta = "groups",
demuxlet.best = demux)

# Note, importDemux can also take in the location of the .best file.
# myRNA <- importDemux(
# object = myRNA,
# lane.meta = "groups",
# demuxlet.best = "Location/filename.best")

# demux.SNP.summary() and demux.calls.summary() can now be used.
demux.SNP.summary(myRNA)
demux.calls.summary(myRNA)

###
### Method 2: cellranger aggr combined data (denoted with "-#" in barcodes)
###

# If cellranger aggr was used, lanes will be denoted by "-1", "-2", ... "-#"
# at the ends of Seurat cellnames.
# Demuxlet should be run on each lane individually.
# Provided locations of each demuxlet.best output file, *in the same order
# that lanes were provided to cellranger aggr* this function will then
# adjust the "-#" within the .best BARCODEs automatically before matching
#
# myRNA <- importDemux(
# object = myRNA,
# demuxlet.best = c(
# "Location/filename1.best",
# "Location/filename2.best"),
# lane.names = c("g1","g2"))

importDittoBulk import bulk sequencing data into a format that dittoSeq functions ex-
pect.



importDittoBulk 51

Description

import bulk sequencing data into a format that dittoSeq functions expect.

Usage

importDittoBulk(x, ...)

## S4 method for signature 'SummarizedExperiment'
importDittoBulk(x, reductions = NULL, metadata = NULL, combine_metadata = TRUE)

## S4 method for signature 'DGEList'
importDittoBulk(x, reductions = NULL, metadata = NULL, combine_metadata = TRUE)

## S4 method for signature 'list'
importDittoBulk(x, reductions = NULL, metadata = NULL)

Arguments

x a DGEList, or SummarizedExperiment (includes DESeqDataSet) class object
containing the sequencing data to be imported

... For the generic, additional arguments passed to specific methods.

reductions a named list of dimensionality reduction embeddings matrices. names will be-
come the names of the dimensionality reductions and how each will be used
with the reduction.use input of dittoDimPlot rows of the matrices should
represent the different cells/samples of the dataset, and columns the different
dimensions

metadata a data.frame like object containing columns of extra information about the cells/samples
(rows). The names of these columns can then be used to tretrieve and plot such
data in any dittoSeq visualizations.

combine_metadata

Logical which sets whether original colData (DESeqDataSet/SummarizedExperiment)
or $samples (DGEList) from x should be retained.

Value

A SingleCellExperiment object containing all assays (DESeqDataSet or SummarizeedExperi-
ment) or all common slots (DGEList) of the input x, as well as any dimensionality reductions
provided to reductions, and any provided metadata stored in colData.

When combine_metadata is set to FALSE, metadata inside x (colData or $samples) is ignored
entirely. When combine_metadata is TRUE (the default), metadata inside x is combined with
what is provided to the metadata input; but names must be unique, so when there are similarly
named slots, the values provided to the metadata input are used.

Note

One recommended assay to create if it is not already present in your dataset, is a log-normalized
version of the counts data. The logNormCounts function of the scater package is an easy way to
make such a slot. dittoSeq defaults to grabbing expression data from an assay named logcounts >
normcounts > counts



52 importDittoBulk

See Also

SingleCellExperiment for more information about this storage system.

Examples

## Bulk data is stored as a SingleCellExperiment
library(SingleCellExperiment)

# Generate some random data
nsamples <- 60
exp <- matrix(rpois(1000*nsamples, 20), ncol=nsamples)
colnames(exp) <- paste0("sample", seq_len(ncol(exp)))
rownames(exp) <- paste0("gene", seq_len(nrow(exp)))
logexp <- log2(exp + 1)

# Dimensionality Reductions
pca <- matrix(runif(nsamples*5,-2,2), nsamples)
tsne <- matrix(rnorm(nsamples*2), nsamples)

# Some Metadata
conds <- factor(rep(c("condition1", "condition2"), each=nsamples/2))
timept <- rep(c("d0", "d3", "d6", "d9"), each = 15)
genome <- rep(c(rep(TRUE,7),rep(FALSE,8)), 4)
grps <- sample(c("A","B","C","D"), nsamples, TRUE)
clusts <- as.character(1*(tsne[,1]>0&tsne[,2]>0) +

2*(tsne[,1]<0&tsne[,2]>0) +
3*(tsne[,1]>0&tsne[,2]<0) +
4*(tsne[,1]<0&tsne[,2]<0))

### We can import the counts directly, or as a SummarizedExperiment
myRNA <- importDittoBulk(

x = list(counts = exp,
logcounts = logexp))

### Adding metadata & PCA or other dimensionality reductions
# We can add these directly during import, or after.
myRNA <- importDittoBulk(

x = list(counts = exp,
logcounts = logexp),

metadata = data.frame(
conditions = conds,
timepoint = timept,
SNP = genome,
groups = grps),

reductions = list(
pca = pca))

myRNA$clustering <- clusts

myRNA <- addDimReduction(
myRNA,
embeddings = tsne,
name = "tsne")

# (other packages SCE manipulations can also be used)



isBulk 53

### When we import from SummarizedExperiment, all metadata is retained.
# The object is just 'upgraded' to hold extra slots.
# The input is the same, aside from a message when metadata are replaced.
se <- SummarizedExperiment(

list(counts = exp, logcounts = logexp))
myRNA <- importDittoBulk(

x = se,
metadata = data.frame(

conditions = conds,
timepoint = timept,
SNP = genome,
groups = grps,
clustering = clusts),

reductions = list(
pca = pca,
tsne = tsne))

myRNA

### For DESeq2, how we might have made this:
# DESeqDataSets are SummarizedExperiments, and behave similarly
# library(DESeq2)
# dds <- DESeqDataSetFromMatrix(
# exp, data.frame(conditions), ~ conditions)
# dds <- DESeq(dds)
# dds_ditto <- importDittoBulk(dds)

### For edgeR, DGELists are a separate beast.
# dittoSeq imports what I know to commonly be inside them, but please submit
# an issue on the github (dtm2451/dittoSeq) if more should be retained.
# library(edgeR)
# dgelist <- DGEList(counts=exp, group=conditions)
# dge_ditto <- importDittoBulk(dgelist)

isBulk Retrieve whether a SingleCellObject should be treated as single-cell
versus bulk

Description

Retrieve whether a SingleCellObject should be treated as single-cell versus bulk

Usage

isBulk(object)

Arguments

object A target SingleCellExperiment object
Alternatively, anything else, but then the result will always be FALSE

Value

Logical: whether the provided object would be treated as bulk data by dittoSeq



54 isGene

Examples

example(importDittoBulk, echo = FALSE)
myRNA

isBulk(myRNA)

isGene Tests if input is the name of a gene in a target object.

Description

Tests if input is the name of a gene in a target object.

Usage

isGene(test, object, assay = .default_assay(object), return.values = FALSE)

Arguments

test String or vector of strings, the "potential.gene.name"(s) to check for.

object A target Seurat or SingleCellExperiment object

assay single string or integer that sets which set of seq data inside the object to check.

return.values Logical which sets whether the function returns a logical TRUE/FALSE versus the
TRUE test values . Default = FALSE REQUIRED, unless ’DEFAULT <-"object"’
has been run.

Value

Returns a logical vector indicating whether each instance in test is a rowname within the re-
quested assay of the object. Alternatively, returns the values of test that were indeed rownames
if return.values = TRUE.

Author(s)

Daniel Bunis

See Also

getGenes for returning all genes in an object

gene for obtaining the expression data of genes

Examples

example(importDittoBulk, echo = FALSE)

# To see the first 10 genes of an object of a particular assay
getGenes(myRNA, assay = "counts")[1:10]

# To see all genes of an object for the default assay that dittoSeq would use
# leave out the assay input (again, remove `head()`)
head(getGenes(myRNA))



isMeta 55

# To test if something is a gene in an object:
isGene("gene1", object = myRNA) # TRUE
isGene("CD12345", myRNA) # FALSE

# To test if many things are genes of an object
isGene(c("gene1", "gene2", "not-a-gene", "CD12345"), myRNA)

# 'return.values' input is especially useful in these cases.
isGene(c("gene1", "gene2", "not-a-gene", "CD12345"), myRNA,

return.values = TRUE)

isMeta Tests if an input is the name of a meta.data slot in a target object.

Description

Tests if an input is the name of a meta.data slot in a target object.

Usage

isMeta(test, object, return.values = FALSE)

Arguments

test String or vector of strings, the "potential.metadata.name"(s) to check for.

object A target Seurat or SingleCellExperiment object

return.values Logical which sets whether the function returns a logical TRUE/FALSE versus the
TRUE test values . Default = FALSE

Details

For Seurat objects, also returns TRUE for the input "ident" because, for all dittoSeq visualiztions,
"ident" will retrieve a Seurat objects’ clustering slot.

Value

Returns a logical or logical vector indicating whether each instance in test is a meta.data slot
within the object. Alternatively, returns the values of test that were indeed metadata slots if
return.values = TRUE.

Author(s)

Daniel Bunis

See Also

getMetas for returning all metadata slots of an object

meta for obtaining the contants of metadata slots



56 Lighten

Examples

example(importDittoBulk, echo = FALSE)

# To check if something is a metadata slot
isMeta("timepoint", object = myRNA) # FTRUE
isMeta("nCount_RNA", object = myRNA) # FALSE

# To test if many things are metadata of an object
isMeta(c("age","groups"), myRNA) # FALSE, TRUE

# 'return.values' input is especially useful in these cases.
isMeta(c("age","groups"), myRNA,

return.values = TRUE)

# Alternatively, to see all metadata slots of an object, use getMetas
getMetas(myRNA)

Lighten Lightens input colors by a set amount

Description

A wrapper for the lighten function of the colorspace package.

Usage

Lighten(colors, percent.change = 0.25, relative = TRUE)

Arguments

colors the color(s) input. Can be a list of colors, for example, /codedittoColors().

percent.change # between 0 and 1. the percentage to darken by. Defaults to 0.25 if not given.

relative TRUE/FALSE. Whether the percentage should be a relative change versus an
absolute one. Default = TRUE.

Value

Return a lighter version of the color in hexadecimal color form (="#RRGGBB" in base 16)

Author(s)

Daniel Bunis

Examples

Lighten("blue") #"blue" = "#0000FF"
#Output: "#4040FF"
Lighten(dittoColors()[1:8]) #Works for multiple color inputs as well.



meta 57

meta Returns the values of a meta.data for all cells/samples

Description

Returns the values of a meta.data for all cells/samples

Usage

meta(meta, object)

Arguments

meta String, the name of the "metadata" slot to grab. OR "ident" to retireve the clus-
tering of a Seurat object.

object A target Seurat or SingleCellExperiment object

Value

A named vector. Returns the values of a metadata slot, or the clustering slot if meta = "ident" and
the object is a Seurat. Names of values will be the cell/sample names.

Author(s)

Daniel Bunis

See Also

metaLevels for returning just the unique discrete identities that exist within a metadata slot

getMetas for returning all metadata slots of an object

isMeta for testing whether something is the name of a metadata slot

Examples

example(importDittoBulk, echo = FALSE)
meta("groups", object = myRNA)



58 metaLevels

metaLevels Gives the distinct values of a meta.data slot (or ident)

Description

Gives the distinct values of a meta.data slot (or ident)

Usage

metaLevels(meta, object, cells.use = NULL, used.only = TRUE)

Arguments

meta quoted "meta.data.slot" name = REQUIRED. the meta.data slot whose potential
values should be retrieved.

object A target Seurat or SingleCellExperiment object

cells.use String vector of cells’/samples’ names which should be included. Alternatively,
a Logical vector, the same length as the number of cells in the object, which sets
which cells to include. For the typically easier logical method, provide USE in
object@cell.names[USE] OR colnames(object)[USE]).

used.only TRUE by default, whether unused levels of already

Value

Returns the distinct values of a metadata slot (factor or not) among to all cells/samples, or for a
subset of cells/samples. (Alternatively, returns the distinct values of clustering if meta = "ident"
and the object is a Seurat object).

Author(s)

Daniel Bunis

See Also

meta for returning an entire metadata slots of an object, not just the potential levels

getMetas for returning all metadata slots of an object

isMeta for testing whether something is the name of a metadata slot

Examples

# dittoSeq handles bulk and single-cell data quit similarly.
# The SingleCellExperiment object structure is used for both,
# but all functions can be used similarly directly on Seurat
# objects as well.

example(importDittoBulk, echo = FALSE)

metaLevels("clustering", object = myRNA)

# Note: Set 'used.only' (default = TRUE) to FALSE to show unused levels



multi_dittoDimPlot 59

# of metadata that are already factors. By default, only the in use options
# of a metadata are shown.
metaLevels("clustering", myRNA,

used.only = FALSE)

multi_dittoDimPlot Generates multiple dittoDimPlots arranged in a grid.

Description

Generates multiple dittoDimPlots arranged in a grid.

Usage

multi_dittoDimPlot(
object,
vars,
legend.show = FALSE,
ncol = NULL,
nrow = NULL,
axes.labels.show = FALSE,
xlab = NA,
ylab = NA,
OUT.List = FALSE,
...

)

Arguments

object A Seurat or SingleCellExperiment object to work with

vars c("var1","var2","var3",...). A list of vars from which to generate the separate
plots

legend.show, xlab, ylab, ...

other paramters passed to dittoDimPlot.

ncol, nrow Integer/NULL. How many columns or rows the plots should be arranged into
axes.labels.show

Logical. Whether a axis labels should be shown. Ignored if xlab or ylab are set
manually.

OUT.List Logical. (Default = FALSE) When set to TRUE, a list of the individual plots,
named by the vars being shown in each, is output instead of the combined
multi-plot.

Value

Given multiple ’var’ parameters to vars, this function will output a dittoDimPlot for each one,
arranged into a grid, with some slight tweaks to the defaults. If OUT.list was set to TRUE, the
list of individual plots, named by the vars being shown in each, is output instead of the combined
multi-plot. All parameters that can be adjusted in dittoDimPlot can be adjusted here, but the only
parameter that can be adjusted between each is the var.



60 multi_dittoDimPlotVaryCells

Author(s)

Daniel Bunis

Examples

# dittoSeq handles bulk and single-cell data quit similarly.
# The SingleCellExperiment object structure is used for both,
# but all functions can be used similarly directly on Seurat
# objects as well.

example(importDittoBulk, echo = FALSE)
myRNA

genes <- getGenes(myRNA)[1:5]
multi_dittoDimPlot(myRNA, c(genes, "clustering"))

multi_dittoDimPlotVaryCells

Generates multiple dittoDimPlots, each showing different cells, ar-
ranged into a grid.

Description

Generates multiple dittoDimPlots, each showing different cells, arranged into a grid.

Usage

multi_dittoDimPlotVaryCells(
object,
var,
vary.cells.meta,
vary.cells.levels = metaLevels(vary.cells.meta, object),
assay = .default_assay(object),
slot = .default_slot(object),
adjustment = NULL,
min = NULL,
max = NULL,
color.panel = dittoColors(),
colors = seq_along(color.panel),
show.titles = TRUE,
show.allcells.plot = TRUE,
allcells.main = "All Cells",
show.legend.single = TRUE,
show.legend.plots = FALSE,
show.legend.allcells.plot = FALSE,
nrow = NULL,
ncol = NULL,
OUT.List = FALSE,
...

)



multi_dittoDimPlotVaryCells 61

Arguments

object A Seurat or SingleCellExperiment object to work with

var String name of a "gene" or "metadata" (or "ident" for a Seurat object) to use for
coloring the plots. This is the data that will be displayed for each cell/sample.
Alternatively, can be a vector of same length as there are cells/samples in the
object. Discrete or continuous data both work. REQUIRED.

vary.cells.meta

String name of a metadata that should be used for selecting which cells to show
in each "varycells" plot. REQUIRED.

vary.cells.levels

The values/groupings of the vary.cells.meta metadata that should get a plot.
Defaults to all levels of the metadata.

color.panel, colors, min, max, assay, slot, adjustment, ...

additional parameters passed to dittoDimPlot. All parameters except for cells.use,
main, and legend.show can be used. A few suggestions: reduction.use for
setting which dimensionality reduction space to use. xlab and ylab can be set
to NULL to remove the axes labels and provide extra room for the data. size can
be used to adjust the size of the dots.

show.titles Logical which sets whether titles should be added to the individual varycells
plots

show.allcells.plot

Logical which sets whether an additional plot showing all of the cells should be
added.

allcells.main String which adjusts the title of the allcells plot. Default = "All Cells". Set to
NULL or "" to remove.

show.legend.single

Logical which sets whether to add a single legend as an additional plot. Default
= TRUE.

show.legend.plots

Logical which sets whether or not legends should be plotted in varycells plot.
Default = FALSE.

show.legend.allcells.plot

Logical which sets whether or a legend should be plotted in the allcells plot.
Default = FALSE.

ncol, nrow Integers which set dimensions of the plot grid.

OUT.List Logical which controls whether the list of plots should be returned as a list
instead of as a single grid arrangement of the plots.

Details

This function generates separate dittoDimPlots that show the same target data, but for distinct cells.
Which cells fall into which plot is controlled with the vary.cells.meta parameter. When the
quoted name of a metadata containing discrete groupings is given to vary.cells.meta, the function
makes separate plots containing all cells/samples of each grouping.

If plots for only certain groupings of cells are wanted, names of the wanted groupings can be
supplied to the vary.cells.levels input.

The function then appends a plot containing all groupings, titled as "All Cells" (unless otherwise
changed with the allcells.main parameter), as well as a single legend. Either of these can be
turned off with the show.allcells.plot and show.legend.single parameters.



62 multi_dittoDimPlotVaryCells

Plots are either output in a grid (default) with ncol columns and nrow rows, or alternatively as a
simple list of ggplots if OUT.List is set to TRUE. In the list, the varycells plots will be named by
the value of vary.cells.meta that they contain, the allcells plot will be named "allcells" and the
single legend will be named "legend".

Either continuous or discrete var data can be displayed.

• For continuous data, the range of potential values is calculated at the start, and set, so that
colors represent the same values accross all plots.

• For discrete data, colors used in each plot are adjusted so that colors represent the same group-
ings accross all plots.

Value

multiple dittoDimPlot ggplots either arranged in a grid OR as a list

Author(s)

Daniel Bunis

See Also

dittoDimPlot for the base DimPlot plotting function

multi_dittoDimPlot for plotting distinct vars accross plots instead of disctinct cells

Examples

# dittoSeq handles bulk and single-cell data quit similarly.
# The SingleCellExperiment object structure is used for both,
# but all functions can be used similarly directly on Seurat
# objects as well.

example(importDittoBulk, echo = FALSE)
myRNA

multi_dittoDimPlotVaryCells(myRNA, "gene1", vary.cells.meta = "clustering")

# This function can be used to quickly scan for differences in expression
# within or accross clusters/cell types by providing a gene to 'var'
multi_dittoDimPlotVaryCells(myRNA, "gene1", vary.cells.meta = "clustering")

# This function is also great for generating separate plots of each individual
# element of a tsne/PCplot/umap. This can be useful to check for dispersion
# of groups that might otherwise be hidden behind other cells/samples.
# To do so, set 'var' and 'vary.cells.meta' the same.
multi_dittoDimPlotVaryCells(myRNA, "clustering", vary.cells.meta = "clustering")

# The function can also be used to quickly visualize how separate clustering
# resolutions match up to each other, or perhaps how certain conditions of
# cells disperse accross clusters.
multi_dittoDimPlotVaryCells(myRNA, "groups", vary.cells.meta = "clustering")

# For an alternative method of viewing, and easily quantifying, how discrete
# conditions of cells disperse accross clusters, see '?dittoBarPlot'



multi_dittoPlot 63

# Note, for displaying expression or scoring of distinct genes or metadata,
# use 'multi_dittoDimPlot'. Its split.by variable can then be used to add
# a varyCells-like effect.

multi_dittoPlot Generates multiple dittoPlots arranged into a grid.

Description

Generates multiple dittoPlots arranged into a grid.

Usage

multi_dittoPlot(
object,
vars,
group.by,
color.by = group.by,
legend.show = FALSE,
ncol = 3,
nrow = NULL,
main = "var",
ylab = NULL,
xlab = NULL,
OUT.List = FALSE,
...

)

Arguments

object the Seurat or SingleCellExperiment object to draw from

vars c("var1","var2","var3",...). A vector of gene or metadata names from which to
generate the separate plots

group.by String representing the name of a metadata to use for separating the cells/samples
into discrete groups.

color.by String representing the name of a metadata to use for setting color. Default =
group.by.

ncol, nrow Integers which set how many plots will be arranged per column or per row.
Default = 3 columns aand however many rows are required.
Set both to NULL to have the grid.arrange function figure out what might be
most "square" on its own.

main, ylab String which sets whether / how plot titles or y-axis labels should be added to
each individual plot

• When set to "var", the vars names alone will be used.
• When set to "make", the default dittoPlot behavior will be observed: Equiv-

alent to "make" for main, but for y-axis labels, gene vars will become "’var’
expression".



64 multi_dittoPlot

• When set as any other string, that string will be used as the title / y-axis
label for every plot.

• When set to NULL, titles / axes labels will not be added.
xlab, legend.show, ...

other paramters passed along to dittoPlot.

OUT.List Logical. (Default = FALSE) When set to TRUE, a list of the individual plots,
named by the vars being shown in each, is output instead of the combined
multi-plot.

Value

Given multiple ’var’ parameters, this function will output a dittoPlot for each one, arranged into a
grid, just with some slight tweaks to the defaults. If OUT.list was set to TRUE, the list of individual
plots is output instead of the combined multi-plot. All parameters that can be adjusted in dittoPlot
can be adjusted here.

Author(s)

Daniel Bunis

See Also

dittoPlot for the single plot version of this function

Examples

# dittoSeq handles bulk and single-cell data quit similarly.
# The SingleCellExperiment object structure is used for both,
# but all functions can be used similarly directly on Seurat
# objects as well.

example(importDittoBulk, echo = FALSE)
myRNA

genes <- getGenes(myRNA)[1:4]
multi_dittoPlot(myRNA, genes, group.by = "clustering")

# violin-plots in front is often better for large single-cell datasets,
# but we cn change the order with 'plots'
multi_dittoPlot(myRNA, genes, "clustering",

plots = c("vlnplot","boxplot","jitter"))

#To make it output a grid that is 2x2, to add y-axis labels
# instead of titles, and to show legends...
multi_dittoPlot(myRNA, genes, "clustering",

nrow = 2, ncol = 2, #Make grid 2x2 (only one of these needed)
main = NULL, ylab = "make", #Add y axis labels instead of titles
legend.show = TRUE) #Show legends

# We can also facet with 'split.by'
multi_dittoPlot(myRNA, genes, "clustering",

split.by = "SNP")



setBulk 65

setBulk Set whether a SingleCellExperiment object should be treated as single-
cell versus bulk

Description

Set whether a SingleCellExperiment object should be treated as single-cell versus bulk

Usage

setBulk(object, set = TRUE)

## S4 method for signature 'SingleCellExperiment'
setBulk(object, set = TRUE)

Arguments

object A target SingleCellExperiment object

set Logical, whether the object should be considered as bulk (TRUE) or not (FALSE)

Value

A SingleCellExperiment object with "bulk" internal metadata set to set

Examples

example(importDittoBulk, echo = FALSE)
myRNA

isBulk(myRNA)

scRNA <- setBulk(myRNA, FALSE)
isBulk(scRNA)

# Now, if we make a heatmap with this data, we will see that single-cell
# defaults (ordering by the first 'annot.by' & cell names not shown) are used.
dittoHeatmap(scRNA, getGenes(scRNA)[1:30],

annot.by = c("clustering", "groups"),
main = "isBulk(object) == FALSE")

Simulate Simulates what a colorblind person would see for any dittoSeq plot!



66 Simulate

Description

Essentially a wrapper function for colorspace’s deutan(), protan(), and tritan() functions. This func-
tion will output any dittoSeq plot as it might look to an individual with one of the common forms of
colorblindness: deutanopia/deutanomaly, the most common, is when the cones mainly responsible
for red vision are defective. Protanopia/protanomaly is when the cones mainly responsible for green
vision are defective. In tritanopia/tritanomaly, the defective cones are responsible for blue vision.
Note: there are more severe color deficiencies that are even more rare. Unfortunately, for these
types of color vision deficiency, only non-color methods, like lettering or shapes, will do much to
help.

Usage

Simulate(
type = c("deutan", "protan", "tritan"),
plot.function,
...,
color.panel = dittoColors(),
min.color = "#F0E442",
max.color = "#0072B2"

)

Arguments

type The type of colorblindness that you want to simulate for. Options: "deutan",
"protan", "tritan". Anything else, and you will get an error.

plot.function The plotting function that you want to use/simulate. not quoted. and make sure
to remove the () that R will try to add.

... other paramters that can be given to dittoSeq plotting functions, including color.panel,
used in exactly the same way they are used for those functions. (contrary to the
look of this documentation, color.panel will still default to dittoColors() when
not provided.)

color.panel, min.color, max.color

The set of colors to be used.

Value

Outputs a dittoSeq plot with the color.panel / min.color & max.color updated as it might look to a
colorblind individual.

Note: Does not currently adjust dittoHeatmap.

Author(s)

Daniel Bunis

Examples

example(importDittoBulk, echo = FALSE)
Simulate("deutan", dittoDimPlot, object=myRNA, var="clustering", size = 2)
Simulate("protan", dittoDimPlot, myRNA, "clustering", size = 2)
Simulate("tritan", dittoDimPlot, myRNA, "clustering", size = 2)



Index

∗ datasets
demuxlet.example, 9

addDimReduction, 2, 4, 20
addPrcomp, 3, 4

Darken, 5, 42
demux.calls.summary, 6, 8, 49
demux.SNP.summary, 7, 7, 49
demuxlet.example, 9
DGEList, 51
dittoBarPlot, 9, 20, 42
dittoBoxPlot, 30
dittoBoxPlot (dittoPlot), 25
dittoColors, 13, 16, 39
dittoDimPlot, 3, 4, 14, 41, 42, 46, 59, 61, 62
dittoHeatmap, 21, 42
dittoPlot, 8, 20, 25, 36, 42, 64
dittoPlotVarsAcrossGroups, 30, 31
dittoRidgeJitter, 30
dittoRidgeJitter (dittoPlot), 25
dittoRidgePlot, 30
dittoRidgePlot (dittoPlot), 25
dittoScatterPlot, 20, 37
dittoSeq, 42

gene, 16, 22, 27, 33, 39, 42, 43, 44, 54
geom_violin, 28, 34
getGenes, 19, 41, 44, 54
getMetas, 19, 41, 42, 45, 55, 57, 58
getReductions, 46
ggplot, 62
ggrepel, 17

importDemux, 6–8, 47
importDittoBulk, 3, 4, 20, 50
importDittoBulk,DGEList-method

(importDittoBulk), 50
importDittoBulk,list-method

(importDittoBulk), 50
importDittoBulk,SummarizedExperiment-method

(importDittoBulk), 50
isBulk, 53
isGene, 44, 54

isMeta, 42, 45, 55, 57, 58

Lighten, 42, 56

max, 33
mean, 33
median, 33
meta, 42, 45, 55, 57, 58
metaLevels, 24, 57, 58
multi_dittoDimPlot, 59, 62
multi_dittoDimPlotVaryCells, 60
multi_dittoPlot, 30, 36, 63

pbmc_small, 9
pheatmap, 21–24

setBulk, 65
setBulk,SingleCellExperiment-method

(setBulk), 65
Simulate, 42, 65
SingleCellExperiment, 3, 4, 20, 51, 52, 65
slingshot, 18
SummarizedExperiment, 51

67


	addDimReduction
	addPrcomp
	Darken
	demux.calls.summary
	demux.SNP.summary
	demuxlet.example
	dittoBarPlot
	dittoColors
	dittoDimPlot
	dittoHeatmap
	dittoPlot
	dittoPlotVarsAcrossGroups
	dittoScatterPlot
	dittoSeq
	gene
	getGenes
	getMetas
	getReductions
	importDemux
	importDittoBulk
	isBulk
	isGene
	isMeta
	Lighten
	meta
	metaLevels
	multi_dittoDimPlot
	multi_dittoDimPlotVaryCells
	multi_dittoPlot
	setBulk
	Simulate
	Index

