Package 'compcodeR'

October 17, 2020

Type Package

Title RNAseq data simulation, differential expression analysis and performance comparison of differential expression methods

Version 1.24.0

Description This package provides extensive functionality for comparing results obtained by different methods for differential expression analysis of RNAseq data. It also contains functions for simulating count data and interfaces to several packages for performing the differential expression analysis.

Depends R (>= 3.0.2), sm

Imports tcltk, knitr (>= 1.2), markdown, ROCR, lattice (>= 0.16), gplots, gtools, gdata, caTools, grid, KernSmooth, MASS, ggplot2, stringr, modeest, edgeR, limma, vioplot, methods

Suggests BiocStyle, EBSeq, DESeq, DESeq2 (>= 1.1.31), baySeq (>= 2.2.0), genefilter, NOISeq, TCC, NBPSeq (>= 0.3.0), rmarkdown

Enhances rpanel, DSS

License GPL (>= 2)

VignetteBuilder knitr

biocViews ImmunoOncology, RNASeq, DifferentialExpression

RoxygenNote 7.1.0

URL https://github.com/csoneson/compcodeR

BugReports https://github.com/csoneson/compcodeR/issues

git_url https://git.bioconductor.org/packages/compcodeR

git_branch RELEASE_3_11

git_last_commit 342ff43

git_last_commit_date 2020-04-27

Date/Publication 2020-10-16

Author Charlotte Soneson [aut, cre] (https://orcid.org/0000-0003-3833-2169)

Maintainer Charlotte Soneson <charlottesoneson@gmail.com>

R topics documented:

2

comp	codeR-package RNAseq data simulation, differential expression analysis and performance comparison of differential expression methods	r-
Index		49
	vst.ttest.createRmd	
	vst.limma.createRmd	
	voom.ttest.createRmd	
	voom.limma.createRmd	
	ttest.createRmd	
	TCC.createRmd	
	summarizeSyntheticDataSet	
	sqrtcpm.limma.createRmd	
	show,compData-method	
	runDiffExp	
	runComparisonGUI	
	runComparison	
	NOISeq.prenorm.createRmd	
	NBPSeq.createRmd	
	logcpm.limma.createRmd	
	listcreateRmd	
	generateSyntheticData	
	generateCodeHTMLs	
	edgeR.GLM.createRmd	
	edgeR.exact.createRmd	
	EBSeq.createRmd	
	DSS.createRmd	
	DESeq2.createRmd	
	DESeq.nbinom.createRmd	
	DESeq.GLM.createRmd	14
	convertListTocompData	13
	convertcompDataToList	12
	compData-class	10
	compData	7
	check_compData_results	7
	check_compData	
	checkTableConsistency	
	checkDataObject	
	baySeq.createRmd	
	compcodeR-package	- 2

Description

RNAseq data simulation, differential expression analysis and performance comparison of differential expression methods

baySeq.createRmd 3

Details

This package provides extensive functionality for comparing results obtained by different methods for differential expression analysis of RNAseq data. It also contains functions for simulating count data and interfaces to several packages for performing the differential expression analysis.

Author(s)

Charlotte Soneson

 $\begin{tabular}{ll} \it Generate\ a\ . \ Rmd\ file\ containing\ code\ to\ perform\ differential\ expression\ analysis\ with\ baySeq \end{tabular}$

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq data (comparing two conditions) using the baySeq package. The code is written to a .Rmd file. This function is generally not called by the user, the main interface for performing differential expression analysis is the runDiffExp function.

Usage

```
baySeq.createRmd(
  data.path,
  result.path,
  codefile,
  norm.method,
  equaldisp,
  sample.size = 5000,
  estimation = "QL",
  pET = "BIC"
)
```

Arguments

data.path	The path to a .rds file containing the compData object that will be used for the differential expression analysis.
result.path	The path to the file where the result object will be saved.
codefile	The path to the file where the code will be written.
norm.method	The between-sample normalization method used to compensate for varying library sizes and composition in the differential expression analysis. Possible values are "quantile", "total" and "edgeR".
equaldisp	Logical parameter indicating whether or not equal dispersion should be assumed across all conditions.
sample.size	The size of the sample used to estimate the priors (default 5000).
estimation	The approach used to estimate the priors. Possible values are "QL" (default), "ML" and "edgeR".
pET	The method used to re-estimate the priors. Possible values are "BIC" (default), "none" and "iteratively".

4 checkDataObject

Details

For more information about the methods and the interpretation of the parameters, see the baySeq package and the corresponding publications.

Value

The function generates a .Rmd file containing the code for performing the differential expression analysis. This file can be executed using e.g. the knitr package.

Author(s)

Charlotte Soneson

References

Hardcastle TJ (2012): baySeq: Empirical Bayesian analysis of patterns of differential expression in count data. R package

Hardcastle TJ and Kelly KA (2010): baySeq: Empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics 11:422

Examples

checkDataObject

Check a list or a compData object for compatibility with the differential expression functions interfaced by compcodeR

Description

Check if a list or a compData object contains the necessary slots for applying the differential expression functions interfaced by the compcodeR package. This function is provided for backward compatibility, see also check_compData and check_compData_results.

Usage

```
checkDataObject(data.obj)
```

Arguments

data.obj

A list containing data and condition information, or a compData object.

checkTableConsistency 5

Author(s)

Charlotte Soneson

Examples

checkTableConsistency Check consistency of input table to runComparison

Description

Check that the dataset, nbr.samples, repl and de.methods columns of a data frame are consistent with the information provided in the input files (given in the input.files column of the data frame). If there are inconsistencies or missing information in any of the columns, replace the given information with the information in the input files.

Usage

```
checkTableConsistency(file.table)
```

Arguments

```
file.table A data frame with columns named input.files and (optionally) datasets, nbr.samples, repl, de.methods.
```

Value

Returns a consistent file table defining the result files that will be used as the basis for a method comparison.

Author(s)

Charlotte Soneson

Examples

6 check_compData

```
c("mydata_voom.limma.rds", "mydata_edgeR.exact.rds")),
                          datasets = c("mydata", "mydata"),
                          nbr.samples = c(5, 5),
                          repl = c(1, 1),
                          stringsAsFactors = FALSE)
new.table <- checkTableConsistency(file.table)</pre>
new.table
## An incorrect table
file.table <- data.frame(input.files = file.path(tmpdir,</pre>
                          c("mydata_voom.limma.rds", "mydata_edgeR.exact.rds")),
                          datasets = c("mydata", "mydata"),
                          nbr.samples = c(5, 3),
                          repl = c(2, 1),
                          stringsAsFactors = FALSE)
new.table <- checkTableConsistency(file.table)</pre>
new.table
## A table with missing information
file.table <- data.frame(input.files = file.path(tmpdir,</pre>
                          c("mydata_voom.limma.rds", "mydata_edgeR.exact.rds")),
                          stringsAsFactors = FALSE)
new.table <- checkTableConsistency(file.table)</pre>
new.table
```

check_compData

Check the validity of a compData object

Description

Check the validity of a compData object. An object that passes the check can be used as the input for the differential expression analysis methods interfaced by compcodeR.

Usage

```
check_compData(object)
```

Arguments

object

A compData object

Author(s)

Charlotte Soneson

Examples

```
check_compData_results
```

Check the validity of a compData result object

Description

Check the validity of a compData object containing differential expression results. An object that passes the check can be used as the input for the method comparison functions in compcodeR.

Usage

```
check_compData_results(object)
```

Arguments

object

A compData object

Author(s)

Charlotte Soneson

Examples

compData

Create a compData object

Description

The compData class is used to store information about the experiment, such as the count matrix, sample and variable annotations, information regarding the generation of the data and results from applying a differential expression analysis to the data. This constructor function creates a compData object.

8 compData

Usage

```
compData(
  count.matrix,
  sample.annotations,
  info.parameters,
  variable.annotations = data.frame(),
  filtering = "no info",
  analysis.date = "",
  package.version = "",
  method.names = list(),
  code = "",
  result.table = data.frame()
)
```

Arguments

 $\begin{tabular}{ll} count.matrix & A count matrix, with genes as rows and observations as columns. \\ sample.annotations \\ \end{tabular}$

A data frame, containing at least one column named 'condition', encoding the grouping of the observations into two groups. The row names should be the same as the column names of the count.matrix.

info.parameters

A list containing information regarding simulation parameters etc. The only mandatory entries are dataset and uID, but it may contain entries such as the ones listed below (see generateSyntheticData for more detailed information about each of these entries).

- dataset: an informative name or identifier of the data set (e.g., summarizing the simulation settings).
- samples.per.cond
- n.diffexp
- repl.id
- segdepth
- minfact
- maxfact
- fraction.upregulated
- between.group.diffdisp
- filter.threshold.total
- filter.threshold.mediancpm
- fraction.non.overdispersed
- random.outlier.high.prob
- random.outlier.low.prob
- single.outlier.high.prob
- single.outlier.low.prob
- effect.size
- uID: a unique ID for the data set. In contrast to dataset, the uID is unique e.g. for each instance of replicated data sets generated with the same simulation settings.

compData 9

variable.annotations

A data frame with variable annotations (with number of rows equal to the number of rows in count.matrix, that is, the number of variables in the data set). Not mandatory, but may contain columns such as the ones listed below. If present, the row names should be the same as the row names of the count.matrix.

- truedispersions. S1: the true dispersion for each gene in condition S1.
- truedispersions. S2: the true dispersion for each gene in condition S2.
- truemeans.S1: the true mean value for each gene in condition S1.
- truemeans. S2: the true mean value for each gene in condition S2.
- n.random.outliers.up.S1: the number of 'random' outliers with extremely high counts for each gene in condition S1.
- n.random.outliers.up.S2: the number of 'random' outliers with extremely high counts for each gene in condition S2.
- n.random.outliers.down.S1: the number of 'random' outliers with extremely low counts for each gene in condition S1.
- n.random.outliers.down.S2: the number of 'random' outliers with extremely low counts for each gene in condition S2.
- n.single.outliers.up.S1: the number of 'single' outliers with extremely high counts for each gene in condition S1.
- n.single.outliers.up.S2: the number of 'single' outliers with extremely high counts for each gene in condition S2.
- n.single.outliers.down.S1: the number of 'single' outliers with extremely low counts for each gene in condition S1.
- n.single.outliers.down.S2: the number of 'single' outliers with extremely low counts for each gene in condition S2.
- M. value: the M-value (observed log2 fold change between condition S1 and condition S2) for each gene.
- A. value: the A-value (observed average expression level across condition S1 and condition S2) for each gene.
- truelog2foldchanges: the true (simulated) log2 fold changes between condition S1 and condition S2.
- upregulation: a binary vector indicating which genes are simulated to be upregulated in condition S2 compared to condition S1.
- downregulation: a binary vector indicating which genes are simulated to be downregulated in condition S2 compared to condition S1.
- differential.expression: a binary vector indicating which genes are simulated to be differentially expressed in condition S2 compared to condition S1.

filtering

A character string containing information about the filtering that has been applied to the data set.

analysis.date

If a differential expression analysis has been performed, a character string detailing when it was performed.

package.version

If a differential expression analysis has been performed, a character string giving the version of the differential expression packages that were applied.

method.names

If a differential expression analysis has been performed, a list with entries full.name and short.name, giving the full name of the differential expression method (may including version number and parameter settings) and a short name or abbreviation.

10 compData-class

code

If a differential expression analysis has been performed, a character string containing the code that was run to perform the analysis. The code should be in R markdown format, and can be written to an HTML file using the <code>generateCodeHTMLs</code> function.

result.table

If a differential expression analysis has been performed, a data frame containing the results of the analysis. The number of rows should be equal to the number of rows in count.matrix and if present, the row names should be identical. The only mandatory column is score, which gives a score for each gene, where a higher score suggests a "more highly differentially expressed" gene. Different comparison functions use different columns of this table, if available. The list below gives the columns that are used by the interfaced methods.

- pvalue nominal p-values
- adjpvalue p-values adjusted for multiple comparisons
- logFC estimated log-fold changes between the two conditions
- score the score that will be used to rank the genes in order of significance. Note that high scores always signify differential expression, that is, a strong association with the predictor. For example, for methods returning a nominal p-value the score can be defined as 1 pvalue.
- FDR false discovery rate estimates
- posterior.DE posterior probabilities of differential expression
- prob.DE conditional probabilities of differential expression
- 1fdr local false discovery rates
- statistic test statistics from the differential expression analysis
- dispersion. S1 dispersion estimates in condition S1
- dispersion. S2 dispersion estimates in condition S2

Value

A compData object.

Author(s)

Charlotte Soneson

Examples

```
count.matrix <- round(matrix(1000*runif(4000), 1000))
sample.annotations <- data.frame(condition = c(1, 1, 2, 2))
info.parameters <- list(dataset = "mydata", uID = "123456")
cpd <- compData(count.matrix, sample.annotations, info.parameters)</pre>
```

compData-class

Class compData

Description

The compData class is used to store information about the experiment, such as the count matrix, sample and variable annotations, information regarding the generation of the data and results from applying a differential expression analysis to the data.

compData-class 11

Slots

count.matrix: The read count matrix, with genes as rows and samples as columns. Class matrix

- sample.annotations: A data frame containing sample annotation information for all samples in the data set. Must contain at least a column named condition, encoding the division of the samples into two classes. The row names should be the same as the column names of count.matrix. Class data.frame
- info.parameters: A list of parameters detailing the simulation process used to generate the data.

 Must contain at least two entries, named dataset (an informative name for the data set/simulation setting) and uID (a unique ID for the specific data set instance). Class list
- filtering: A character string detailing the filtering process that has been applied to the data. Class character
- variable.annotations: Contains information regarding the variables, such as the differential expression status, the true mean, dispersion and effect sizes. If present, the row names should be the same as those of count.matrix. Class data.frame
- analysis.date: (If a differential expression analysis has been performed and the results are included in the compData object). Gives the date when the differential expression analysis was performed. Class character
- package.version: (If a differential expression analysis has been performed and the results are included in the compData object). Gives the version numbers of the package(s) used for the differential expression analysis. Class character
- method.names: (If a differential expression analysis has been performed and the results are included in the compData object). A list, containing the name of the method used for the differential expression analysis. The list should have two entries: full.name and short.name, where the full.name is the full (potentially long) name identifying the method, and short.name may be an abbreviation. Class list
- code: (If a differential expression analysis has been performed and the results are included in the compData object). A character string containing the code that was used to run the differential expression analysis. The code should be in R markdown format. Class character
- result.table: (If a differential expression analysis has been performed and the results are included in the compData object). Contains the results of the differential expression analysis, in the form of a data frame with one row per gene. Must contain at least one column named score, where a higher value corresponds to 'more strongly differentially expressed genes'. Class data.frame

Methods

```
count.matrix signature(x="compData")
```

count.matrix<- signature(x="compData", value="matrix"): Get or set the count matrix in a compData object. value should be a numeric matrix.

sample.annotations signature(x="compData")

sample.annotations<- signature(x="compData",value="data.frame"): Get or set the sample annotations data frame in a compData object. value should be a data frame with at least a column named 'condition'.

info.parameters signature(x="compData")

info.parameters<- signature(x="compData",value="list"): Get or set the list with info parameters in a compData object. value should be a list with at least elements named 'dataset' and 'uID'.

filtering signature(x="compData")

filtering<- signature(x="compData", value="character"): Get or set the information about the filtering in a compData object. value should be a character string describing the filtering that has been performed.

variable.annotations signature(x="compData")

variable.annotations<- signature(x="compData",value="data.frame"): Get or set the variable annotations data frame in a compData object. value should be a data frame.

analysis.date signature(x="compData")

analysis.date<- signature(x="compData",value="character"): Get or set the analysis date
in a compData object. value should be a character string describing when the differential
expression analysis of the data was performed.</pre>

package.version signature(x="compData")

package.version<- signature(x="compData", value="character"): Get or set the information
 about the package version in a compData object. value should be a character string detailing
 which packages and versions were used to perform the differential expression analysis of the
 data.</pre>

method.names signature(x="compData")

method.names<- signature(x="compData", value="list"): Get or set the method names in a compData object. value should be a list with slots full.name and short.name, giving the full name and an abbreviation for the method that was used to perform the analysis of the data.

code signature(x="compData")

code<- signature(x="compData", value="character"): Get or set the code slot in a compData object. value should be a character string in R markdown format, giving the code that was run to obtain the results from the differential expression analysis.</p>

result.table signature(x="compData")

result.table<- signature(x="compData", value="data.frame"): Get or set the result table in a compData object. value should be a data frame with one row per gene, and at least a column named 'score'.

Construction

An object of the class compData can be constructed using the compData function.

Author(s)

Charlotte Soneson

convertcompDataToList Convert a compData object to a list

Description

Given a compData object, convert it to a list.

Usage

convertcompDataToList(cpd)

convertListTocompData 13

Arguments

cpd

A compData object

Author(s)

Charlotte Soneson

Examples

convertListTocompData Convert a list with data and results to a compData object

Description

Given a list with data and results (resulting e.g. from compcodeR version 0.1.0), convert it to a compData object.

Usage

```
convertListTocompData(inp.list)
```

Arguments

inp.list

A list with data and results, e.g. generated by compcodeR version 0.1.0.

Author(s)

Charlotte Soneson

Examples

```
 convertListTocompData(list(count.matrix = matrix(round(1000*runif(4000)), 1000), \\ sample.annotations = data.frame(condition = c(1,1,2,2)), \\ info.parameters = list(dataset = "mydata", \\ uID = "123456")))
```

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq data (comparing two conditions) using the GLM functionality from the DESeq package. The code is written to a .Rmd file. This function is generally not called by the user, the main interface for performing differential expression analysis is the runDiffExp function.

Usage

```
DESeq.GLM.createRmd(
  data.path,
  result.path,
  codefile,
  sharing.mode,
  disp.method,
  fit.type
)
```

Arguments

data.path	The path to a .rds file containing the compData object that will be used for the differential expression analysis.
result.path	The path to the file where the result object will be saved.
codefile	The path to the file where the code will be written.
sharing.mode	The method used to select between the individually estimated dispersion and the dispersion estimate obtained by fitting a dispersion-mean relationship to the estimated values for all genes. Possible values are "fit-only" (use the fitted value), "maximum" (take the maximum of the fitted and the estimated value) and "gene-est-only" (use the estimated value).
disp.method	The method used to estimate the dispersion. Possible values are "pooled", "per-condition" and "blind".
fit.type	The fitting method used to get the dispersion-mean relationship. Possible values are "parametric" and "local".

Details

For more information about the methods and the interpretation of the parameters, see the DESeq package and the corresponding publications.

Value

The function generates a .Rmd file containing the code for performing the differential expression analysis. This file can be executed using e.g. the knitr package.

Author(s)

Charlotte Soneson

References

Anders S and Huber W (2010): Differential expression analysis for sequence count data. Genome Biology 11:R106

Examples

DESeq.nbinom.createRmd

Generate a . Rmd file containing code to perform differential expression analysis with the DESeq nbinom approach

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq data (comparing two conditions) using the nbinom test from the DESeq package. The code is written to a .Rmd file. This function is generally not called by the user, the main interface for performing differential expression analysis is the runDiffExp function.

Usage

```
DESeq.nbinom.createRmd(
  data.path,
  result.path,
  codefile,
  sharing.mode,
  disp.method,
  fit.type
)
```

Arguments

data.path The path to a .rds file containing the compData object that will be used for the

differential expression analysis.

result.path The path to the file where the result object will be saved.

codefile The path to the file where the code will be written.

sharing.mode The method used to select between the individually estimated dispersion and

the dispersion estimate obtained by fitting a dispersion-mean relationship to the estimated values for all genes. Possible values are "fit-only" (use the fitted value), "maximum" (take the maximum of the fitted and the estimated value) and

"gene-est-only" (use the estimated value).

16 DESeq2.createRmd

disp.method	The method used to estimate the dispersion. Possible values are "pooled", "per-condition" and "blind".
fit.type	The fitting method used to get the dispersion-mean relationship. Possible values are "parametric" and "local".

Details

For more information about the methods and the interpretation of the parameters, see the DESeq package and the corresponding publications.

Value

The function generates a .Rmd file containing the code for performing the differential expression analysis. This file can be executed using e.g. the knitr package.

Author(s)

Charlotte Soneson

References

Anders S and Huber W (2010): Differential expression analysis for sequence count data. Genome Biology 11:R106

Examples

DESeg2.createRmd

 $\label{lem:containing} \textit{Generate a } . \texttt{Rmd} \textit{ file containing code to perform differential expression} \\ \textit{analysis with DESeq2}$

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq data (comparing two conditions) using the DESeq2 package. The code is written to a .Rmd file. This function is generally not called by the user, the main interface for performing differential expression analysis is the runDiffExp function.

DESeq2.createRmd 17

Usage

```
DESeq2.createRmd(
  data.path,
  result.path,
  codefile,
  fit.type,
  test,
  beta.prior = TRUE,
  independent.filtering = TRUE,
  cooks.cutoff = TRUE,
  impute.outliers = TRUE
)
```

Arguments

data.path The path to a .rds file containing the compData object that will be used for the

differential expression analysis.

result.path The path to the file where the result object will be saved.

codefile The path to the file where the code will be written.

fit.type The fitting method used to get the dispersion-mean relationship. Possible values

are "parametric", "local" and "mean".

test The test to use. Possible values are "Wald" and "LRT".

beta.prior Whether or not to put a zero-mean normal prior on the non-intercept coefficients.

Default is TRUE.

independent.filtering

Whether or not to perform independent filtering of the data. With independent filtering=TRUE, the adjusted p-values for genes not passing the filter threshold

are set to NA.

cooks.cutoff The cutoff value for the Cook's distance to consider a value to be an outlier. Set

to Inf or FALSE to disable outlier detection. For genes with detected outliers,

the p-value and adjusted p-value will be set to NA.

impute.outliers

Whether or not the outliers should be replaced by a trimmed mean and the analysis rerun.

Details

For more information about the methods and the interpretation of the parameters, see the DESeq2 package and the corresponding publications.

Value

The function generates a .Rmd file containing the code for performing the differential expression analysis. This file can be executed using e.g. the knitr package.

Author(s)

Charlotte Soneson

DSS.createRmd

References

Anders S and Huber W (2010): Differential expression analysis for sequence count data. Genome Biology 11:R106

Examples

DSS.createRmd

 $\label{lem:containing} \textit{Generate a }. \texttt{Rmd} \textit{ file containing code to perform differential expression} \\ \textit{analysis with DSS}$

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq data (comparing two conditions) using the DSS package. The code is written to a .Rmd file. This function is generally not called by the user, the main interface for performing differential expression analysis is the runDiffExp function.

Usage

```
DSS.createRmd(data.path, result.path, codefile, norm.method, disp.trend)
```

Arguments

data.path	The path to a .rds file containing the compData object that will be used for the differential expression analysis.
result.path	The path to the file where the result object will be saved.
codefile	The path to the file where the code will be written.
norm.method	The between-sample normalization method used to compensate for varying library sizes and composition in the differential expression analysis. Possible values are "quantile", "total" and "median".
disp.trend	A logical parameter indicating whether or not to include a trend in the dispersion estimation.

Details

For more information about the methods and the interpretation of the parameters, see the DSS package and the corresponding publications.

EBSeq.createRmd 19

Author(s)

Charlotte Soneson

References

Wu H, Wang C and Wu Z (2013): A new shrinkage estimator for dispersion improves differential expression detection in RNA-seq data. Biostatistics 14(2), 232-243

Examples

EBSeq.createRmd

Generate a .Rmd file containing code to perform differential expression analysis with EBSeq

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq data (comparing two conditions) using the EBSeq package. The code is written to a .Rmd file. This function is generally not called by the user, the main interface for performing differential expression analysis is the runDiffExp function.

Usage

```
EBSeq.createRmd(data.path, result.path, codefile, norm.method)
```

Arguments

data.path The path to a .rds file containing the compData object that will be used for the

differential expression analysis.

result.path The path to the file where the result object will be saved.

codefile The path to the file where the code will be written.

norm.method The between-sample normalization method used to compensate for varying li-

brary sizes and composition in the differential expression analysis. Possible

values are "median" and "quantile".

Details

For more information about the methods and the meaning of the parameters, see the EBSeq package and the corresponding publications.

Value

The function generates a .Rmd file containing the differential expression code. This file can be executed using e.g. the knitr package.

Author(s)

Charlotte Soneson

References

Leng N, Dawson JA, Thomson JA, Ruotti V, Rissman AI, Smits BMG, Haag JD, Gould MN, Stewart RM and Kendziorski C (2013): EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics

Examples

edgeR.exact.createRmd $Generate\ a\ .$ Rmd $file\ containing\ code\ to\ perform\ differential\ expression$ $analysis\ with\ the\ edgeR\ exact\ test$

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq data (comparing two conditions) using the exact test functionality from the edgeR package. The code is written to a .Rmd file. This function is generally not called by the user, the main interface for performing differential expression analysis is the runDiffExp function.

Usage

```
edgeR.exact.createRmd(
  data.path,
  result.path,
  codefile,
  norm.method,
  trend.method,
  disp.type
```

edgeR.exact.createRmd 21

Arguments

data.path	The path to a .rds file containing the compData object that will be used for the differential expression analysis.
result.path	The path to the file where the result object will be saved.
codefile	The path to the file where the code will be written.
norm.method	The between-sample normalization method used to compensate for varying library sizes and composition in the differential expression analysis. Possible values are "TMM", "RLE", "upperquartile" and "none".
trend.method	The method used to estimate the trend in the mean-dispersion relationship. Possible values are "none", "movingave" and "loess"
disp.type	The type of dispersion estimate used. Possible values are "common", "trended" and "tagwise".

Details

For more information about the methods and the interpretation of the parameters, see the edgeR package and the corresponding publications.

Value

The function generates a .Rmd file containing the code for performing the differential expression analysis. This file can be executed using e.g. the knitr package.

Author(s)

Charlotte Soneson

References

Robinson MD, McCarthy DJ and Smyth GK (2010): edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140

Examples

 $\begin{tabular}{ll} edgeR.GLM.createRmd & Generate\ a\ . Rmd\ file\ containing\ code\ to\ perform\ differential\ expression\ analysis\ with\ the\ edgeR\ GLM\ approach \end{tabular}$

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq data (comparing two conditions) using the GLM functionality from the edgeR package. The code is written to a .Rmd file. This function is generally not called by the user, the main interface for performing differential expression analysis is the runDiffExp function.

Usage

```
edgeR.GLM.createRmd(
  data.path,
  result.path,
  codefile,
  norm.method,
  disp.type,
  disp.method,
  trended
)
```

Arguments

data.path	The path to a .rds file containing the compData object that will be used for the differential expression analysis.
result.path	The path to the file where the result object will be saved.
codefile	The path to the file where the code will be written.
norm.method	The between-sample normalization method used to compensate for varying library sizes and composition in the differential expression analysis. Possible values are "TMM", "RLE", "upperquartile" and "none".
disp.type	The type of dispersion estimate used. Possible values are "common", "trended" and "tagwise".
disp.method	The method used to estimate the dispersion. Possible values are "CoxReid", "Pearson" and "deviance".
trended	Logical parameter indicating whether or not a trended dispersion estimate should be used.

Details

For more information about the methods and the interpretation of the parameters, see the edgeR package and the corresponding publications.

Value

The function generates a .Rmd file containing the code for performing the differential expression analysis. This file can be executed using e.g. the knitr package.

generateCodeHTMLs 23

Author(s)

Charlotte Soneson

References

Robinson MD, McCarthy DJ and Smyth GK (2010): edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140

Examples

generateCodeHTMLs

Generate HTML file(s) containing code used to run differential expression analysis.

Description

A function to extract the code used to generate differential expression results from saved compData result objects (typically obtained by runDiffExp), and to write the code to HTML files. This requires that the code was saved as a character string in R markdown format in the code slot of the result object, which is done automatically by runDiffExp. If the differential expression analysis was performed with functions outside compcodeR, the code has to be added manually to the result object.

Usage

```
generateCodeHTMLs(input.files, output.directory)
```

Arguments

input.files

A vector with paths to one or several .rds files containing compData objects with the results from differential expression analysis. One code HTML file is generated for each file in the vector.

output.directory

The path to the directory where the code HTML files will be saved.

Author(s)

Charlotte Soneson

Examples

generateSyntheticData Generate synthetic count data sets

Description

Generate synthetic count data sets, following the simulation strategy detailed in Soneson and Delorenzi (2013).

Usage

```
generateSyntheticData(
 dataset,
 n.vars,
  samples.per.cond,
 n.diffexp,
  repl.id = 1,
  seqdepth = 1e+07,
 minfact = 0.7,
 maxfact = 1.4,
 relmeans = "auto",
 dispersions = "auto",
  fraction.upregulated = 1,
 between.group.diffdisp = FALSE,
  filter.threshold.total = 1,
 filter.threshold.mediancpm = 0,
  fraction.non.overdispersed = 0,
  random.outlier.high.prob = 0,
  random.outlier.low.prob = 0,
  single.outlier.high.prob = 0,
  single.outlier.low.prob = 0,
 effect.size = 1.5,
 output.file = NULL
)
```

Arguments

dataset A name or identifier for the data set/simulation settings.

n.vars The initial number of genes in the simulated data set. Based on the filtering conditions (filter.threshold.total and filter.threshold.mediancpm), the number of genes in the final data set may be lower than this number.

generateSyntheticData 25

samples.per.cond

The number of samples in each of the two conditions.

n.diffexp The number of genes simulated to be differentially expressed between the two

conditions.

repl.id A replicate ID for the specific simulation instance. Useful for example when

generating multiple count matrices with the same simulation settings.

segdepth The base sequencing depth (total number of mapped reads). This number is

multiplied by a value drawn uniformly between minfact and maxfact for each

sample to generate data with different actual sequencing depths.

minfact, maxfact

The minimum and maximum for the uniform distribution used to generate factors that are multiplied with seqdepth to generate individual sequencing depths

for the simulated samples.

A vector of mean values to use in the simulation of data from the Negative Binomial distribution, or "auto". Note that these values may be scaled in order to comply with the given sequencing depth. With the default value ("auto"), the mean values are sampled from values estimated from the Pickrell and Cheung data sets. If relmeans is a vector, the provided values will be used as mean values in the simulation for the samples in the first condition. The mean values for the samples in the second condition are generated by combining the relmeans

and effect.size arguments.

A vector or matrix of dispersions to use in the simulation of data from the Negdispersions ative Binomial distribution, or "auto". With the default value ("auto"), the dispersion values are sampled from values estimated from the Pickrell and Cheung data sets. If both relmeans and dispersions are set to "auto", the means

and dispersion values are sampled in pairs from the values in these data sets. If dispersions is a single vector, the provided dispersions will be used for simulating data from both conditions. If it is a matrix with two columns, the values in the first column are used for condition 1, and the values in the second column

are used for condition 2.

fraction.upregulated

The fraction of the differentially expressed genes that is upregulated in condition 2 compared to condition 1.

Whether or not the dispersion should be allowed to be different between the conditions. Only applicable if dispersions is "auto".

filter.threshold.total

The filter threshold on the total count for a gene across all samples. All genes for which the total count across all samples is less than the threshold will be filtered out.

filter.threshold.mediancpm

The filter threshold on the median count per million (cpm) for a gene across all samples. All genes for which the median cpm across all samples is less than the threshold will be filtered out.

fraction.non.overdispersed

The fraction of the genes that should be simulated according to a Poisson distribution, without overdispersion. The non-overdispersed genes will be divided proportionally between the upregulated, downregulated and non-differentially expressed genes.

random.outlier.high.prob

The fraction of 'random' outliers with unusually high counts.

relmeans

between.group.diffdisp

random.outlier.low.prob

The fraction of 'random' outliers with unusually low counts.

single.outlier.high.prob

The fraction of 'single' outliers with unusually high counts.

single.outlier.low.prob

The fraction of 'single' outliers with unusually low counts.

effect.size

The strength of the differential expression, i.e., the effect size, between the two conditions. If this is a single number, the effect sizes will be obtained by simulating numbers from an exponential distribution (with rate 1) and adding the results to the effect.size. For genes that are upregulated in the second condition, the mean in the first condition is multiplied by the effect size. For genes that are downregulated in the second condition, the mean in the first condition is divided by the effect size. It is also possible to provide a vector of effect sizes (one for each gene), which will be used as provided. In this case, the fraction.upregulated and n.diffexp arguments will be ignored and the values will be derived from the effect.size vector.

output.file

If not NULL, the path to the file where the data object should be saved. The extension should be .rds, if not it will be changed.

Details

In the comparison function, only results obtained for data sets with the same value of the dataset parameter will be compared. Hence, it is important to give the same value of this parameter e.g. to different replicates generated with the same simulation settings.

For more detailed information regarding the different types of outliers, see Soneson and Delorenzi (2013).

Mean and dispersion parameters (if relmeans and/or dispersions is set to "auto") are sampled from values estimated from the data sets by Pickrell et al (2010) and Cheung et al (2010). The data sets were downloaded from the ReCount web page (Frazee et al (2011)) and processed as detailed by Soneson and Delorenzi (2013).

To get the actual mean value for the Negative Binomial distribution used for the simulation of counts for a given sample, take the column truemeans. S1 (or truemeans. S2, if the sample is in condition S2) of the variable annotations slot, divide by the sum of the same column and multiply with the base sequencing depth (provided in the info.parameters list) and the depth factor for the sample (given in the sample annotations data frame). Thus, if you have a vector of mean values that you want to provide as the relmeans argument and make sure to use it 'as-is' in the simulation (for condition S1), make sure to set the seqdepth argument to the sum of the values in the relmeans vector, and to set minfact and maxfact equal to 1.

Value

A compData object. If output.file is not NULL, the object is saved in the given output.file (which should have an .rds extension).

Author(s)

Charlotte Soneson

References

Soneson C and Delorenzi M (2013): A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinformatics 14:91

listcreateRmd 27

Cheung VG, Nayak RR, Wang IX, Elwyn S, Cousins SM, Morley M and Spielman RS (2010): Polymorphic cis- and trans-regulation of human gene expression. PLoS Biology 8(9):e1000480

Frazee AC, Langmead B and Leek JT (2011): ReCount: a multi-experiment resource of analysis-ready RNA-seq gene count datasets. BMC Bioinformatics 12:449

Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, Nkadori E, Veyrieras JB, Stephens M, Gilad Y and Pritchard JK (2010): Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature 464, 768-772

Robles JA, Qureshi SE, Stephen SJ, Wilson SR, Burden CJ and Taylor JM (2012): Efficient experimental design and analysis strategies for the detection of differential expression using RNA-sequencing. BMC Genomics 13:484

Examples

listcreateRmd

List available *.createRmd functions

Description

Print a list of all *.createRmd functions that are available in the search path. These functions can be used together with the runDiffExp function to perform differential expression analysis. Consult the help pages for the respective functions for more information.

Usage

listcreateRmd()

Author(s)

Charlotte Soneson

Examples

listcreateRmd()

logcpm.limma.createRmd

Generate a .Rmd file containing code to perform differential expression analysis with limma after log-transforming the counts per million (cpm)

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq data (comparing two conditions) using limma, after preprocessing the counts by computing the counts per million (cpm) and applying a logarithmic transformation. The code is written to a .Rmd file. This function is generally not called by the user, the main interface for performing differential expression analysis is the runDiffExp function.

Usage

logcpm.limma.createRmd(data.path, result.path, codefile, norm.method)

Arguments

data.path The path to a .rds file containing the compData object that will be used for the

differential expression analysis.

result.path The path to the file where the result object will be saved.

codefile The path to the file where the code will be written.

norm.method The between-sample normalization method used to compensate for varying li-

brary sizes and composition in the differential expression analysis. The normalization factors are calculated using the calcNormFactors function from the edgeR package. Possible values are "TMM", "RLE", "upperquartile" and

"none"

Details

For more information about the methods and the interpretation of the parameters, see the edgeR and limma packages and the corresponding publications.

Value

The function generates a .Rmd file containing the code for performing the differential expression analysis. This file can be executed using e.g. the knitr package.

Author(s)

Charlotte Soneson

References

Smyth GK (2005): Limma: linear models for microarray data. In: 'Bioinformatics and Computational Biology Solutions using R and Bioconductor'. R. Gentleman, V. Carey, S. Dudoit, R. Irizarry, W. Huber (eds), Springer, New York, pages 397-420

Robinson MD, McCarthy DJ and Smyth GK (2010): edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140

Robinson MD and Oshlack A (2010): A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology 11:R25

Examples

NBPSeq.createRmd 29

NBPSeq.createRmd	Generate a . Rmd file containing code to perform differential expression analysis with NBPSeq

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq data (comparing two conditions) using NBPSeq. The code is written to a .Rmd file. This function is generally not called by the user, the main interface for performing differential expression analysis is the runDiffExp function.

Usage

NBPSeq.createRmd(data.path, result.path, codefile, norm.method, disp.method)

Arguments

S	
data.path	The path to a .rds file containing the compData object that will be used for the differential expression analysis.
result.path	The path to the file where the result object will be saved.
codefile	The path to the file where the code will be written.
norm.method	The between-sample normalization method used to compensate for varying library sizes and composition in the differential expression analysis. The normalization factors are calculated using the calcNormFactors function from the edgeR package. Possible values are "TMM", "RLE", "upperquartile" and "none".
disp.method	The method to use to estimate the dispersion values. Possible values are "NBP" and "NB2".

Details

For more information about the methods and the interpretation of the parameters, see the NBPSeq and edgeR packages and the corresponding publications.

Value

The function generates a .Rmd file containing the code for performing the differential expression analysis. This file can be executed using e.g. the knitr package.

Author(s)

Charlotte Soneson

References

Robinson MD, McCarthy DJ and Smyth GK (2010): edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140

Robinson MD and Oshlack A (2010): A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology 11:R25

Di Y, Schafer DW, Cumbie JS, and Chang JH (2011): The NBP Negative Binomial Model for Assessing Differential Gene Expression from RNA-Seq. Statistical Applications in Genetics and Molecular Biology 10(1), 1-28

Examples

NOISeq.prenorm.createRmd

 $\label{lem:containing} \textit{Generate a }. \textit{Rmd } \textit{file containing code to perform differential expression} \\ \textit{analysis with NOISeq}$

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq data (comparing two conditions) using NOISeq. The code is written to a .Rmd file. This function is generally not called by the user, the main interface for performing differential expression analysis is the runDiffExp function.

Usage

```
NOISeq.prenorm.createRmd(data.path, result.path, codefile, norm.method)
```

Arguments

data.path The path to a .rds file containing the compData object that will be used for the

differential expression analysis.

result.path The path to the file where the result object will be saved.

codefile The path to the file where the code will be written.

norm.method The between-sample normalization method used to compensate for varying li-

brary sizes and composition in the differential expression analysis. The normalization factors are calculated using the calcNormFactors function from the edgeR package. Possible values are "TMM", "RLE", "upperquartile" and

"none".

Details

For more information about the methods and the interpretation of the parameters, see the NOISeq package and the corresponding publications.

Value

The function generates a .Rmd file containing the code for performing the differential expression analysis. This file can be executed using e.g. the knitr package.

runComparison 31

Author(s)

Charlotte Soneson

References

Robinson MD, McCarthy DJ and Smyth GK (2010): edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140

Robinson MD and Oshlack A (2010): A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology 11:R25

Tarazona S, Furio-Tari P, Ferrer A and Conesa A (2012): NOISeq: Exploratory analysis and differential expression for RNA-seq data. R package

Tarazona S, Garcia-Alcalde F, Dopazo J, Ferrer A and Conesa A (2011): Differential expression in RNA-seq: a matter of depth. Genome Res 21(12), 2213-2223

Examples

runComparison

Run the performance comparison between differential expression methods.

Description

The main function for performing comparisons among differential expression methods and generating a report in HTML format. It is assumed that all differential expression results have been generated in advance (using e.g. the function runDiffExp) and that the result compData object for each data set and each differential expression method is saved separately in files with the extension .rds. Note that the function can also be called via the runComparisonGUI function, which lets the user set parameters and select input files using a graphical user interface.

Usage

```
runComparison(
  file.table,
  parameters,
  output.directory,
  check.table = TRUE,
  out.width = NULL
)
```

32 runComparison

Arguments

file.table

A data frame with at least a column input.files, potentially also columns named datasets, nbr.samples, repl and de.methods.

parameters

A list containing parameters for the comparison study. The following entries are supported, and used by different comparison methods:

- incl.nbr.samples An array with sample sizes (number of samples per condition) to consider in the comparison. If set to NULL, all sample sizes will be included.
- incl.dataset A dataset name (corresponding to the dataset slot of the results or data objects), indicating the dataset that will be used for the comparison. Only one dataset can be chosen.
- incl.replicates An array with replicate numbers to consider in the comparison. If set to NULL, all replicates will be included.
- incl.de.methods An array with differential expression methods to be compared. If set to NULL, all differential expression methods will be included.
- fdr. threshold The adjusted p-value threshold for FDR calculations. Default 0.05.
- tpr.threshold The adjusted p-value threshold for TPR calculations. Default 0.05.
- mcc. threshold The adjusted p-value threshold for MCC calculations. Default 0.05.
- typeI.threshold The nominal p-value threshold for type I error calculations. Default 0.05.
- fdc.maxvar The maximal number of variables to include in false discovery curve plots. Default 1500.
- overlap.threshold The adjusted p-value for overlap analysis. Default 0.05
- fracsign. threshold The adjusted p-value for calculation of the fraction/number of genes called significant. Default 0.05.
- nbrtpfp.threshold The adjusted p-value for calculation of the number of TP, FP, TN, FN genes. Default 0.05.
- ma.threshold The adjusted p-value threshold for coloring genes in MA plots. Default 0.05.
- signal.measure Either 'mean' or 'snr', determining how to define the signal strength for a gene which is expressed in only one condition.
- upper.limits,lower.limits Lists that can be used to manually set the upper and lower plot limits for boxplots of fdr, tpr, auc, mcc, fracsign, nbrtpfp and typelerror.
- comparisons Array containing the comparison methods to be applied. The entries must be chosen among the following abbreviations:
 - "auc" Compute the area under the ROC curve
 - "mcc" Compute Matthew's correlation coefficient
 - "tpr" Compute the true positive rate at a given adjusted p-value threshold (tpr.threshold)
 - "fdr" Compute the false discovery rate at a given adjusted p-value threshold (fdr.threshold)
 - "fdrvsexpr" Compute the false discovery rate as a function of the expression level.

runComparison 33

"typeIerror" - Compute the type I error rate at a given nominal p-value threshold (typeI.threshold)

- "fracsign" Compute the fraction of genes called significant at a given adjusted p-value threshold (fracsign.threshold).
- "nbrsign" Compute the number of genes called significant at a given adjusted p-value threshold (fracsign.threshold).
- "nbrtpfp" Compute the number of true positives, false positives, true negatives and false negatives at a given adjusted p-value threshold (nbrtpfp.threshold).
- "maplot" Construct MA plots, depicting the average expression level and the log fold change for the genes and indicating the genes called differential expressed at a given adjusted p-value threshold (ma.threshold).
- "fdcurvesal1" Construct false discovery curves for each of the included replicates.
- "fdcurvesone" Construct false discovery curves for a single replicate only
- "rocall" Construct ROC curves for each of the included replicates
- "rocone" Construct ROC curves for a single replicate only
- "overlap" Compute the overlap between collections of genes called differentially expressed by the different methods at a given adjusted p-value threshold (overlap.threshold)
- "sorensen" Compute the Sorensen index, quantifying the overlap between collections of genes called differentially expressed by the different methods, at a given adjusted p-value threshold (overlap.threshold)
- "correlation" Compute the Spearman correlation between gene scores assigned by different methods
- "scorevsoutlier" Visualize the distribution of the gene scores as a function of the number of outlier counts introduced for the genes
- "scorevsexpr" Visualize the gene scores as a function of the average expression level of the genes
- "scorevssignal" Visualize the gene score as a function of the 'signal strength' (see the signal.measure parameter above) for genes that are expressed in only one condition

output.directory

The directory where the results should be written. The subdirectory structure will be created automatically. If the directory already exists, it will be overwritten

check.table Logical, should the input table be checked for consistency. Default TRUE.

out.width The width of the figures in the final report. Will be passed on to knitr when the HTML is generated.

Details

The input to runComparison is a data frame with at least a column named input.files, containing paths to .rds files containing result objects (of the class compData), such as those generated by runDiffExp. Other columns that can be included in the data frame are datasets, nbr.samples, repl and de.methods. They have to match the information contained in the corresponding result objects. If these columns are not present, they will be added to the data frame automatically.

34 runComparisonGUI

Value

The function will create a comparison report, named **compcodeR_report<timestamp>.html**, in the output.directory. It will also create subfolders named compcodeR_code and compcodeR_figure, where the code used to perform the differential expression analysis and the figures contained in the report, respectively, will be stored. Note that if these directories already exists, they will be overwritten.

Author(s)

Charlotte Soneson

Examples

```
tmpdir <- normalizePath(tempdir(), winslash = "/")</pre>
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,</pre>
                                     samples.per.cond = 5, n.diffexp = 100,
                                     output.file = file.path(tmpdir, "mydata.rds"))
runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "voom.limma",
           Rmdfunction = "voom.limma.createRmd", output.directory = tmpdir,
           norm.method = "TMM")
runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "edgeR.exact",
           Rmdfunction = "edgeR.exact.createRmd", output.directory = tmpdir,
           norm.method = "TMM",
           trend.method = "movingave", disp.type = "tagwise")
file.table <- data.frame(input.files = file.path(tmpdir,</pre>
                          c("mydata_voom.limma.rds", "mydata_edgeR.exact.rds")),
                          stringsAsFactors = FALSE)
parameters <- list(incl.nbr.samples = 5, incl.replicates = 1, incl.dataset = "mydata",</pre>
                   incl.de.methods = NULL,
                   fdr.threshold = 0.05, tpr.threshold = 0.05, typeI.threshold = 0.05,
                   ma.threshold = 0.05, fdc.maxvar = 1500, overlap.threshold = 0.05,
                   fracsign.threshold = 0.05, mcc.threshold = 0.05,
                   nbrtpfp.threshold = 0.05,
                   comparisons = c("auc", "fdr", "tpr", "ma", "correlation"))
runComparison(file.table = file.table, parameters = parameters, output.directory = tmpdir)
```

runComparisonGUI

A GUI to the main function for running the performance comparison between differential expression methods.

Description

This function provides a GUI to the main function for performing comparisons among differential expression methods and generating a report in HTML format (runComparison). It is assumed that all differential expression results have been generated in advance (using e.g. the function runDiffExp) and that the result compData object for each data set and each differential expression method is saved separately in files with the extension .rds. The function opens a graphical user interface where the user can set parameter values and choose the files to be used as the basis of the comparison. It is, however, possible to circumvent the GUI and call the comparison function runComparison directly.

runComparisonGUI 35

Usage

```
runComparisonGUI(
  input.directories,
  output.directory,
  recursive,
  out.width = NULL,
  upper.limits = NULL,
  lower.limits = NULL)
```

Arguments

input.directories

A list of directories containing the result files (*.rds). All results in the provided directories will be available for inclusion in the comparison, and the selection is performed through a graphical user interface. All result objects saved in the files should be of the compData class, although list objects created by earlier versions of compcodeR are supported.

output.directory

The directory where the results should be written. The subdirectory structure will be created automatically. If the directory already exists, it will be overwritten.

recursive

A logical parameter indicating whether or not the search should be extended recursively to subfolders of the input.directories.

out.width

The width of the figures in the final report. Will be passed on to knitr when the HTML is generated. Can be for example "800px" (see knitr documentation for more information)

upper.limits, lower.limits

Lists that can be used to manually set upper and lower limits for boxplots of fdr, tpr, auc, mcc, fracsign, nbrtpfp, nbrsign and typeIerror.

Details

This function requires that the rpanel package is installed. If this package can not be installed, please use the runComparison function directly.

Value

The function will create a comparison report, named **compcodeR_report<timestamp>.html**, in the output.directory. It will also create subfolders named compcodeR_code and compcodeR_figure, where the code used to perform the differential expression analysis and the figures contained in the report, respectively, will be saved. Note that if these directories already exist they will be overwritten.

Author(s)

Charlotte Soneson

Examples

```
## Not run:
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 12500,</pre>
```

36 runDiffExp

runDiffExp

The main function to run differential expression analysis

Description

The main function for running differential expression analysis (comparing two conditions), using one of the methods interfaced through compcodeR or a user-defined method.

Usage

```
runDiffExp(
  data.file,
  result.extent,
  Rmdfunction,
  output.directory = ".",
  norm.path = TRUE,
   ...
)
```

Arguments

data.file The path to a .rds file containing the data on which the differential expres-

sion analysis will be performed, for example a compData object returned from

 ${\tt generateSyntheticData}.$

result.extent The extension that will be added to the data file name in order to construct the

result file name. This can be for example the differential expression method

together with a version number.

Rmdfunction A function that creates an Rmd file containing the code that should be run to

perform the differential expression analysis. All functions available through

compcodeR can be listed using the listcreateRmd function.

output.directory

The directory in which the result object will be saved.

norm.path Logical, whether to include the full (absolute) path to the output object in the

saved code.

. . Additional arguments that will be passed to the Rmdfunction, such as parameter

choices for the differential expression method.

Author(s)

Charlotte Soneson

runDiffExp 37

```
tmpdir <- normalizePath(tempdir(), winslash = "/")</pre>
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,</pre>
                                      samples.per.cond = 5, n.diffexp = 100,
                                      output.file = file.path(tmpdir, "mydata.rds"))
listcreateRmd()
runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "voom.limma",
           Rmdfunction = "voom.limma.createRmd",
           output.directory = tmpdir, norm.method = "TMM")
## Not run:
## The following list covers the currently available
differential expression methods:
runDiffExp(data.file = "mydata.rds", result.extent = "baySeq",
           Rmdfunction = "baySeq.createRmd",
           output.directory = ".", norm.method = "edgeR",
           equaldisp = TRUE)
runDiffExp(data.file = "mydata.rds", result.extent = "DESeq.GLM",
           Rmdfunction = "DESeq.GLM.createRmd",
           output.directory = ".", sharing.mode = "maximum",
disp.method = "pooled", fit.type = "parametric")
runDiffExp(data.file = "mydata.rds", result.extent = "DESeq.nbinom",
           Rmdfunction = "DESeq.nbinom.createRmd",
           output.directory = ".", sharing.mode = "maximum",
disp.method = "pooled", fit.type = "parametric")
runDiffExp(data.file = "mydata.rds", result.extent = "DESeq2",
           Rmdfunction = "DESeq2.createRmd",
           output.directory = ".", fit.type = "parametric",
           test = "Wald", beta.prior = TRUE,
           independent.filtering = TRUE, cooks.cutoff = TRUE,
           impute.outliers = TRUE)
runDiffExp(data.file = "mydata.rds", result.extent = "DSS",
           Rmdfunction = "DSS.createRmd",
           output.directory = ".", norm.method = "quantile",
           disp.trend = TRUE)
runDiffExp(data.file = "mydata.rds", result.extent = "EBSeq",
           Rmdfunction = "EBSeq.createRmd",
           output.directory = ".", norm.method = "median")
runDiffExp(data.file = "mydata.rds", result.extent = "edgeR.exact",
           Rmdfunction = "edgeR.exact.createRmd",
           output.directory = ".", norm.method = "TMM",
           trend.method = "movingave", disp.type = "tagwise")
runDiffExp(data.file = "mydata.rds", result.extent = "edgeR.GLM",
           Rmdfunction = "edgeR.GLM.createRmd",
           output.directory = ".", norm.method = "TMM",
           disp.type = "tagwise", disp.method = "CoxReid",
           trended = TRUE)
runDiffExp(data.file = "mydata.rds", result.extent = "logcpm.limma",
           Rmdfunction = "logcpm.limma.createRmd",
           output.directory = ".", norm.method = "TMM")
runDiffExp(data.file = "mydata.rds", result.extent = "NBPSeq",
           Rmdfunction = "NBPSeq.createRmd",
           output.directory = ".", norm.method = "TMM",
           disp.method = "NBP")
runDiffExp(data.file = "mydata.rds", result.extent = "NOISeq",
           Rmdfunction = "NOISeq.prenorm.createRmd",
```

```
output.directory = ".", norm.method = "TMM")
runDiffExp(data.file = "mydata.rds", result.extent = "sqrtcpm.limma",
           Rmdfunction = "sqrtcpm.limma.createRmd",
           output.directory = ".", norm.method = "TMM")
runDiffExp(data.file = "mydata.rds", result.extent = "TCC",
           Rmdfunction = "TCC.createRmd",
           output.directory = ".", norm.method = "tmm",
test.method = "edger", iteration = 3,
           normFDR = 0.1, floorPDEG = 0.05)
runDiffExp(data.file = "mydata.rds", result.extent = "ttest",
           Rmdfunction = "ttest.createRmd",
           output.directory = ".", norm.method = "TMM")
runDiffExp(data.file = "mydata.rds", result.extent = "voom.limma",
           Rmdfunction = "voom.limma.createRmd",
           output.directory = ".", norm.method = "TMM")
runDiffExp(data.file = "mydata.rds", result.extent = "voom.ttest",
           Rmdfunction = "voom.ttest.createRmd",
           output.directory = ".", norm.method = "TMM")
runDiffExp(data.file = "mydata.rds", result.extent = "vst.limma",
           Rmdfunction = "vst.limma.createRmd",
           output.directory = ".", fit.type = "parametric")
runDiffExp(data.file = "mydata.rds", result.extent = "vst.ttest",
           Rmdfunction = "vst.ttest.createRmd",
           output.directory = ".", fit.type = "parametric")
## End(Not run)
```

 $show, \verb|compData-method| Show method for \verb|compData| object|$

Description

Show method for compData object.

Usage

```
## S4 method for signature 'compData'
show(object)
```

Arguments

object A compData object

Author(s)

Charlotte Soneson

sqrtcpm.limma.createRmd

Generate a .Rmd file containing code to perform differential expression analysis with limma after square root-transforming the counts per million (cpm)

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq data (comparing two conditions) using limma, after preprocessing the counts by computing the counts per million (cpm) and applying a square-root transformation. The code is written to a .Rmd file. This function is generally not called by the user, the main interface for performing differential expression analysis is the runDiffExp function.

Usage

sqrtcpm.limma.createRmd(data.path, result.path, codefile, norm.method)

Arguments

data.path The path to a .rds file containing the compData object that will be used for the

differential expression analysis.

result.path The path to the file where the result object will be saved.

codefile The path to the file where the code will be written.

norm.method The between-sample normalization method used to compensate for varying li-

brary sizes and composition in the differential expression analysis. The normalization factors are calculated using the calcNormFactors function from the edgeR package. Possible values are "TMM", "RLE", "upperquartile" and

"none".

Details

For more information about the methods and the interpretation of the parameters, see the edgeR and limma packages and the corresponding publications.

Value

The function generates a .Rmd file containing the code for performing the differential expression analysis. This file can be executed using e.g. the knitr package.

Author(s)

Charlotte Soneson

References

Smyth GK (2005): Limma: linear models for microarray data. In: 'Bioinformatics and Computational Biology Solutions using R and Bioconductor'. R. Gentleman, V. Carey, S. Dudoit, R. Irizarry, W. Huber (eds), Springer, New York, pages 397-420

Robinson MD, McCarthy DJ and Smyth GK (2010): edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140

Robinson MD and Oshlack A (2010): A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology 11:R25

Examples

summarizeSyntheticDataSet

Summarize a synthetic data set by some diagnostic plots

Description

Summarize a synthetic data set (generated by generateSyntheticData) by some diagnostic plots.

Usage

```
summarizeSyntheticDataSet(data.set, output.filename)
```

Arguments

```
A data set, either a compData object or a path to an .rds file where such an object is stored.
```

output.filename

The filename of the resulting html report (including the path).

Author(s)

Charlotte Soneson

TCC.createRmd 41

TCC.createRmd $Generate\ a\ .$ Rmd $file\ containing\ code\ to\ perform\ differential\ expression analysis\ with\ TCC$	sion
--	------

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq data (comparing two conditions) using the TCC package. The code is written to a .Rmd file. This function is generally not called by the user, the main interface for performing differential expression analysis is the runDiffExp function.

Usage

```
TCC.createRmd(
  data.path,
  result.path,
  codefile,
  norm.method,
  test.method,
  iteration = 3,
  normFDR = 0.1,
  floorPDEG = 0.05
)
```

Arguments

data.path	The path to a .rds file containing the compData object that will be used for the differential expression analysis.
result.path	The path to the file where the result object will be saved.
codefile	The path to the file where the code will be written.
norm.method	The between-sample normalization method used to compensate for varying library sizes and composition in the differential expression analysis. Possible values are "tmm", and "deseq".
test.method	The method used in TCC to find differentially expressed genes. Possible values are "edger", "deseq" and "bayseq".
iteration	The number of iterations used to find the normalization factors. Default value is 3.
normFDR	The FDR cutoff for calling differentially expressed genes in the computation of the normalization factors. Default value is 0.1.
floorPDEG	The minimum value to be eliminated as potential differentially expressed genes before performing step 3 in the TCC algorithm. Default value is 0.05.

Details

For more information about the methods and the interpretation of the parameters, see the TCC package and the corresponding publications.

Author(s)

Charlotte Soneson

42 ttest.createRmd

References

Kadota K, Nishiyama T, and Shimizu K. A normalization strategy for comparing tag count data. Algorithms Mol Biol. 7:5, 2012.

Sun J, Nishiyama T, Shimizu K, and Kadota K. TCC: an R package for comparing tag count data with robust normalization strategies. BMC Bioinformatics 14:219, 2013.

Examples

ttest.createRmd

Generate a . Rmd file containing code to perform differential expression analysis with a t-test

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq data (comparing two conditions) using a t-test, applied to the normalized counts. The code is written to a .Rmd file. This function is generally not called by the user, the main interface for performing differential expression analysis is the runDiffExp function.

Usage

```
ttest.createRmd(data.path, result.path, codefile, norm.method)
```

Arguments

data.path The path to a .rds file containing the compData object that will be used for the

differential expression analysis.

result.path The path to the file where the result object will be saved.

codefile The path to the file where the code will be written.

norm.method The between-sample normalization method used to compensate for varying li-

brary sizes and composition in the differential expression analysis. The normalization factors are calculated using the calcNormFactors function from the edgeR package. Possible values are "TMM", "RLE", "upperquartile" and

"none"

Details

For more information about the methods and the interpretation of the parameters, see the edgeR package and the corresponding publications.

voom.limma.createRmd 43

Value

The function generates a .Rmd file containing the code for performing the differential expression analysis. This file can be executed using e.g. the knitr package.

Author(s)

Charlotte Soneson

References

Robinson MD, McCarthy DJ and Smyth GK (2010): edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140

Robinson MD and Oshlack A (2010): A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology 11:R25

Examples

 ${\sf Voom.limma.createRmd}$ ${\sf Generate}\ a\ .{\sf Rmd}\ file\ containing\ code\ to\ perform\ differential\ expression\ analysis\ with\ {\sf voom+limma}$

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq data (comparing two conditions) by applying the voom transformation (from the limma package) followed by differential expression analysis with limma. The code is written to a .Rmd file. This function is generally not called by the user, the main interface for performing differential expression analysis is the runDiffExp function.

Usage

```
voom.limma.createRmd(data.path, result.path, codefile, norm.method)
```

Arguments

data.path	The path to a .rds file containing the compData object that will be used for the differential expression analysis.
result.path	The path to the file where the result object will be saved.
codefile	The path to the file where the code will be written.

44 voom.ttest.createRmd

norm.method

The between-sample normalization method used to compensate for varying library sizes and composition in the differential expression analysis. The normalization factors are calculated using the calcNormFactors of the edgeR package. Possible values are "TMM", "RLE", "upperquartile" and "none"

Details

For more information about the methods and the interpretation of the parameters, see the limma package and the corresponding publications.

Value

The function generates a .Rmd file containing the code for performing the differential expression analysis. This file can be executed using e.g. the knitr package.

Author(s)

Charlotte Soneson

References

Smyth GK (2005): Limma: linear models for microarray data. In: 'Bioinformatics and Computational Biology Solutions using R and Bioconductor'. R. Gentleman, V. Carey, S. Dudoit, R. Irizarry, W. Huber (eds), Springer, New York, pages 397-420

Law CW, Chen Y, Shi W and Smyth GK (2014): voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biology 15, R29

Examples

 $\begin{tabular}{ll} \begin{tabular}{ll} \beg$

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq data (comparing two conditions) by applying the voom transformation (from the limma package) followed by differential expression analysis with a t-test. The code is written to a .Rmd file. This function is generally not called by the user, the main interface for performing differential expression analysis is the runDiffExp function.

Usage

```
voom.ttest.createRmd(data.path, result.path, codefile, norm.method)
```

voom.ttest.createRmd 45

Arguments

data.path The path to a .rds file containing the compData object that will be used for the

differential expression analysis.

result.path The path to the file where the result object will be saved.

codefile The path to the file where the code will be written.

norm.method The between-sample normalization method used to compensate for varying li-

brary sizes and composition in the differential expression analysis. The normalization factors are calculated using the calcNormFactors function from the edgeR package. Possible values are "TMM", "RLE", "upperquartile" and

"none".

Details

For more information about the methods and the interpretation of the parameters, see the limma and edgeR packages and the corresponding publications.

Value

The function generates a .Rmd file containing the code for performing the differential expression analysis. This file can be executed using e.g. the knitr package.

Author(s)

Charlotte Soneson

References

Smyth GK (2005): Limma: linear models for microarray data. In: 'Bioinformatics and Computational Biology Solutions using R and Bioconductor'. R. Gentleman, V. Carey, S. Dudoit, R. Irizarry, W. Huber (eds), Springer, New York, pages 397-420

Law CW, Chen Y, Shi W and Smyth GK (2014): voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biology 15, R29

46 vst.limma.createRmd

vst.limma.createRmd	Generate a .Rmd file containing code to perform differential expression analysis with limma after the variance-stabilizing transformation provided in DESeq
	provided in DESeq

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq (comparing two conditions) by applying the variance-stabilizing transformation of the DESeq package followed by differential expression analysis using limma. The code is written to a .Rmd file. This function is generally not called by the user, the main interface for performing differential expression analysis is the runDiffExp function.

Usage

```
vst.limma.createRmd(data.path, result.path, codefile, fit.type)
```

Arguments

data.path	The path to a .rds file containing the compData object that will be used for the differential expression analysis.
result.path	The path to the file where the result object will be saved.
codefile	The path to the file where the code will be written.
fit.type	The fitting method used to get the dispersion-mean relationship. Possible values are "parametric" and "local".

Details

For more information about the methods and the interpretation of the parameters, see the limma and DESeq packages and the corresponding publications.

Value

The function generates a .Rmd file containing the code for performing the differential expression analysis. This file can be executed using e.g. the knitr package.

Author(s)

Charlotte Soneson

References

Smyth GK (2005): Limma: linear models for microarray data. In: 'Bioinformatics and Computational Biology Solutions using R and Bioconductor'. R. Gentleman, V. Carey, S. Dudoit, R. Irizarry, W. Huber (eds), Springer, New York, pages 397-420

Anders S and Huber W (2010): Differential expression analysis for sequence count data. Genome Biology 11:R106

vst.ttest.createRmd 47

Examples

vst.ttest.createRmd

Generate a .Rmd file containing code to perform differential expression analysis with a t-test after the variance-stabilizing transformation provided in DESeq

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq data (comparing two conditions) by applying the variance-stabilizing transformation of the DESeq package followed by differential expression analysis using a t-test. The code is written to a .Rmd file. This function is generally not called by the user, the main interface for performing differential expression analysis is the runDiffExp function.

Usage

```
vst.ttest.createRmd(data.path, result.path, codefile, fit.type)
```

Arguments

data.path	The path to a .rds file containing the compData object that will be used for the differential expression analysis.
result.path	The path to the file where the result object will be saved.
codefile	The path to the file where the code will be written.
fit.type	The fitting method used to get the dispersion-mean relationship. Possible values are "parametric" and "local".

Details

For more information about the methods and the interpretation of the parameters, see the DESeq package and the corresponding publications.

Value

The function generates a .Rmd file containing the code for performing the differential expression analysis. This file can be executed using e.g. the knitr package.

Author(s)

Charlotte Soneson

48 vst.ttest.createRmd

References

Anders S and Huber W (2010): Differential expression analysis for sequence count data. Genome Biology 11:R106

Index

```
* package
    compcodeR-package, 2
baySeq.createRmd, 3
check_compData, 4, 6
check_compData_results, 4, 7
checkDataObject, 4
checkTableConsistency, 5
compcodeR (compcodeR-package), 2
compcodeR-package, 2
compData, 7, 12, 26, 40
compData-class, 10
convertcompDataToList, 12
convertListTocompData, 13
DESeq.GLM.createRmd, 14
DESeq.nbinom.createRmd, 15
DESeq2.createRmd, 16
DSS.createRmd, 18
EBSeq.createRmd, 19
edgeR.exact.createRmd, 20
edgeR.GLM.createRmd, 22
generateCodeHTMLs, 10, 23
generateSyntheticData, 24, 36, 40
listcreateRmd, 27, 36
logcpm.limma.createRmd, 27
NBPSeq.createRmd, 29
NOISeq.prenorm.createRmd, 30
runComparison, 5, 31, 33-35
runComparisonGUI, 31, 34
runDiffExp, 3, 14-16, 18-20, 22, 23, 27,
        29-31, 33, 34, 36, 39, 41-44, 46, 47
show, compData-method, 38
sqrtcpm.limma.createRmd, 39
\verb|summarizeSyntheticDataSet|, 40|
TCC.createRmd, 41
```

ttest.createRmd, 42

voom.limma.createRmd, 43 voom.ttest.createRmd, 44 vst.limma.createRmd, 46 vst.ttest.createRmd, 47