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1 Introduction

This document gives an overview and demonstration of the copynumber package, which provides
tools for the segmentation and visualization of copy number data. In the analysis of such data a
goal is to detect and locate areas of the genome with copy number abberations. This may help
identify genes that are critical to the development and progression of cancer. To locate areas or
segments of equal copy numbers, our methods make Piecewise Constant Fits to the data through
penalized least squares minimization [1]. That is, piecewise constant curves are fitted to the data
by minimizing the distance between the curve and the observed data, while imposing a penalty for
each discontinuity in the curve. Segmentation may be done on a single sample, simultaneously on
several samples or simultaneously on different data tracks.
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2 Overview

Figure 1 gives an overview of the copynumber package and illustrates the natural workflow. Each
part of this workflow is described below.

  Data           Preprocessing     Segmentation          Visualization 

Copy number 
data (+ allele 
frequencies) 

Outlier handling 
winsorize(...) 
 
Missing value  
imputation 
imputeMissing(...) 
 

Individual segmentation 
of one or more samples 
pcf(...) 
 
Joint segmentation 
of multiple samples 
multipcf(...) 
 
Segmentation of  
SNP-array data 
aspcf(...) 
 
 

Whole-genome plots 
plotHeatmap(...) 
plotGenome(...) 
plotCircle(...) 
plotFreq(...) 
 
Chromosome plots of 
data and segments 
plotSample (...) 
plotChrom (...) 
plotAllele(...) 
 
Diagnostic plot 
plotGamma (...) 
 

Figure 1: 

Analysis pipeline 

Figure 1: An overview of the copynumber package.

2.1 Data input

The data input in the copynumber package is normalized and log-transformed copy number mea-
surements, for one or several samples. Allele-frequencies may also be specified for the segmentation
of SNP-array data.

The data should be organized as a data matrix where each row represents a probe, and the first
two columns give the chromosomes and genomic positions (locally in the chromosome) corresponding
to each probe. Subsequent columns should hold the copy number measurements for each sample,
and the header of these sample columns should be a sample identifier. For SNP-array data two such
data matrices are required; one holding the LogR copy numbers and the other holding the B-allele
frequencies (BAF).

2.2 Preprocessing

2.2.1 Outlier handling

Outliers are common in copy number data, and may have a substantial negative effect on the seg-
mentation results. It is therefore strongly recommended to detect and modify extreme observations
prior to segmentation. In the package we do this by Winsorization, and the method winsorize is
available for this purpose.
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2.2.2 Imputation of missing data

The method imputeMissing may be used for the imputation of missing copy number measurements.
The user may decide on imputation by a constant or by an estimate based on the pcf-value (see
below) of the nearest non-missing probes.

2.3 Segmentation

2.3.1 Segmentation tools

The copynumber package provides three segmentation tools. The method pcf handles the single-
sample case, where segmentation is done independently for each sample in the data set, and the
break points thus differ from sample to sample. The method multipcf runs on multiple samples
simultaneously, and fits segmentation curves with common break points for all samples. The segment
values will for each sample be equal to its average measurement on the segment. The third method,
aspcf, is intended for SNP array data and performs allele-specific segmentation. This results in
segmentation curves where break points are common for LogR and BAF data in the individual
samples.

2.3.2 Choose model parameters

The most important parameter to set in the segmentation routines is gamma, which determines the
penalty to be applied for each discontinuity or break point in the segmentation curve. Note that the
default value will not be appropriate for all data sets; it may depend on the purpose of the study
and artifacts may arise from the experimental procedure. Hence it is typically necessary to test a
number of gamma values to find the optimal one. A valuable tool in this context is the diagnostic tool
plotGamma, where segmentation is run for 10 different values of gamma and results are then displayed
in a multigrid plot. This allows the user to explore the appropriateness of each segmentation result.
Another parameter that influences the segmentation result is kmin,which imposes a minimum length
(number of probes) for each segment.

2.4 Visualization

Several tools are available in the package for the plotting of data and segmentation results. These
include plotGenome, plotSample, and plotChrom where data and/or segments are plotted over
the entire genome, for a given sample across different chromosomes and for a given chromosome
across different samples, respectively. Other graphical tools include plotHeatmap, which plots copy
numbers heatmaps, and plotFreq, which plots the frequency of samples with an aberration at a
genomic position. In addition, plotCircle enables the plotting of the genome as a circle with
aberration frequencies and connections between genomic loci added to the middle of the circle.

3 Data sets

The package includes three data sets that are used in the examples below:

• lymphoma: 3K aCGH data for a subset of 21 samples [2].

• micma: A subset of a 244K aCGH data set. Contains data on chromosome 17 for 6 samples
[3].

• logR and BAF: Artificial 10K SNP array data for 2 samples.
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4 Examples

The following examples illustrate some applications of the copynumber package. First, load the
package in R:

> library(copynumber)

4.1 Single-sample segmentation

In this example we will use the lymphoma data:

> data(lymphoma)

The data set has chromosomes and probe positions in the two first columns, and the copy number
measurements for 21 samples in the subsequent columns. In this example we will only use a subset
containing the first 3 samples, which corresponds to three biopsies from one patient taken at different
time points. We can use the function subsetData to retrieve the desired data subset:

> sub.lymphoma <- subsetData(data=lymphoma,sample=1:3)

> sub.lymphoma[1:10,]

Chrom Median.bp X01.B1 X01.B2 X01.B3

1 1 1082138 0.0906 -0.0144 0.0255

2 1 3318085 -0.0992 -0.1693 -0.0908

3 1 4552927 -0.0884 -0.0807 0.0401

4 1 5966170 -0.0503 -0.0231 -0.1081

5 1 7134999 -0.0970 -0.0145 -0.1877

6 1 7754220 -0.0671 -0.0291 -0.0506

7 1 9211391 -0.0386 -0.1290 -0.0058

8 1 10134471 -0.0281 -0.0507 -0.6507

9 1 11054335 -0.0231 -0.0520 -0.5539

10 1 11562778 -0.0780 -0.0742 -0.0531

Next we identify and modify outliers by the function winsorize:

> lymph.wins <- winsorize(data=sub.lymphoma,verbose=FALSE)

The parameter verbose=FALSE just keeps the function from printing a progress message each time
the analysis is finished for a new chromosome arm. The primary output from winsorize is then a
new data frame (lymph.wins) on the same format as the input data where the sample columns now
contain the Winsorized data values:

> lymph.wins[1:10,]

chrom pos X01.B1 X01.B2 X01.B3

1 1 1082138 0.0284 -0.0144 0.0255

2 1 3318085 -0.0992 -0.1693 -0.0908

3 1 4552927 -0.0884 -0.0807 0.0401

4 1 5966170 -0.0503 -0.0231 -0.1081

5 1 7134999 -0.0970 -0.0145 -0.1877

6 1 7754220 -0.0671 -0.0291 -0.0506

7 1 9211391 -0.0386 -0.1290 -0.0058

8 1 10134471 -0.0281 -0.0507 -0.2938

9 1 11054335 -0.0231 -0.0520 -0.3034

10 1 11562778 -0.0780 -0.0742 -0.0531
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In addition, if the parameter return.outliers is set to TRUE, the method also returns a data frame
which shows which observations have been classified as outliers:

> wins.res <- winsorize(data=sub.lymphoma,return.outliers=TRUE,verbose=FALSE)

> wins.res$wins.outliers[1:10,]

chrom pos X01.B1 X01.B2 X01.B3

1 1 1082138 1 0 0

2 1 3318085 0 0 0

3 1 4552927 0 0 0

4 1 5966170 0 0 0

5 1 7134999 0 0 0

6 1 7754220 0 0 0

7 1 9211391 0 0 0

8 1 10134471 0 0 -1

9 1 11054335 0 0 -1

10 1 11562778 0 0 0

The values 1 and -1 indicate outliers, reflecting that the original observation has been truncated
to a smaller and higher value, respectively. The value 0 indicates that the observation is not an
outlier and that the Winsorized value is identical to the original value. Note that one may obtain
the winsorized data values in this setting by wins.res$wins.data.

Next we want to fit segmentation curves to each of the samples in our data using the function
pcf. When Winsorization has been done, the Winsorized data should be the input (if one wants
the segment values to equal the means of the observed data instead of the Winsorized data, one
may in addition give the original data as input via the parameter Y=sub.lymphoma ). The penalty
parameter gamma is in this case set to 12 to achieve high sensitivity on these low-resolution data.

> single.seg <- pcf(data=lymph.wins,gamma=12,verbose=FALSE)

The default output of pcf is a data frame with 7 columns giving information about each segment
found in the data. SampleIDs are given in the first column. Below we see the first six segments
found in the subset of lymphoma samples:

> head(single.seg)

sampleID chrom arm start.pos end.pos n.probes mean

1 X01.B1 1 p 1082138 64194749 70 -0.0455

2 X01.B1 1 p 65355304 119515493 58 0.0450

3 X01.B2 1 p 1082138 50340843 56 -0.0442

4 X01.B2 1 p 50638118 119515493 72 0.0219

5 X01.B3 1 p 1082138 119515493 128 -0.0329

6 X01.B1 1 q 142174575 146617392 8 0.0120

After the segmentation one may plot the data along with the segmentation results to see how
well the segmentation fits the data. To plot the copy number data and the segmentation results
over the entire genome we apply the function plotGenome, as illustrated in Figure 2 for one of the
samples.

> plotGenome(data=sub.lymphoma,segments=single.seg,sample=1,cex=3)

Another plotting option is plotSample, where the data and segmentation results are shown for
one sample with chromosomes in different panels. This is shown for the first sample in Figure 3.
Chromosome ideograms are by default added to the bottom of the plots.

> plotSample(data=sub.lymphoma,segments=single.seg,layout=c(5,5),sample=1,cex=3)
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Figure 2: Genome plot for the sample X01.B1. Segmentation done by pcf.

4.2 Multi-sample segmentation

In the second example we illustrate multi-sample segmentation using the function multipcf on the
three successive biopsies for sample X01. Input parameters and the output is similar to that of pcf,
but the data frame holding the segmentation results now have common rows for all samples since
they all have common segment boundaries:

> multi.seg <- multipcf(data=lymph.wins,verbose=FALSE)

> head(multi.seg)

chrom arm start.pos end.pos n.probes X01.B1 X01.B2 X01.B3

1 1 p 1082138 64194749 70 -0.0455 -0.0336 -0.0376

2 1 p 65355304 119515493 58 0.0450 0.0251 -0.0272

3 1 q 142174575 146617392 8 0.0120 0.0495 -0.0317

4 1 q 146756663 245340016 129 0.4038 0.0263 -0.0091

5 2 p 314759 89830600 107 0.0026 0.0004 0.0175

6 2 q 94941109 242568229 159 0.0063 0.0111 0.0061

To compare the segmentation results between samples we may use the function plotChrom.Here
data and segments are plotted for one chromosome with samples in different panels, as illustrated
in Figure 4.

> plotChrom(data=lymph.wins,segments=multi.seg,layout=c(3,1),chrom=1)

4.3 Allele-specific segmentation

To illustrate allele-specific segmentation, we apply the artificial SNP-array data set containing both
LogR data and BAF data:
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Figure 3: Sample X01.B1 plotted across the 23 chromosomes. Segmentation done by pcf.

> data(logR)

> data(BAF)

We start by Winsorizing the LogR data:

> logR.wins <- winsorize(logR,verbose=FALSE)

The function aspcf will perform the allele-specific segmentation, taking both (Winsorized) LogR
data and BAF data as input:

> allele.seg <- aspcf(logR.wins,BAF,verbose=FALSE)

> head(allele.seg)

sampleID chrom arm start.pos end.pos n.probes logR.mean BAF.mean

1 S1 1 p 1695590 31067347 139 -0.2323 0.6916

2 S1 1 p 31101268 39640990 37 0.4000 0.7182

3 S1 1 p 39831894 46296225 34 0.1785 0.6207

4 S1 1 p 46437972 57577691 46 0.0289 0.5000

5 S1 1 p 57905199 60306875 9 -0.1552 0.6856

6 S1 1 p 60607571 100552011 128 0.0797 0.5000
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Figure 4: Chromosome 1 plotted for the 3 biopsies taken at different time points for sample X01.
Segmentation done by multipcf.

Note that the output is similar to that of pcf, except for an extra 8’th column giving the segment
BAF-values.

The function plotAllele may be used to plot the data and the segmentation results. For a given
sample the results are shown for both the LogR- and BAF-track with chromosomes in different panels,
as illustrated in Figure 5 for the first sample on chromosomes 1-4.

> plotAllele(logR,BAF,allele.seg,sample=1,chrom=c(1:4),layout=c(2,2))
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Figure 5: Allele-specific plot for one sample on chromosomes 1-4. Segmentation done by aspcf.

4.4 Other graphical tools

4.4.1 Frequency plot

A useful graphical tool is plotFreq, where we plot the frequency of samples in the data set with a
gain or a loss at a genomic position. In this example we use pcf to obtain copy number estimates
for the entire lymphoma data set:

> lymphoma.res <- pcf(data=lymphoma,gamma=12,verbose=FALSE)

Gains and losses will be regions where the copy number estimate is above or below some defined
thresholds specified by the parameters thres.gain and thres.loss , respectively.

> plotFreq(segments=lymphoma.res,thres.gain=0.2,thres.loss=-0.1)

Figure 6 shows the percentage of samples with estimated log2 copy number ratios above the
threshold 0.2 (gain) in red and below the threshold −0.1 (loss) in green. Frequencies may also be
plotted per chromosome by specifying chromosomes in the parameter chrom.

4.4.2 Circle plot

A similar plotting routine is plotCircle which also shows the aberration frequencies, but unlike
plotFreq the genome is here represented as a circle. The input is again copy number estimates, and
aberrations are defined as described above. In addition to plotting aberration frequencies one may
show associations between certain genomic regions by specifying the parameter arcs as input. This
should be a matrix giving the chromosomes and positions for regions that are connected, as well as
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Figure 6: Frequencyplot for lymphoma data

a column specifying whether there are different types of associations. One example of use is to plot
strong interchromosomal correlations between pairs of segments found by multipcf.

Below, we assume that multipcf has been run on the lymphoma data, and we have calculated the
interchromosomal correlations between all segment pairs (see the help file for plotCircle for details).
Say strong positive correlations were found between a segment with middle position 168754669 on
chromosome 2 and a segment with middle position 61475398 on chromosome 14, as well as between
a segment with middle position 847879349 on chromosome 12 and a segment with middle position
30195556 on chromosome 21. In addition, a strong negative correlation was found between a segment
with middle position 121809306 on chromosome 4 and a segment with middle position 12364465 on
chromosome 17. Having found the location of the associations we want to visualize we can then define
the matrix arcs holding the chromosome number and position of a segment in the first two columns,
and the chromsome number and position of the associated segment in the next two columns. The
fifth column identifies positive correlations and negative correlations as class 1 and 2, respectively:

> chr.from <- c(2,12,4)

> pos.from <- c(168754669,847879349,121809306)

> chr.to <- c(14,21,17)

> pos.to <- c(6147539,301955563,12364465)

> cl <- c(1,1,2)

> arcs <- cbind(chr.from,pos.from,chr.to,pos.to,cl)

Figure 7 shows a circle plot. The gain frequencies are shown in red, while loss frequencies are shown
in green. In addition, the orange and blue arcs connect the segments which were found to have high
positive and negative correlations, respectively.

> plotCircle(segments=lymphoma.res,thres.gain=0.15,arcs=arcs)
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Figure 7: Circle plot for lymphoma data.

4.4.3 Heatmap

Another graphical function is plotHeatmap, which may be used to examine differences between
samples. Here a heatmap is plotted for each sample according to the magnitude of the estimated
copy number value relative to some pre-defined limits. Figure 8 shows a heatplot for the lymphoma
samples. Each sample is represented by a row. The color red indicates that the estimate is above
the upper limit of 0.3, while the color blue indicates that it is below the lower limit of −0.3. Darker
nuances of red and blue indicate that the value is below and above the upper and lower limit,
respectively, and the darker the nuance, the closer the value is to zero.

> plotHeatmap(segments=lymphoma.res,upper.lim=0.3)

4.4.4 Aberration plot

Similarly the function plotAberration is useful for locating recurrent aberrations. An example is
given in Figure 9 where each row represents a sample and the colors red and blue indicate gains and
losses, respectively.

> plotAberration(segments=lymphoma.res,thres.gain=0.2)
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Figure 8: Heatmap for lymphoma data.

4.4.5 Diagnostic plot for penalty selection.

As mentioned earlier we may apply the function plotGamma to decide on a reasonable choice for
the penalty parameter in the segmentation routines. This function will run pcf for a single sample
and chromosome using 10 values for gamma in the range indicated by the parameter gammaRange.
Each segmentation result is then plotted along with the data in a multigrid plot, and the number of
segments found for each value of gamma is shown in the last panel. Figure 10 gives an example using
the first sample in the micma data.

> data(micma)

> plotGamma(micma,chrom=17,cex=3)

An additional option is to specify the parameter cv=TRUE, which means that a 5-fold cross-
validation is run for each value of gamma. A graph showing the average residual error from the
cross-validation is then added in the last panel of the plot, and the value of gamma which minimizes
this error is marked by an asterix. This value may provide a starting point for selecting gamma,
but should not be used uncritically because the cross-validation tends to favor too low values and
could favor detection of low-amplitude ”aberrations” which may be caused by artifacts related to the
technology (e.g. due to GC-content).

5 Tips

When the data set is very large an alternative to specifying the data frame as input in winsorize,
pcf, multipcf and aspcf is to supply a txt-file as input in the data parameter. The data txt-file
should then be organized in the same way as described for the data earlier, namely with chromosomes
and genomic positions in the two first columns, and sample copy number data in all subsequent
columns. The data will then be read in and processed chromosome arm by chromosome arm, thus
taking up less memory. Similarly, results can be stored in txt-files by setting save.res=TRUE and
optionally specifying filenames.
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Figure 9: Aberration plot for the lymphoma data.

Another way to handle large data sets is by applying the function subsetData to break the
data set into a smaller subset only containing certain chromosomes and/or samples. Again, the
input may be a data frame or a data txt-file. This function is also useful when plotting the data,
and similarly subsetSegments may be used to get a subset of segments for particular chromosomes
and/or samples.

If it is not desirable to perform independent segmentations on each chromosome arm, or if the
assembly does not match one of hg16-hg19 (e.g. if the data comes from another species), the function
pcfPlain can be applied for single-sample segmentation.

In the data/segmentation plots (plotGenome, plotSample, plotChrom,plotAllele) different
segmentation results may be visualized together by specifying the input parameter segments as a
list. This enables simultaneous examination and comparison of different segmentation results e.g.
obtained from pcf and multipcf, or by using different values of gamma. See the help-files for these
functions for examples.

Aberration calling for the segments found by pcf or multipcf is done by the function callAberrations.
Given user-specified thresholds, this function classifies each segment as normal, gain or loss.

The function selectSegments can be used to retrieve potentially interesting segments found
by multipcf. Using this function one may select segments based on a number of characteristics;
segments with the largest or smallest variance among the samples, the longest or shortest segments,
or the segments that have the largest aberration freqencies.

For the user familiar with the GRanges format from the GenomicRanges package, it is possible
to convert the segments data frame via the function getGRangesFormat.
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