
Manual for the R casper package

casper implements methods to quantify isoform expression for a set of
known transcripts, to quantify expressions of de novo predictions and quan-
tify the certainty that these predictions are truly expressed, and to help
design RNA-seq experiments in an optimal manner. We put a lot of time
and effort in developing casper, if you use it for your research please cite
the corresponding paper(s). Your citations ensure our being able to continue
maintining and developing casper.

1. If you quantify the expression of know isoforms, please cite Rossell et al.
[2014].

2. If you assess the existence and quantify expression for de novo predic-
tions, please cite Rossell et al. [2015].

3. If you use casper to help design an RNA-seq experiment, please cite
Stephan-Otto Attolini et al. [2015].

The current manual describes Tasks 1-2 above, for experimental design
please type casperDesign() at the command prompt to load the correspond-
ing manual.

1 Quick start

To quantify expression for a set of known transcripts the function wrapKnown

runs the whole analysis pipeline for a single sample, starting from sorted and
indexed BAM files and reference transcriptome and returning estimated log-
expression in an ExpressionSet object. wrapKnown also returns the following
secondary output, which may be ignored for routine analyses: processed reads
(procBam object), path counts (pathCounts object) and read start and frag-
ment length distributions (readDistrs object). The function wrapDenovo is
the analogous to wrapDenovo but it doesn’t assume that all given transcripts
are expressed. Instead, for each given transcript wrapDenovo computes the
posterior probability that it is indeed expressed and estimates its expression

1

via Bayesian model averaging. In the event that the given transcripts are
unable to explain the observed data (e.g. some reads visit exons 1-2-3 but no
isoform contains these 3 exons), wrapDenovo suggests new transcripts using
the given transcripts as templates.

The wrapKnown function needs an annotated transcriptome created by
procGenome. This can either come from TxDb objects obtained from the Bio-
conductor annotations or any user-specified gtf file (see help(procGenome)

for examples). To generate a transcriptome from the UCSC database you
may use the following code, changing hg19 for your desired genome.

library(TxDb.Hsapiens.UCSC.hg19.knownGene)

hg19DB <- procGenome(TxDb.Hsapiens.UCSC.hg19.knownGene), genome='hg19')

To generate a transcriptome from a gtf file use the following code, chang-
ing the file name for your gtf file (including the full path).

genDB <- import('gencode.v18.annotation.gtf')
gencode18DB <- procGenome(genDB, genome='gencode18')

Recall that the input BAM file should be indexed and sorted, and that
this index is placed in the same directory as the corresponding BAM. The
samtools ”index” function can be used to generate such an index.

To call wrapKnown use the code below (for information on the parameters
please refer to the man page of the function).

bamFile="/path_to_bam/sorted.bam"

ans <- wrapKnown(bamFile=bamFile, mc.cores.int=4, mc.cores=3, genomeDB=hg19DB, readLength=101)

names(ans)

head(exprs(ans\$exp))

After you run wrapKnown on all your bam files, you can easily combine
the expressions from all samples into a single ExpressionSet using function
mergeExp. The code below contains an example to combine four samples.
Adding ’explCnts’ to the keep argument results in the number of counts for
each gene and each sample to be saved in the fData of the combined Expres-

sionSet (by default, only the total count across all samples is stored). The
function quantileNorm performs quantile normalization, which is typically
needed to take into account the different sequencing depth in each sample.

sampleNames <- c('A1','A2','B1','B2')
x <- mergeExp(A1$exp,A2$exp,B1$exp,B2$exp,sampleNames=sampleNames, keep=c('transcript','gene','explCnts'))
x$group <- c('A','A','B','B')
xnorm <- quantileNorm(x)

boxplot(exprs(x))

boxplot(exprs(xnorm))

wrapDenovo proceeds in a largely analogous manner to wrapKnown, with
the difference that it returns both expression estimates for each isoform
(stored in exprs of the ExpressionSet) and the (marginal) posterior prob-
ability that the isoform is expressed at all (stored in the fData of the Expres-
sionSet). Currently wrapDenovo computes these probabilities and estimates
by combining all .bam files into a single sample. We are currently developing
the case where one wishes to obtain probabilities for each sample separately.

The remaining sections explain in more detail the model, functions and
classes included in the package. They are intended to help you obtain a
better understanding of the methodology underlying casper by obtaining
expression estimates step-by-step. For routine analyses we strongly recom-
mend that you use wrapKnown (known isoforms) or wrapDenovo (de novo);
these are implemented more efficiently in terms of memory requirements and
computational speed.

2 Introduction

The package casper implements statistical methodology to infer gene alter-
native splicing from paired-end RNA-seq data [Rossell et al., 2014]. In this
section we overview the methodology and highlight its advantages. For fur-
ther details, please see the paper. In subsequent sections we illustrate how
to use the package with a worked example.

casper uses a probability model to estimate expression at the variant
level. Key advantages are that casper summarizes RNA-seq data in a man-
ner that is more informative than the current standard, and that is deter-
mines the read non-uniformity and fragment length (insert size) distribution
from the observed data. More specifically, the current standard is to record
the number of reads overlapping with each exon and connecting each pair
of exons. The fact that only pairwise connections between exons are con-
sidered disregards important information, namely that numerous read pairs
visit more than 2 exons. While this was not a big issue with older sequencing
technologies, it has become relevant with current protocols which produce
longer sequences. For instance, in a 2012 ENCODE Illumina Hi-Seq dataset
Rossell et al. [2014] found that roughly 2 out of 3 read pairs visited ≥ 3
exons.

casper summarizes the data by recording the exon path followed by each
pair, and subsequently counts the number of exons following each path. For
instance, suppose that the left end visits exons 1 and 2, while the right
end visits exon 3. In this case we would record the path 1.2-3, and count
the number of reads which also visit the same sequence of exons. Table

Path Number of read pairs P (path | v1) P (path | v2)
1-1 210 0.2 0.35
2-2 95 0.1 0.25
3-3 145 0.15 0
1-2 90 0.1 0.4

1.2-3 205 0.2 0
1-2.3 106 0.1 0
2-3 149 0.15 0

Table 1: Exon path counts is the basic data fed into casper. Counts are
compared to the probability of observing each path under each considered
variant.

1 illustrates how these summaries might look like for a gene with 3 exons
(examples in subsequent sections show counts for experimental data). The
first row indicates there are 210 sequences for which both ends only overlap
with exon 1. The second and third rows contain counts for exons 2 and 3. The
fourth row indicates that for 90 sequences the left end visited exon 1 and the
right end exon 2. The fifth row illustrates the gain of information associated
to considering exon paths: we have 205 pairs where the left end visits exons
1-2 and the right end visits exon 3. These reads can only have originated
from a variant that contains the three exons in the gene, and hence are highly
informative. If we only counted pairwise connections, this information would
be lost (and incidentally, the usual assumption that counts are independent
would be violated). The sixth row indicates that 106 additional pairs visited
exons 1-2-3, but they did so in a different manner (now it’s the right end
the one that visits two exons). In this simplified example rows 5 and 6 give
essentially the same information and could be combined, but for longer genes
they do provide different information.

Now suppose that the gene has two known variants: the full variant v1
(i.e. using the 3 exons) and the variant v2 which only contains exons 1 and 2.
The third column in Table 1 shows the probability that a read pair generated
from v1 follows each path, and similarly the fourth column for v2. These
probabilities are simply meant as an example, in practice casper estimates
these probabilities precisely by considering the fragment length distribution
and possible read non-uniformity. Notice that read pairs generated under
v2 have zero probability of following any path that visits exon 3, as v2 does
not contain this exon. Further, the proportion of observed counts following
each path is very close to what one would expect if all reads came from v1,
hence intuitively one would estimate that the expression of v1 must be close

to 1. From a statistical point of view, estimating the proportion of pairs
generated by each variant can be viewed as a mixture model where the aim
is to estimate the weight of each component (i.e. variant) in the mixture.

A key point is that, in order to determine the probability of each path, one
would need to know the distribution of fragment lengths (i.e. outer distance
between pairs) and read starts (e.g. read non-uniformity due to 3’ biases).
These quantities are in general not known, and in our experience reports
from sequencing facilities are oftentimes inaccurate. Further, these distribu-
tions may differ substantially from simple parametric forms that are usually
assumed (e.g. the fragment length distribution is not well approximated by
a Normal or Poisson distribution). Instead, Rossell et al. [2014] proposed es-
timating these distributions non-parametrically from the observed data. In
short, these distributions are estimated by selecting reads mapping to long
exons (fragment size) or to genes with a single known transcript (read start).
There are typically millions of such reads, therefore the estimates can be ob-
tained at a very high precision. Examples are shown in subsequent sections
(note: the illustration uses a small subset of reads, in real applications the
estimates are much more precise).

Finally we highlight a more technical issue. By default casper uses a
prior distribution which, while being essentially non-informative, it pushes
the estimates away from the boundaries (e.g. variants with 0 expression)
and thus helps reduce the estimation error. The theoretical justification lies
in the typical arguments in favor of pooling that stem from Stein’s paradox
and related work. Empirical results in Rossell et al. [2014] show that, by
combining all the features described above, casper may reduce the estimation
error by a factor of 4 when compared to another popular method. Currently,
casper implements methods to estimate the expression for a set of known
variants. We are in the process of incorporating methodology for de novo
variant searches, and also for sample size calculations, i.e. determining the
sequencing depth, read length or the number of patients needed for a given
study.

3 Aligning reads and importing data

The input for casper are BAM files containing aligned reads. There are sev-
eral software options to produce BAM files. TopHat [Trapnell et al., 2009] is
a convenient option, as it is specifically designed to map reads spanning exon
junctions accurately. As an illustration, suppose paired end reads produced
with the Illumina platform are stored in the FASTQ files sampleR1.fastq

and sampleR2.fastq. The TopHat command to align these reads into a

BAM file is:

> tophat --solexa1.3-quals -p 4 -r 200 /pathToBowtieIndexes/hg19

sampleR1.fastq sampleR2.fastq

The option -solexa1.3-quals indicates the version of quality scores pro-
duced by the Illumina pipeline and -p 4 to use 4 processors. The option -r

is required by TopHat for paired-end reads and indicates the average frag-
ment size. The fragment size is around 200-300 for many experiments, so
any value of -r in this range should be reasonable. After importing the data
into R, one can use the casper function getDistrs to estimate the fragment
size distribution (see below). This can be used as a check that the specified
-r was reasonable. In our experience, results are usually robust to moderate
miss-specifications of -r.

BAM files can be read into R using the Rsamtools package [Morgan and
Pagès]. For the sake of computational speed, in this vignette we will use data
that has already been imported in a previous session. The data was obtained
from the RGASP1 project at
ftp://ftp.sanger.ac.uk/pub/gencode/rgasp/RGASP1/inputdata/human fastq.

We used reads from replicate 1 and lane 1 in sample K562 2x75. In order
for the vignette to compile quickly here we illustrate the usage of the package
by selecting the reads mapping to 6 genes in chromosome 1 (see Section 4).
The code required to import the data into Bioconductor is provided below.
It is important to add the option tag=’XS’, so that information on whether
the experiment was stranded or not is imported.

> library(Rsamtools)

> what <- scanBamWhat(); what <- what[!(what %in% c('seq','qual'))]
> flag <- scanBamFlag(isPaired=TRUE,hasUnmappedMate=FALSE)

> param <- ScanBamParam(flag=flag,what=what,tag='XS')
> bam0 <- scanBam(file='accepted_hits.bam',param=param)[[1]]

4 Pre-processing the data for analysis

We start by obtaining and processing genome annotation data. Here we
illustrate our package with a few selected genes obtained from the human
genome version hg19. The commands that one would use to store the full
annotated genome into hg19DB is

genome='hg19'
genDB<-makeTranscriptDbFromUCSC(genome=genome, tablename="refGene")

> hg19DB <- procGenome(genDB=genDB, genome=genome, mc.cores=6)

We load the imported BAM file and processed human genome annotation.
K562.r1l1 was imported using scanBam and is a list containing read-level
information such as read identifier, chromosome and alignment position, po-
sition of the matched paired end etc. hg19DB is an object of class annotat-

edGenome and contains information regarding genes, transcripts, exons etc.
It also indicates the genome version that was used to create the genome and
the creation date.

> library(casper)

> data(K562.r1l1)

> names(K562.r1l1)

[1] "qname" "flag" "rname" "strand" "pos" "qwidth" "mapq" "cigar"

[9] "mrnm" "mpos" "isize" "tag"

> data(hg19DB)

> hg19DB

annotatedGenome object with 21 gene islands, 52 transcripts and 534 exons.

Genome version: hg19

Date created: 2013-02-19

> head(sapply(hg19DB@transcripts,length))

326 463 11211 14256 14325 15370

1 8 1 1 1 1

The lengths displayed above indicate the number of transcripts per island.
RNA-seq experiments typically contain some very short RNA sequences,

which can be due to RNA degradation. The function rmShortInserts re-
moves all sequences with insert size (i.e. distance between start of left-end
and start of right-end) below a user-specified level. We remove reads with
insert sizes below 100bp. We then use getDistrs to estimate the fragment
length distribution and the read start distribution.

> bam0 <- rmShortInserts(K562.r1l1, isizeMin=100)

> distrs <- getDistrs(hg19DB,bam=bam0,readLength=75)

We visualize the fragment length distribution. The resulting plot is shown
in Figure 1, left panel. Notice there few fragments shorter than 140bp. Given
the reduced number of reads in our toy data the estimate is not accurate,
and hence we overlay a smoother estimate (blue line).

> plot(distrs, "fragLength")

We produce a histogram to inspect the read start distribution. The his-
togram reveals that reads are non-uniformly distributed along transcripts
(Figure 1, right panel). Rather, there is a bias towards the 3’ end.

100 120 140 160 180 200 220 240

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

Fragment length

P
ro

po
rt

io
n

of
 r

ea
ds

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

Read start (relative to transcript length)

D
en

si
ty

Figure 1: Left: fragment length distribution; Right: read start distribution

> plot(distrs, "readSt")

As a final pre-processing step, we use the function procBam to divide each
read pair into a series of disjoint intervals. The intervals indicate genomic
regions that the read aligned to consecutively, i.e. with no gaps.

> pbam0 <- procBam(bam0)

> pbam0

procBam object created from non-stranded reads

Contains 43009 ranges corresponding to 17344 unique read pairs

> head(getReads(pbam0))

GRanges object with 6 ranges and 3 metadata columns:

seqnames ranges strand | rid XS names

<Rle> <IRanges> <Rle> | <integer> <Rle> <integer>

[1] chr17 7124912-7124986 + | 1 * 0

[2] chr17 7124986-7125001 - | 2 * 0

[3] chr17 7125271-7125329 - | 2 * 0

[4] chr9 94485006-94485080 + | 1 * 1

[5] chr9 94485115-94485189 - | 2 * 1

[6] chrX 133680161-133680235 + | 1 * 2

seqinfo: 13 sequences from an unspecified genome; no seqlengths

The resulting object pbam0 is a list with element pbam of type RangedData
and stranded indicating whether the RNA-seq experiment was stranded or
not.

5 Estimating expression for a set of known variants

In order to obtain expression estimates, we first determine the exons visited
by each read, which we denominate the exon path, and count the number of
reads following the same exon path.

> pc <- pathCounts(pbam0, DB=hg19DB)

> pc

Non-stranded known pathCounts object with 21 islands and 15 non zero islands.

> head(pc@counts[[1]])

$`326`
NULL

$`463`
.17737-17738. .17732.17733-17733. .17726-17727. .17734-17735.17736.

2 1 1 3

.17728.17729-17729. .17726.17727-17727. .17736-17736. .17731.17732-17732.

1 1 2 3

.17738.17741-17741. .17727.17728-17728. .17737-17737. .17726-17726.

1 1 1 90

.17728-17728.17729. .17728-17729.

1 1

$`11211`
.129388.129389-129389. .129389-129389. .129386.129387-129387.

1 48 1

.129382.129383-129383. .129381.129382-129382. .129382-129382.

1 1 1

.129379.129380-129380. .129383-129384. .129381-129382.

3 2 1

$`14256`
.152698-152698.152699. .152694-152694.152695.

1 2

.152691-152691.152692. .152684.152685-152685.152686.

2 1

.152730-152730. .152718.152719-152719.152720.

2 1

.152687.152688-152688. .152712-152713.

1 1

.152725.152726-152726.152727. .152702-152703.

1 1

$`14325`
.154139-154140. .154146-154146.

3 9

.154142.154143-154143. .154141.154142-154142.

2 2

.154139-154139.154140. .154138.154139-154139.

1 3

.154137.154138-154138. .154144.154145-154146.

5 1

.154142-154143. .154137-154138.

3 1

.154143.154144-154144.154145. .154143-154143.154144.

1 1

.154142.154143-154143.154144. .154142-154142.154143.

1 1

.154141-154141.154142. .154140.154141-154141.154142.

3 3

.154137.154138-154138.154139. .154139.154140-154140.154141.

1 1

$`15370`
NULL

The output of pathCounts is a named integer vector counting exon paths.
The names follow the format ”.exon1.exon2-exon3.exon4.”, with dashes mak-
ing the split between exons visited by left and right-end reads correspond-
ingly. For instance, an element in pc named .1314.1315-1315.1316. in-
dicates the number of reads for which the left end visited exons 1314 and
1315 and the right end visited exons 1315 and 1316. The precise genomic
coordinates of each exon are stored in the annotated genome.

The function calcExp uses the exon path counts, read start and fragment
length distributions and genome annotation to obtain RPKM expression esti-
mates. Expression estimates are returned in an ExpressionSet object, with
RefSeq transcript identifiers as featureNames and the internal gene ids used
by hg19DB stored as feature data.

> eset <- calcExp(distrs=distrs, genomeDB=hg19DB, pc=pc, readLength=75, rpkm=FALSE)

> eset

ExpressionSet (storageMode: lockedEnvironment)

assayData: 52 features, 1 samples

element names: exprs

protocolData: none

phenoData: none

featureData

featureNames: NM_005158 NM_001168236 ... NM_005502 (52 total)

fvarLabels: transcript gene_id island_id explCnts

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'
Annotation:

> head(exprs(eset))

1

NM_005158 0.09090909

NM_001168236 0.09090909

NM_001136000 0.09090909

NM_001168239 0.09090909

NM_001136001 0.36363636

NM_007314 0.09090909

> head(fData(eset))

transcript gene_id island_id explCnts

NM_005158 NM_005158 27 463 3

NM_001168236 NM_001168236 27 463 3

NM_001136000 NM_001136000 27 463 3

NM_001168239 NM_001168239 27 463 3

NM_001136001 NM_001136001 27 463 3

NM_007314 NM_007314 27 463 3

When setting rpkm to FALSE, calExp returns relative expression estimates
for each isoform. That is, the proportion of transcripts originating from each
variant, so that the estimated expressions add up to 1 for each island. If
you would prefer relative expressions that add up to 1 within each gene you
can use function relexprByGene. When setting rpkm to TRUE, expression
estimates in reads per kilobase per million (RPKM) are returned instead.

> eset <- calcExp(distrs=distrs, genomeDB=hg19DB, pc=pc, readLength=75, rpkm=TRUE)

> head(exprs(eset))

1

NM_005158 3.171747

NM_001168236 3.153160

NM_001136000 3.197967

NM_001168239 3.203398

NM_001136001 6.277129

NM_007314 3.147994

Let π̂gi be the estimated relative expression for transcript i within gene
g, wgi the transcript width in base pairs, ng the number of reads overlapping
with gene g and

∑
ng the total number of reads in the experiment. The

RPKM for transcript i within gene i is computed as

rgi = 109 π̂ging

wgi

∑
ng

(1)

6 Plots and querying an annotatedGenome

casper incorporates some functionality to plot splicing variants and esti-
mated expression levels. While in general we recommend using dedicated

visualization software such as IGV [Robinson et al., 2011], we found useful
to have some plotting capabilities within the package.

We start by showing how to extract information from an annotatedGenome

object. The function transcripts returns the exons contained in all tran-
scripts, and it can also be used to obtain the exons for a single transcript,
as shown below. We can obtain the known variants for that gene with the
function transcripts, and the chromosome with getChr. We can also find
out the island identifier that casper assigned to that gene (recall that casper
merges multiple genes that have some overlapping exons into a single gene
island).

> transcripts(hg19DB)

GRanges object with 991 ranges and 1 metadata column:

seqnames ranges strand | space

<Rle> <IRanges> <Rle> | <character>

[1] chr1 94586536-94586705 * | NM_000350

[2] chr1 94578529-94578622 * | NM_000350

[3] chr1 94576994-94577135 * | NM_000350

[4] chr1 94574133-94574272 * | NM_000350

[5] chr1 94568571-94568698 * | NM_000350

...

[987] chrX 74288842-74288971 * | NM_001271697

[988] chrX 74284905-74285076 * | NM_001271697

[989] chrX 74282163-74282266 * | NM_001271697

[990] chrX 74280058-74280165 * | NM_001271697

[991] chrX 74273007-74273420 * | NM_001271697

seqinfo: 93 sequences from an unspecified genome; no seqlengths

> tx <- transcripts(hg19DB, txid='NM_005158')
> tx

IRangesList object of length 1:

$NM_005158

IRanges object with 14 ranges and 0 metadata columns:

start end width

<integer> <integer> <integer>

17740 179112068 179112224 157

17739 179102447 179102509 63

17738 179100446 179100616 171

17737 179095512 179095807 296

17736 179090730 179091002 273

...

17731 179081444 179081533 90

17729 179079417 179079590 174

17728 179078343 179078576 234

17727 179078034 179078342 309

17726 179068462 179078033 9572

> getChr(txid='NM_005158',genomeDB=hg19DB)

[1] "chr1"

> islandid <- getIsland(txid='NM_005158',genomeDB=hg19DB)
> islandid

[1] "463"

> transcripts(hg19DB, islandid=islandid)

IRangesList object of length 8:

$NM_001168236

IRanges object with 13 ranges and 0 metadata columns:

start end width

<integer> <integer> <integer>

17741 179198376 179198819 444

17738 179100446 179100616 171

17737 179095512 179095807 296

17736 179090730 179091002 273

17735 179089325 179089409 85

...

17731 179081444 179081533 90

17729 179079417 179079590 174

17728 179078343 179078576 234

17727 179078034 179078342 309

17726 179068462 179078033 9572

...

<7 more elements>

> getChr(islandid=islandid,genomeDB=hg19DB)

[1] "chr1"

Once we know the islandid, we can plot the variants with genePlot. The
argument col can be set if one wishes to override the default rainbow colours.

> genePlot(islandid=islandid,genomeDB=hg19DB)

Figure 2 shows the resulting plot. The plot shows the identifiers for
all transcripts in the gene island, and exons are displayed as boxes. The
x-axis indicates the genomic position in bp. For instance, the last three
variants have a different transcription end site than the rest, indicated by
their last exon being different. Similarly, the first variant has an alternative
transcription start site.

It can also be useful to add the aligned reads and estimated expression
to the plot. This can be achieved by passing the optional arguments reads

(the object returned by procBam) and exp (the object returned by calcExp).

179080000 179120000 179160000 179200000

NM_001168236

NM_001168238

NM_001168237

NM_007314

NM_001136001

NM_001168239

NM_001136000

NM_005158

Figure 2: Transcripts for gene with Entrez ID= 27

> genePlot(islandid=islandid,genomeDB=hg19DB,reads=pbam0,exp=eset)

Figure 3 shows the plot. Black segments correspond to pairs with short
insert size (i.e. where both ends are close to each other, by default up to
maxFragLength=500bp). They indicate the outer limits of the pair (i.e. left-
most position of the left read and right-most position of the right read).
Red/blue segments indicate pairs with long insert sizes. The red lines indi-
cates the gapped alignments and the discontinuous blue lines simply fill in
the gaps, so that they are easier to visualize. By staring at this plot long
enough, one can make some intuitive guesses as to which variants may be
more expressed. For instance, many reads align to the left-most exon, which
suggests that variant NM 00136001 is not highly expressed. Accordingly,
casper estimated expression for this variant is lowest. There are few reads
aligning to the exons to the right-end (which may be partially explained by
the presence of a 3’ bias). The last variant does not contain several of these
genes, and hence has the highest estimated expression. Of course, inspecting
the figure is simply meant to provide some intuition, to quantify alternative
splicing casper uses precise probability calculations.

179080000 179120000 179160000 179200000

NM_001168236 (expr=3.153)
NM_001168238 (expr=3.179)
NM_001168237 (expr=3.174)
NM_007314 (expr=3.148)
NM_001136001 (expr=6.277)
NM_001168239 (expr=3.203)
NM_001136000 (expr=3.198)
NM_005158 (expr=3.172)

Figure 3: Transcripts for gene with Entrez ID= 27

References

Martin Morgan and Hervé Pagès. Rsamtools: Import aligned BAM file
format sequences into R / Bioconductor. URL http://bioconductor.

org/packages/release/bioc/html/Rsamtools.html. R package version
1.4.3.

J.T. Robinson, H. Thorvaldsdóttir, W. Winckler, M. Guttman, E.S. Lander,
G. Getz, and J.P. Mesirov. Integrative genomics viewer. Nature Biotech-
nology, 29:24–26, 2011.

D. Rossell, C. Stephan-Otto Attolini, M. Kroiss, and A. Stöcker.
Quantifying alternative splicing from paired-end RNA-sequencing
data. Annals of Applied Statistics, 8(1):309–330, 2014. URL
http://www.e-publications.org/ims/submission/AOAS/user/

submissionFile/13921?confirm=ede240bc.

D. Rossell, M. Stobbe, and C. Stephan-Otto Attolini. A Bayesian framework
to assess de novo isoform predictions. Technical report, The University of
Warwick, 2015.

C. Stephan-Otto Attolini, V. Peña, and D. Rossell. Bayesian designs for per-

http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://www.e-publications.org/ims/submission/AOAS/user/submissionFile/13921?confirm=ede240bc
http://www.e-publications.org/ims/submission/AOAS/user/submissionFile/13921?confirm=ede240bc

sonalized alternative splicing rna-seq studies. Technical report, University
of Warwick, 2015.

C. Trapnell, L. Pachter, and S.L. Salzberg. Tophat: discovering splice junc-
tions with rna-seq. Bioinformatics, 25(9):1105–11, May 2009.

	Quick start
	Introduction
	Aligning reads and importing data
	Pre-processing the data for analysis
	Estimating expression for a set of known variants
	Plots and querying an annotatedGenome

