psichomics is an interactive R package for integrative analyses of alternative splicing and gene expression based on The Cancer Genome Atlas (TCGA) (containing molecular data associated with 34 tumour types), the Genotype-Tissue Expression (GTEx) project (containing data for multiple normal human tissues), Sequence Read Archive and user-provided data. The data from GTEx, TCGA and select SRA projects include subject/sample-associated information and transcriptomic data, such as the quantification of RNA-Seq reads aligning to splice junctions (henceforth called junction quantification) and exons.
Install psichomics by typing the following in an R console (the R environment is required):
After the installation, load psichomics by typing:
Please read the following function reference.
The following case study was adapted from psichomics’ original article:
Nuno Saraiva-Agostinho and Nuno L. Barbosa-Morais (2019). psichomics: graphical application for alternative splicing quantification and analysis. Nucleic Acids Research.
Breast cancer is the cancer type with the highest incidence and mortality in women (Torre et al., 2015) and multiple studies have suggested that transcriptome-wide analyses of alternative splicing changes in breast tumours are able to uncover tumour-specific biomarkers (Tsai et al., 2015; Danan-Gotthold et al., 2015; Anczuków et al., 2015). Given the relevance of early detection of breast cancer to patient survival, we can use psichomics to identify novel tumour stage-I-specific molecular signatures based on differentially spliced events.
The quantification of each alternative splicing event is based on the proportion of junction reads that support the inclusion isoform, known as percent spliced-in or PSI (Wang et al., 2008).
To estimate this value for each splicing event, both alternative splicing annotation and junction quantification are required. While alternative splicing annotation is provided by the package, junction quantification may be retrieved from TCGA, GTEx, SRA or user-provided files.
Data is downloaded from Firebrowse, a service that hosts processed data from TCGA, as required to run the downstream analyses. Before downloading data, check the following options:
# Available tumour types
cohorts <- getFirebrowseCohorts()
# Available sample dates
date <- getFirebrowseDates()
# Available data types
dataTypes <- getFirebrowseDataTypes()
Note there is also the option for Gene expression (normalised by RSEM). However, we recommend to load the raw gene expression data instead, followed by filtering and normalisation as demonstrated afterwards.
After deciding on the options to use, download and load breast cancer data as follows:
# Set download folder
folder <- getDownloadsFolder()
# Download and load most recent junction quantification and clinical data from
# TCGA/Firebrowse for Breast Cancer
data <- loadFirebrowseData(folder=folder,
cohort="BRCA",
data=c("clinical", "junction_quantification",
"RSEM_genes"),
date="2016-01-28")
# Select clinical and junction quantification dataset
clinical <- data[[1]]$`Clinical data`
sampleInfo <- data[[1]]$`Sample metadata`
junctionQuant <- data[[1]]$`Junction quantification (Illumina HiSeq)`
geneExpr <- data[[1]]$`Gene expression`
Data is only downloaded if the files are not present in the given folder. In other words, if the files were already downloaded, the function will just load the files, so it is possible to reuse the code above just to load the requested files.
Windows limitations: If you are using Windows, note that the downloaded files have huge names that may be over Windows Maximum Path Length. A workaround would be to manually rename the downloaded files to have shorter names, move all downloaded files to a single folder and load such folder.
As this package does not focuses on gene expression analysis, we suggest to read the RNA-seq section of limma
’s user guide. Nevertheless, we present the following commands to quickly filter and normalise gene expression:
# Check genes where min. counts are available in at least N samples and filter
# out genes with mean expression and variance of 0
filter <- filterGeneExpr(geneExpr)
geneExprFiltered <- geneExpr[filter, ]
# Normalise gene expression and perform log2-transformation
geneExprNorm <- normaliseGeneExpression(geneExprFiltered)
After loading the clinical and alternative splicing junction quantification data from TCGA, quantify alternative splicing by clicking the green panel Alternative splicing quantification.
As previously mentioned, alternative splicing is quantified from the previously loaded junction quantification and an alternative splicing annotation file. To check current annotation files available:
## Human hg19/GRCh37 (2017-10-20)
## "annotationHub_alternativeSplicingEvents.hg19_V2.rda"
## Human hg19/GRCh37 (2016-10-11)
## "annotationHub_alternativeSplicingEvents.hg19.rda"
## Human hg38 (2018-04-30)
## "annotationHub_alternativeSplicingEvents.hg38_V2.rda"
Custom splicing annotation: Additional alternative splicing annotations can be prepared for psichomics by parsing the annotation from programs like VAST-TOOLS, MISO, SUPPA and rMATS. Note that SUPPA and rMATS are able to create their splicing annotation based on transcript annotation. Please read Preparing alternative splicing annotations.
To quantify alternative splicing, first select the junction quantification, alternative splicing annotation and alternative splicing event type(s) of interest:
# Load Human (hg19/GRCh37 assembly) annotation
hg19 <- listSplicingAnnotations(assembly="hg19")[[1]]
annotation <- loadAnnotation(hg19)
# Available alternative splicing event types (skipped exon, alternative
# first/last exon, mutually exclusive exons, etc.)
getSplicingEventTypes()
## Skipped exon
## "SE"
## Mutually exclusive exon
## "MXE"
## Alternative 5' splice site
## "A5SS"
## Alternative 3' splice site
## "A3SS"
## Alternative first exon
## "AFE"
## Alternative last exon
## "ALE"
## Alternative first exon (exon-centred - less reliable)
## "AFE_exon"
## Alternative last exon (exon-centred - less reliable)
## "ALE_exon"
Afterwards, quantify alternative splicing using the previously defined parameters:
# Discard alternative splicing quantified using few reads
minReads <- 10 # default
psi <- quantifySplicing(annotation, junctionQuant, minReads=minReads)
# Check the identifier of the splicing events in the resulting table
events <- rownames(psi)
head(events)
## [1] "SE_3_+_13661331_13663275_13663415_13667945_FBLN2"
## [2] "SE_3_+_57908750_57911572_57911661_57913023_SLMAP"
## [3] "ALE_3_+_57908750_57911572_57913023_SLMAP"
## [4] "SE_3_-_37136283_37133029_37132958_37125297_LRRFIP2"
## [5] "SE_12_-_56558432_56558152_56558087_56557549_SMARCC2"
## [6] "AFE_4_+_56755098_56750094_56756389_EXOC1"
Note that the event identifier (for instance, SE_1_-_2125078_2124414_2124284_2121220_C1orf86
) is composed of:
SE
stands for skipped exon)1
)-
)C1orf86
)Warning: all examples shown in this case study are performed using a small, yet representative subset of the available data. Therefore, values shown here may correspond to those when performing the whole analysis.
Let us create groups based on available samples types (i.e. Metastatic, Primary solid Tumor and Solid Tissue Normal) and tumour stages. As tumour stages are divided by sub-stages, we will merge sub-stages so as to have only tumour samples from stages I, II, III and IV (stage X samples are discarded as they are uncharacterised tumour samples).
# Group by normal and tumour samples
types <- createGroupByAttribute("Sample types", sampleInfo)
normal <- types$`Solid Tissue Normal`
tumour <- types$`Primary solid Tumor`
# Group by tumour stage (I, II, III or IV) or normal samples
stages <- createGroupByAttribute(
"patient.stage_event.pathologic_stage_tumor_stage", clinical)
groups <- list()
for (i in c("i", "ii", "iii", "iv")) {
stage <- Reduce(union,
stages[grep(sprintf("stage %s[a|b|c]{0,1}$", i), names(stages))])
# Include only tumour samples
stageTumour <- names(getSubjectFromSample(tumour, stage))
elem <- list(stageTumour)
names(elem) <- paste("Tumour Stage", toupper(i))
groups <- c(groups, elem)
}
groups <- c(groups, Normal=list(normal))
# Prepare group colours (for consistency across downstream analyses)
colours <- c("#6D1F95", "#FF152C", "#00C7BA", "#FF964F", "#00C65A")
names(colours) <- names(groups)
attr(groups, "Colour") <- colours
# Prepare normal versus tumour stage I samples
normalVSstage1Tumour <- groups[c("Tumour Stage I", "Normal")]
attr(normalVSstage1Tumour, "Colour") <- attr(groups, "Colour")
# Prepare normal versus tumour samples
normalVStumour <- list(Normal=normal, Tumour=tumour)
attr(normalVStumour, "Colour") <- c(Normal="#00C65A", Tumour="#EFE35C")
PCA is a technique to reduce data dimensionality by identifying variable combinations (called principal components) that explain the variance in the data (Ringnér, 2008). Use the following commands to perform PCA:
# PCA of PSI between normal and tumour stage I samples
psi_stage1Norm <- psi[ , unlist(normalVSstage1Tumour)]
pcaPSI_stage1Norm <- performPCA(t(psi_stage1Norm))
As PCA cannot be performed on data with missing values, missing values need to be either removed (thus discarding data from whole splicing events or genes) or impute them (i.e. attributing to missing values the median of the non-missing ones). Use the argument
missingValues
within functionperformPCA
to select the number of missing values that are tolerable per event (i.e. if a splicing event or gene has less than N missing values, those missing values will be imputed; otherwise, the event is discarded from PCA).