Contents

1 Introduction

The evaluomeR package permits to evaluate the reliability of bioinformatic metrics by analysing the stability and goodness of the classifications of such metrics. The method takes the measurements of the metrics for the dataset and evaluates the reliability of the metrics according to the following analyses: Correlations, Stability and Goodness of classifications.

2 Installation

The installation of evaluomeR package is performed via Bioconductor:

if (!requireNamespace("BiocManager", quietly=TRUE))
    install.packages("BiocManager")
BiocManager::install("evaluomeR")

2.1 Prerequisites

The package evaluomeR depends on the following CRAN packages for the calculus: cluster (Maechler et al. 2018), corrplot (Wei and Simko 2017). Moreover, this package also depends on grDevices, graphics, stats and utils from R Core (R Core Team 2018) for plotting and on the Bioconductor packages SummarizedExperiment (Morgan et al. 2018), MultiAssayExperiment (Ramos et al. 2017) for input/output data.

3 Using evaluomeR

3.1 Creating an input SummarizedExperiment

The input is a SummarizedExperiment object. The assay contained in SummarizedExperiment must follow a certain structure, see Table 1: A valid header must be specified. The first column of the header is the ID or name of the instance of the dataset (e.g., ontology, pathway, etc.) on which the metrics are measured. The other columns of the header contains the names of the metrics. The rows contains the measurements of the metrics for each instance in the dataset.

Table 1: Example of an input assay from a SummarizedExperiment for
the evaluomeR package.
ID MetricNameA MetricNameB MetricNameC
instance1 1.2 6.4 0.5
instance2 2.4 5.4 0.8
instance3 1.9 8.9 1.1

3.2 Using input sample data from evaluomeR

In our package we provide three different sample input data:

  • ontMetrics: Structural ontology metrics, 19 metrics measuring structural aspects of bio-ontologies have been analysed on two different corpora of ontologies: OBO Foundry and AgroPortal (Franco et al. 2019).

  • rnaMetrics: RNA quality metrics for the assessment of gene expression differences, 2 quality metrics from 16 aliquots of a unique batch of RNA Samples. The metrics are Degradation Factor (DegFact) and RNA Integrity Number (RIN) (Imbeaud et al. 2005).

  • bioMetrics: Metrics for biological pathways, 2 metrics that quantitative characterizations of the importance of regulation in biochemical pathway systems, including systems designed for applications in synthetic biology or metabolic engineering. The metrics are reachability and efficiency (Davis and Voit 2018).

The user shall run the data built-in method to load evaluomeR sample input data. This requires to provide the descriptor of the desired dataset. The datasets availables can take the following values: “ontMetrics”, “rnaMetrics” or “bioMetrics”.

library(evaluomeR)
data("ontMetrics")
data("rnaMetrics")
data("bioMetrics")

3.3 Correlations

We provide the metricsCorrelations function to evaluate the correlations among the metrics defined in the SummarizedExperiment:

library(evaluomeR)
data("rnaMetrics")
correlationSE <- metricsCorrelations(rnaMetrics, margins =  c(4,4,12,10))

# Access the correlation matrix via its first assay:
# assay(correlationSE,1)

3.4 Stability analysis

The calculation of the stability indices is performed by stability and stabilityRange functions.

3.4.1 Stability

The stability index analysis is performed by the stability function. For instance, running a stability analysis for the metrics of rnaMetrics with a number of 100 bootstrap replicates with a k-means cluster whose k is 2 (note that k must be inside [2,15] range):

stabilityData <- stability(rnaMetrics, k=2, bs = 100)
## Processing metric: RIN(1)
##  Calculation of k = 2
## Processing metric: DegFact(2)
##  Calculation of k = 2

The stability function returns the stabilityData object, a ExperimentList that contains the several assays such as the stability mean or the mean, betweenss, totss, tot.swithinss and anova values from the kmeans clustering:

stabilityData
## ExperimentList class object of length 9:
##  [1] stability_mean: SummarizedExperiment with 2 rows and 2 columns
##  [2] cluster_partition: SummarizedExperiment with 2 rows and 2 columns
##  [3] cluster_mean: SummarizedExperiment with 2 rows and 2 columns
##  [4] cluster_centers: SummarizedExperiment with 2 rows and 2 columns
##  [5] cluster_size: SummarizedExperiment with 2 rows and 2 columns
##  [6] cluster_betweenss: SummarizedExperiment with 2 rows and 2 columns
##  [7] cluster_totss: SummarizedExperiment with 2 rows and 2 columns
##  [8] cluster_tot.withinss: SummarizedExperiment with 2 rows and 2 columns
##  [9] cluster_anova: SummarizedExperiment with 2 rows and 2 columns

The stability indices plots shown when getImages = TRUE are generated with the values of the stability mean:

assay(stabilityData, "stability_mean")
Metric Mean_stability_k_2
RIN 0.82540873015873
DegFact 0.873916305916306

The plot represents the stability mean from each metric for a given k value. This mean is calculated by performing the average of every stability index from kranges [1,k] for each metric.

3.4.2 Stability range

The stabilityRange function is an iterative method of stability function. It performs a stability analysis for a range of k values (k.range).

For instance, analyzing the stability of rnaMetrics in range [2,4], with bs=100:

stabilityRangeData = stabilityRange(rnaMetrics, k.range=c(2,4), bs = 100)
## Processing metric: RIN(1)
##  Calculation of k = 2
##  Calculation of k = 3
##  Calculation of k = 4
## Processing metric: DegFact(2)
##  Calculation of k = 2
##  Calculation of k = 3
##  Calculation of k = 4

Two kind of graphs are plotted in stabilityRange function. The first type (titled as “St. Indices for k=X across metrics”) shows, for every k value, the stability indices across the metrics. The second kind (titled as St. Indices for metric ‘X’ in range [x,y]), shows a plot of the behaviour of each metric across the k range.

3.5 Goodness of classifications

There are two methods to calculate the goodness of classifications: quality and qualityRange.

3.5.1 Quality

This method plots how the metrics behave for the current k value, according to the average silhouette width. Also, it will plot how the clusters are grouped for each metric (one plot per metric). For instance, running a quality analysis for the two metrics of rnaMetrics dataset, being k=4:

qualityData = quality(rnaMetrics, k = 4)
## Processing metric: RIN(1)
##  Calculation of k = 4
## Processing metric: DegFact(2)
##  Calculation of k = 4

The data of the first plot titled as “Qual. Indices for k=4 across metrics” according to Silhouette avg. width, is stored in Avg_Silhouette_Width column from the first assay of the SummarizedExperiment, qualityData. The other three plots titled by their metric name display the input rows grouped by colours for each cluster, along with their Silhouette width scores.

The variable qualityData contains information about the clusters of each metric: The average silhouette width per cluster, the overall average sihouette width (taking into account all the clusters) and the number of individuals per cluster:

assay(qualityData,1)
Metric Cluster_1_SilScore Cluster_2_SilScore Cluster_3_SilScore Cluster_4_SilScore Avg_Silhouette_Width Cluster_1_Size Cluster_2_Size Cluster_3_Size Cluster_4_Size
RIN 0.420502645502646 0.696597735248404 0.473928571428572 0.324731573607137 0.488264943810529 4 4 5 3
DegFact 0.759196481622952 0.59496499852177 0.600198799385732 0.521618857725795 0.634170498361632 5 3 5 3

3.5.2 Quality range

The qualityRange function is an iterative method that uses the same functionality of quality for a range of values (k.range), instead for one unique k value. This methods allows to analyse the goodness of the classifications of the metric for different values of the range.

In the next example we will keep using the rnaMetrics dataset, and a k.range set to [4,6].

k.range = c(4,6)
qualityRangeData = qualityRange(rnaMetrics, k.range)
## Processing metric: RIN(1)
##  Calculation of k = 4
##  Calculation of k = 5
##  Calculation of k = 6
## Processing metric: DegFact(2)
##  Calculation of k = 4
##  Calculation of k = 5
##  Calculation of k = 6