
Checking gene expression signatures against
random and known signatures with SigCheck

Rory Stark

Edited: December 9, 2015; Compiled: October 29, 2019

Contents

1 Introduction . 1

2 Example dataset: NKI Breast Cancer Data and the van’t Veer
Signature . 2

3 Example: Survival analysis . 5

3.1 Call: sigCheck . 6

3.2 Call: sigCheckAll . 7

3.3 Scoring methods for dividing samples into survival groups 9

4 Example: Classification Analysis 11

4.1 Classifiers for scoring survival groups 11

4.2 Checking classifier performance independently of survival 12

4.3 Classification without a validation set: leave-one-out cross-validation
14

5 Technical notes . 14

5.1 Obtaining gene signatures from MSigDB 14

5.2 Use of BiocParallel and parallel 15

6 Acknowledgements. 15

7 Session Info . 16

1 Introduction

A common task in the analysis of genomic data is the derivation of gene expression signatures
that distinguish between phenotypes (disease outcomes, molecular subtypes, etc.). However,
in their paper "Most random gene expression signatures are significantly associated with breast
cancer outcome" [1], Venet, Dumont, and Detour point out that while a gene signature may
distinguish between two classes of phenotype, their ultimate uniqueness and utility may be

http://bioconductor.org/packages/SigCheck
http://bioconductor.org/packages/BiocParallel

Checking gene expression signatures against random and known signatures with SigCheck

limited. They show that while a specialized feature selection process may appear to determine
a unique set of predictor genes, the resultant signature may not perform better than one made
up of random genes, or genes selected at random from all differentially expressed genes.
This suggests that the genes in the derived signature may not be particularly informative
as to underlying biological mechanisms. They further show that gene sets that comprise
published signatures for a wide variety of phenotypic classes may perform just as well at
predicting arbitrary phenotypes; famously, they show that a gene signature that distinguishes
postprandial laughter performs as well at predicting the outcome of breast cancers as well as
a widely-cited signature [2].
The SigCheck package was developed in order to make it easy to check a gene signature
against random and known signatures, and assess the unique ability of that signature to
distinguish phenotypical classes. It additionally provides the ability to check a signature’s
performance against permuted data as a reality check that it is detecting a genuine signal in
the original data. This vignette shows the process of performing the checks.

2 Example dataset: NKI Breast Cancer Data and the
van’t Veer Signature

In order to use SigCheck, you must provide a) some data (an expression matrix), b) some
metadata (feature names, survival data, class identifiers), and c) a gene signature (a subset of
the features). For this vignette, we will use the NKI Breast Cancer dataset breastCancerNKI
and the associated van’t Veer signature that predicts the likelihood that a patient will develop
a distant metastases [2].
The dataset can be loaded as follows:
> library(breastCancerNKI)

> data(nki)

> nki

ExpressionSet (storageMode: lockedEnvironment)

assayData: 24481 features, 337 samples

element names: exprs

protocolData: none

phenoData

sampleNames: NKI_4 NKI_6 ... NKI_404 (337 total)

varLabels: samplename dataset ... e.os (21 total)

varMetadata: labelDescription

featureData

featureNames: Contig45645_RC Contig44916_RC ... Contig15167_RC (24481

total)

fvarLabels: probe EntrezGene.ID ... Description (10 total)

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

Annotation: rosetta

As can be seen, the nki data is encapsulated in an ExpressionSet object. At its core,
it contains an expression matrix consisting of 24,481 features (microarray probes mapped
to genes) and 337 samples (derived from tumor tissue taken from breast cancer patients).

2

http://bioconductor.org/packages/SigCheck
http://bioconductor.org/packages/SigCheck
http://bioconductor.org/packages/SigCheck
http://bioconductor.org/packages/breastCancerNKI

Checking gene expression signatures against random and known signatures with SigCheck

Included is phenotypical (clinical) metadata regarding the patients, including age of the
patient, tumor grade, expression status of the ER, PR, and HER2 biomarkers, presence of a
BRCA mutation, etc:
> varLabels(nki)

[1] "samplename" "dataset" "series" "id"

[5] "filename" "size" "age" "er"

[9] "grade" "pgr" "her2" "brca.mutation"

[13] "e.dmfs" "t.dmfs" "node" "t.rfs"

[17] "e.rfs" "treatment" "tissue" "t.os"

[21] "e.os"

The signatures derived by [2] and [3] are used to predict the Distant Metastasis-Free Survival
(DMFS) time. This is presented as a continuous measure indicating the time until the
occurrence of a distant metastasis:
> nki$t.dmfs

[1] 4747 4075 3703 3215 3760 2120 2870 2983 3007 2873 1898 3227 2546 1894 2281

[16] 4160 4322 4646 4424 3734 3789 3692 2675 2686 4024 2486 2482 1997 2150 1891

[31] 398 375 1792 1715 839 410 1691 1787 979 295 748 978 724 1106 785

[46] 807 777 1347 843 NA NA NA NA NA NA NA NA NA NA NA

[61] NA NA NA NA NA NA NA 1201 1809 672 701 929 325 1167 792

[76] 464 364 4537 3117 1937 1911 3643 3688 5412 5209 2427 2830 2308 1703 3192

[91] 2764 2665 407 2143 3159 2555 3408 1256 5599 1269 4663 2029 512 5528 5160

[106] 2004 1335 588 6699 6297 351 5118 430 5517 340 6450 2876 1027 1624 5898

[121] 2969 5593 5778 2069 3814 589 5597 5437 4876 507 5022 2774 4592 3260 4812

[136] 4662 955 3951 4134 4332 442 1950 4288 4567 4114 4410 2721 4652 985 4322

[151] 4553 749 4089 4035 3411 3984 3933 4091 1234 4031 3703 3526 3899 2398 4092

[166] 4436 721 2731 3781 627 855 3591 3772 3790 823 3660 972 1226 447 591

[181] 99 1308 5158 2380 907 421 674 2956 1496 732 3646 4217 1526 2059 1802

[196] 1942 2034 3436 3332 1676 3283 839 1869 2015 3033 3139 812 2649 2480 2561

[211] 2531 2589 342 94 2565 2649 2556 2164 20 237 1868 1940 9 2681 2098

[226] 1945 1430 2108 1806 2216 129 1816 4256 3056 2306 2244 2029 119 3505 3454

[241] 1042 3408 651 3358 2451 3488 3726 718 3405 3127 970 1541 3325 2212 1176

[256] 3010 781 853 2327 3614 548 2449 3215 3236 3234 3031 1688 2037 778 1899

[271] 788 2919 3103 2810 2731 2706 762 2317 6060 1140 633 5607 2414 2511 2555

[286] 2601 1724 2254 2361 1200 2384 2122 1769 2250 2208 2270 2127 2279 2198 2027

[301] 1953 1921 1816 6604 6387 6265 209 3495 1190 3652 719 2839 979 6363 3115

[316] 5084 5064 4653 2839 4048 711 3000 2639 1249 2485 1282 2254 2036 2085 4095

[331] 3737 1741 3077 558 2695 2467 2765

DMFS is also presented as a binary class, with a cutoff used to distinguish between patients
that had a recurrence event and those that did not:
> nki$e.dmfs

[1] 0

[26] 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 NA

[51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 1 1 1 1 1 1 1 1

[76] 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 1

[101] 0 0 1 0 0 0 1 1 0 0 1 1 1 0 1 0 0 1 1 0 1 0 0 0 1

[126] 1 0 0 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0

3

http://bioconductor.org/packages/SigCheck

Checking gene expression signatures against random and known signatures with SigCheck

1See the Technical
Notes section for in-
formation on how to
obtain more signature
lists.

[151] 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 1 1 0 0 0 1

[176] 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 1

[201] 1 1 1 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0

[226] 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1

[251] 0 1 0 1 1 0 1 1 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0

[276] 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[301] 0 0 1 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 0 0 1 0 0 1 0

[326] 0 0 0 0 1 0 1 0 1 0 0 0

A number of patient samples do not have DMFS data available. Currently, SigCheck can not
handle NAs in the metadata, so the first step is to exclude these patients from our analysis,
which brings the number of samples down to 319:
> dim(nki)

Features Samples

24481 337

> nki <- nki[,!is.na(nki$e.dmfs)]

> dim(nki)

Features Samples

24481 319

The next step is to provide a gene signature to check. A core function of SigCheck is to
compare the performance of a gene signature with the performance of known gene signatures
against the same data set. To accomplish this, it includes several sets of known signatures.
One of these included signatures is the van’t Veer signature, which we will use for this
example.
To load the known gene signatures that are included with SigCheck:
> library(SigCheck)

> data(knownSignatures)

> names(knownSignatures)

[1] "cancer" "proliferation" "non.cancer"

There are three sets of gene signatures, including a set of cancer signatures. 1 The van’t
Veer signature is one of the signatures in the known cancer gene signature set:
> names(knownSignatures$cancer)

[1] "ABBA" "ADORNO" "BEN-PORATH-EXP1" "BEN-PORATH-PRC2"

[5] "BUESS" "BUFFA" "CARTER" "CHANG"

[9] "CHI" "CRAWFORD" "DAI" "GLINSKY"

[13] "HALLSTROM" "HE" "HU" "HUA"

[17] "IVSHINA" "KOK" "KORKOLA" "LIU"

[21] "MA" "MILLER" "MORI" "PAIK"

[25] "PAWITAN" "PEI" "RAMASWAMY" "REUTER"

[29] "RHODES" "SAAL" "SHIPITSIN" "SORLIE"

[33] "SOTIRIOU-93" "SOTIRIOU-GGI" "META-PCNA" "TAUBE"

[37] "TAVAZOIE" "VALASTYAN" "VANTVEER" "WANG-76"

[41] "WANG-ALK5T204D" "WELM" "WEST" "WHITFIELD"

[45] "WONG-ESC" "WONG-MITOCHON" "WONG-PROTEAS" "YU"

4

http://bioconductor.org/packages/SigCheck
http://bioconductor.org/packages/SigCheck
http://bioconductor.org/packages/SigCheck
http://bioconductor.org/packages/SigCheck

Checking gene expression signatures against random and known signatures with SigCheck

> vantveer <- knownSignatures$cancer$VANTVEER

> vantveer

[1] "ACADS" "AP2B1" "ASNS" "BUB1" "CA9" "CENPA"

[7] "COL4A2" "CP" "DCK" "ECT2" "EXT1" "FLT1"

[13] "GNAZ" "GSTM3" "IGFBP5" "MCM6" "MMP9" "ALDH6A1"

[19] "OXCT1" "PEX12" "PGK1" "QDPR" "RAD21" "RFC4"

[25] "SLC2A3" "STK3" "TGFB3" "BTG2" "SERF1A" "CDC42BPA"

[31] "TMEFF1" "FGF18" "GMPS" "WISP1" "PRC1" "CCNB2"

[37] "CCNE2" "MELK" "NDC80" "PECI" "PITRM1" "NMU"

[43] "GCN1L1" "ESM1" "AKAP2" "ORC6L" "BBC3" "UCHL5"

[49] "DTL" "RAB6B" "EGLN1" "C20orf46" "STK32B" "DEPDC1"

[55] "C1orf106" "C16orf61" "ERGIC1" "SCUBE2" "MS4A7" "FBXO31"

The signature is provided in the form of symbolic gene names. These will need to be matched
up with the feature names in the ExpressionSet. While the default annotation is a probe
identifier, the nki dataset provides a number of alternative annotations:
> fvarLabels(nki)

[1] "probe" "EntrezGene.ID" "probe.name"

[4] "Alignment.score" "Length.of.probe" "NCBI.gene.symbol"

[7] "HUGO.gene.symbol" "Cytoband" "Alternative.symbols"

[10] "Description"

We’ll be using the "HUGO.gene-symbol" to match the gene names in the van’t Veer signature.
The final aspect of this dataset involve its division into a training (or discovery) set of samples
and a validation set of samples. The training set should include all the samples that were
used in deriving the gene signature. It is expected that the signature should perform optimally
on these samples. A validation n set of samples that played no role in deriving the signature
is required to test the efficacy of the signature. For the NKI dataset, the varLabel named
"series" specifies which samples were int he original trainingset, and which were profiled in
the follow-on experiment: For this example, we will treat the first 100 samples as the training
set.
> table(nki$series)

NKI NKI2

99 220

3 Example: Survival analysis

In this section, we will use the survival data to test the ability of the van’t veer signature
to predict outcome in the validation set. The most straightforward way to accomplish this
involved two function calls. The first is a call to sigCheck, which sets up the experiment,
establishes the baseline performance, generates Kaplan-Meier plots, and returns a newly
constructed object of class SigCheckObject. The second call, to sigCheckAll, runs a default
series of tests before plotting and returning the results.

5

http://bioconductor.org/packages/SigCheck

Checking gene expression signatures against random and known signatures with SigCheck

3.1 Call: sigCheck

The sigCheck function is the constructor for SigCheckObjects. It requires a number of
parameters that are used to define the experimental data and signature.
The first required parameter is expressionSet, an ExpressionSet object that contains all
the experimental data. In this example, expressionSet=nki. The next required parameter
is classes, a character string indicating which of varLabels(expressionSet) contains the
binary class data. In this example, classes=e.dmfs.
For a survival analysis, the survival parameter indicates which of varLabels(expressionSet)
contains the numeric survival data. In this example, classes=t.dmfs
The signature parameter contains the signature that will be checked. This is most easily
specified as a vector of feature names (ie gene IDs) that match features in the annota

tion parameter. The annotation parameter specifies which of fvarLabels(expressionSet)
contains the feature labels. In this example, signature=knownSignatures$cancer$VANTVEER,
and annotation="HUGO.gene.symbol".
If the data are divided into training and validation samples, the samples that comprise the
validation set should be specified using the validationSamples parameter.
The remaining parameters are optional, with usable defaults, and will be discussed in subse-
quent sections.
Putting this all together, the call to set up the experiment is:
> check <- sigCheck(nki, classes="e.dmfs", survival="t.dmfs",

+ signature=knownSignatures$cancer$VANTVEER,

+ annotation="HUGO.gene.symbol",

+ validationSamples=which(nki$series=="NKI2"))

> check

ExpressionSet (storageMode: lockedEnvironment)

assayData: 24481 features, 319 samples

element names: exprs

protocolData: none

phenoData

sampleNames: NKI_4 NKI_6 ... NKI_404 (319 total)

varLabels: samplename dataset ... e.os (21 total)

varMetadata: labelDescription

featureData

featureNames: Contig45645_RC Contig44916_RC ... Contig15167_RC (24481

total)

fvarLabels: probe EntrezGene.ID ... Description (10 total)

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

Annotation: HUGO.gene.symbol

By default, this will generate two Kaplan-Meier plots, as shown in Figure 1. The first shows
the performance on the training set, and the other shows performance on the validation set.
The method that uses the signature to separate the samples into two groups, based on taking
the first principal component (as described in [1]), is such that the High/Low groups can be
flipped in the two charts without concern.

6

http://bioconductor.org/packages/SigCheck

Checking gene expression signatures against random and known signatures with SigCheck

0 1000 2000 3000 4000 5000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Survival: Training Set

t.d
m

fs

p <0.001

High: 49(37)
Low: 50(10)

0 1000 2000 3000 4000 5000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Survival: Validation Set

t.d
m

fs

p <0.001

High: 110(43)
Low: 110(19)

Figure 1: Results of sigCheck for NKI Breast Cancer dataset checking v’ant Veer signature

These plots show very strong performance on the training set, with distinct (but reduced)
separation on the validation set. Both p-values are reported as p<0.001. Examination of the
resulting object shows the actual p-value computed for the validation set:
> check@survivalPval

[1] 3.984627e-05

3.2 Call: sigCheckAll

From this analysis, it appears that the signature does indeed have power in distinguishing
between two distinct survival groups. The next question is how unique these specific genes
in the signature are for this task. the function sigCheckAll will run a series of checks for
comparison purposes. In each check, some background performance distribution is computed,
and the performance of the signature is compared by calculating an empirical p-value.
The four tests include a distribution of p-values computed using randomly selected signature of
the same size (number of features). This check can be run separately using sigCheckRandom.
The second test compares the performance of this signature to a set of previously identified
ones. This check can be run separately using sigCheckKnown. The third and fourth tests
compare performance of the signature on the dataset to permuted versions of the dataset;
specifically permuting the class survival metadata, as well as permuting the feature data
by randomly re-assigning the expression values for each feature across the samples. The
permuted data/metadata check can be run separately using sigCheckPermuted.

7

http://bioconductor.org/packages/SigCheck

Checking gene expression signatures against random and known signatures with SigCheck

The parameters to sigCheckAll include the SigCheckObject constructed by the previous call
to sigCheck. The iterations parameter determines the size of the null distribution for the
random and permuted checks. The known parameter specifies a set of known signatures to
use for the second check, with the default being the 48 cancer signatures identified by [1].
The number assigned to iterations will determine the accuracy of the p-value calculated
for the random and permuted tests. A value of at least 1000 is preferred to get a meaningful
value:
> nkiResults <- sigCheckAll(check, iterations=1000)

As this vignette will take too long to run automatically with iterations=1000, the results
have been pre-computed and included as a data object with the (SigCheck) package:
> data(nkiResults)

By default, sigCheckAll will generate plots of the results. These can be re-generated using
sigCheckPlot:
> sigCheckPlot(nkiResults)

0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Survival: Random Signatures

Percentile:0.99 (Tests:1000 p=0.014)
N = 1000 Bandwidth = 0.2427

D
en

si
ty

Signature p−val <0.001 (4.40)
Significant p−val <0.05 (−1.30)

−2 0 2 4 6

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Survival: Known Signatures [cancer]

Percentile:0.92 (Tests:48 p=0.08)
N = 48 Bandwidth = 0.6107

D
en

si
ty

Signature p−val <0.001 (4.40)
Significant p−val <0.05 (−1.30)

0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Survival: Permuted Data: [survival]

Percentile:1.00 (Tests:1000 p=0.002)
N = 1000 Bandwidth = 0.146

D
en

si
ty

Signature p−val <0.001 (4.40)
Significant p−val <0.05 (−1.30)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

Survival: Permuted Data: [features]

Percentile:1.00 (Tests:1000 p<0.001)
N = 1000 Bandwidth = 0.0786

D
en

si
ty

Signature p−val <0.001 (4.40)
Significant p−val <0.05 (−1.30)

Figure 2: Results of sigCheckPlot for NKI Breast Cancer dataset checking v’ant Veer signature

In each of the four plots, the background distribution is plotted, with the x-axis representing
survival p-values on a -log 10 scale, and the y-axis representing how many of the background
tests produced p-values at that level. The solid red vertical line shows the performance of
the signature being tested. The further to the right of the distribution this line is, the more
uniquely it performs for this check. In some cases, if the performance of the signature is out
fo the range of the background distribution, this line will not be drawn. The vertical red
dotted line shows where a "significant" result (p=0.05) would lie relative to the background
distribution.

8

http://bioconductor.org/packages/SigCheck
http://bioconductor.org/packages/(

Checking gene expression signatures against random and known signatures with SigCheck

The upper-left plot shows performance of the v’ant veer signature relative to 1,000 randomly
chosen signature of comprised of an equal number of gene. The upper-right plot shows the
performance compared to 48 known cancer prognostic signatures, while the two lower plots
show performance on permuted data (survival and gene expression across each feature).
The result returned by the call to sigCheckAll is a list of results for each test:
> names(nkiResults)

[1] "checkRandom" "checkKnown" "checkPermutedSurvival"

[4] "checkPermutedFeatures"

The adjusted p-value computed for each check can be retrieved as follows:
> nkiResults$checkRandom$checkPval

[1] 0.014

> nkiResults$checkKnown$checkPval

[1] 0.083

> nkiResults$checkPermutedSurvival$checkPval

[1] 0.002

> nkiResults$checkPermutedFeatures$checkPval

[1] 0

3.3 Scoring methods for dividing samples into survival groups

The survival analysis depends on a method for using the signature to divide the samples into
survival groups before computing the p-value for how their survival times differ. SigCheck
divides this task into two steps. The first is to calculate a score for each sample based on
the feature values for each feature in the signature. The second step is to divide the samples
into groups based on these scores.
[1] discuss this issue, and recommend first determining the score for each sample by com-
puting the first principal component of the expression matrix (using only the features in the
signature). They then suggest that the samples can be divided into two groups based on
whether their score is above or below the median score. This is the default method used in
SigCheck.
There are options for both the scoring and dividing steps. The scoring method is determined
by the value of the parameter scoreMethod for the function sigCheck. The default value is
"PCA1". scoreMethod may also be "High", which simply computes the mean expression value
for each sample across the signature. This enables the samples to be divided into a "High"
expression group and a "Low" expression group. Another option is to use a machine-learning
classifier to do the scoring (scoreMethod="classifier"); the next section discusses how to
use classifiers in SigCheck.
Finally, scoreMethod can be set to a user-defined function if you want to do your own mapping
of expression value to scores. The user-defined scoring function should take an Expression

Set as a parameter. This ExpressionSet will have as many rows as features that match the
signature, and as many columns as there are samples (either training or validation samples).
It should return a vector of scores, one for each sample.

9

http://bioconductor.org/packages/SigCheck
http://bioconductor.org/packages/SigCheck
http://bioconductor.org/packages/SigCheck
http://bioconductor.org/packages/SigCheck

Checking gene expression signatures against random and known signatures with SigCheck

The second step is to use the scores to divide the samples into groups. The threshold

parameter controls how this is accomplished. Currently, the package only support division
into either two or three groups, determined by which samples have scores below the specified
percentiles, and which are greater than or equal to the specified percentile. The default is to
use the median as the threshold, which will split the samples into two groups of approximately
equal size. In many cases, however, the real power of a signature is not to split the samples
into two equal sized groups, but rather to identify a subset of samples that have a distinct
outcome. Setting threshold=.66, for example, will split the samples into a larger group with
two-thirds of the sample, and a smaller group containing the one-third of samples with the
highest score. If you are using a score such as scoreMethod="High", these would be the
samples with the highest mean expression over the signature, while setting scoreMethod=.33

would split off a smaller group of sample with the lowest mean expression. By specifying
two percentile cutoffs, you can split the samples into three groups: one with high scores, one
with low scores, and one with intermediate scores. The performance of the signature will
computed using only the samples in the high and low groups.
To see how all this works, consider some alternative scoring and grouping methods for the
sample data set. For example, we can see how the v’ant Veer signature performs when
looking at overall expression levels. The code below takes advantage of the ability to create
a new SigCheckObject from an existing one:
> par(mfrow=c(2,2))

> p5 <- sigCheck(check,

+ scoreMethod="High",threshold=.5,

+ plotTrainingKM=F)@survivalPval

> p66 <- sigCheck(check,

+ scoreMethod="High",threshold=.66,

+ plotTrainingKM=F)@survivalPval

> p33 <- sigCheck(check,

+ scoreMethod="High",threshold=.33,

+ plotTrainingKM=F)@survivalPval

> p33.66 <-sigCheck(check,

+ scoreMethod="High",threshold=c(.33,.66),

+ plotTrainingKM=F)@survivalPval

> p5

[1] 0.0003488032

> p66

[1] 0.003568654

> p33

[1] 1.72021e-05

> p33.66

[1] 1.002417e-05

Figure 3 shows the baseline performance of the signature using different thresholds. The one
that splits off high and low expression groups, and eliminates the middle samples, performs
the best. However to know how unique this performance is, the random and known checks
would have to be repeated using exactly the same evaluation criteria as for the main signature.

10

http://bioconductor.org/packages/SigCheck

Checking gene expression signatures against random and known signatures with SigCheck

0 1000 2000 3000 4000 5000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Survival: Validation Set

t.d
m

fs

p <0.001

High: 110(42)
Low: 110(20)

0 1000 2000 3000 4000 5000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Survival: Validation Set

t.d
m

fs

p = 0.004

High: 75(29)
Low: 145(33)

0 1000 2000 3000 4000 5000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Survival: Validation Set

t.d
m

fs

p <0.001

High: 147(54)
Low: 73(8)

0 1000 2000 3000 4000 5000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Survival: Validation Set

t.d
m

fs

p <0.001

High: 75(29)
Low: 73(8)
Mid: 72(25)

Figure 3: Results of sigCheckPlot for NKI Breast Cancer dataset checking v’ant Veer signature, using
"High" scoring method and different percentile cutoffs

4 Example: Classification Analysis

SigCheck uses the MLInterfaces package to enable a wide range of machine-learning algo-
rithms to be applied to expression data. Classifiers constructed in this way use only the binary
classes metadata, and not the survival data, to predict what class each sample belongs to.
Classifiers can be applied in two distinct ways: as a scoring method for determining sur-
vival groups, and for assessing the classification potential of signatures when survival data is
unavailable.

4.1 Classifiers for scoring survival groups

As many classifiers generate a score for each sample (representing, for example, the proba-
bility that a sample belongs to a specific class), they can be used as the basis for dividing
samples into survival groups that can be uses to assess survival analysis performance. This
is accomplished by setting scoreMethod="classifier") when invoking (sigCheck).
When specifying a classifier, the classifierMethod parameter is used to determine what type
of classifier is to be used. This can be any classifier supported by the MLInterfaces package.
The default, svmI, uses a Support Vector Machine. When invoked, the training set samples
will be used to construct a classifier that distinguished between the two classes specified in
the classes parameter. When the training set is divided into survival groups, the resulting
classifier is used to generate scores for all the samples. These scores are then subjected to
the threshold parameter as with the other scoreMethods.
To see this in action with the sample dataset, all that is required is to set scoreMethod="classifier":

11

http://bioconductor.org/packages/SigCheck
http://bioconductor.org/packages/SigCheck
http://bioconductor.org/packages/MLInterfaces
http://bioconductor.org/packages/MLInterfaces

Checking gene expression signatures against random and known signatures with SigCheck

> check <- sigCheck(check, scoreMethod="classifier")

> check@survivalPval

[1] 0.000122871

0 1000 2000 3000 4000 5000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Survival: Training Set

t.d
m

fs

p <0.001

>0.44: 50(45)
<0.44: 49(2)

0 1000 2000 3000 4000 5000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Survival: Validation Set

t.d
m

fs

p <0.001

>0.52: 110(43)
<0.52: 110(19)

Figure 4: Results of sigCheck for NKI Breast Cancer dataset checking v’ant Veer signature, using a
Support Vector Machine to classify samples into survival groups

4.2 Checking classifier performance independently of survival

Another way of evaluating gene signatures is on how well they perform on the classification
task itself. For example, if the goals was to generate a gene signature to predict susceptibility
to a disease, the distinction between those who developed the disease and those who remain
disease-free may be important than the associated timeframes. In some cases, only class
data (recurrence/non recurrence; death/survival) may be available for the samples, and no
real-valued timescales.
In these cases (as well as cases where survival data are available but classification is of
interest), the classification abilities of a signature can be checked in similar manner to survival.
To generate such an analysis, simply leave the survival unspecified:
> check <- sigCheck(nki, classes="e.dmfs",

+ signature=knownSignatures$cancer$VANTVEER,

+ annotation="HUGO.gene.symbol",

+ validationSamples=which(nki$series=="NKI2"),

+ scoreMethod="classifier")

> check

12

http://bioconductor.org/packages/SigCheck

Checking gene expression signatures against random and known signatures with SigCheck

predicted

given 0 1

0 94 64

1 20 42

ExpressionSet (storageMode: lockedEnvironment)

assayData: 24481 features, 319 samples

element names: exprs

protocolData: none

phenoData

sampleNames: NKI_4 NKI_6 ... NKI_404 (319 total)

varLabels: samplename dataset ... e.os (21 total)

varMetadata: labelDescription

featureData

featureNames: Contig45645_RC Contig44916_RC ... Contig15167_RC (24481

total)

fvarLabels: probe EntrezGene.ID ... Description (10 total)

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

Annotation: HUGO.gene.symbol

In this case, no Kaplan-Meier plots are generated as there is no survival data. The baseline
classification performance can be examined:
> check@sigPerformance

[1] 0.6181818

> check@modePerformance

[1] 0.7181818

> check@confusion

predicted

given 0 1

0 94 64

1 20 42

The first value is the percentage of validation samples correctly classified. The second value is
the percentage that would be correctly classified if the classifier just guess the most frequently
observed class in the training set (the mode value). The third value is the confusion matrix,
which shows how validation samples in each category were classified. This can be interpreted
in terms of True Negatives and False Positives (first row), and False Negatives and True
Positives (second row).
The classification performance of the signature can be checked against the performance of a
background distribution of random or known signatures:
> classifyRandom <- sigCheckRandom(check, iterations=1000)

> classifyKnown <- sigCheckKnown(check)

As with the previous checks, the results have been pre-computed to save computation time:
> data(classifyResults)

13

http://bioconductor.org/packages/SigCheck

Checking gene expression signatures against random and known signatures with SigCheck

The results can be plotted:
> par(mfrow=c(1,2))

> sigCheckPlot(classifyRandom, classifier=TRUE)

> sigCheckPlot(classifyKnown, classifier=TRUE)

0.50 0.55 0.60 0.65 0.70 0.75

0
2

4
6

8
10

Check: Random Signatures

Percentile:0.46 (Tests:1000 p=0.574)
N = 1000 Bandwidth = 0.008625

D
en

si
ty

Signature [0.648]
Mode [0.694]

0.60 0.65 0.70

0
2

4
6

8
10

Check: Known Signatures [cancer]

Percentile:0.46 (Tests:48 p=0.56)
N = 48 Bandwidth = 0.01274

D
en

si
ty

Signature [0.648]
Mode [0.694]

Figure 5: Results of classifier performance check against random and known signature for NKI
Breast Cancer dataset checking v’ant Veer signature, using "High" scoring method and different
percentile cutoffs

Figure 5 shows the results of a classification analysis. The background distribution based on
the classification performance of the random or known signatures, so they are the percentage
of validation samples correctly classified. That means that for these plots, better performing
signatures are toward the right on the x-axis. Also, the dotted red vertical line represents the
performance of a mode classifier. It can be very useful to see what a classifier that always
guesses the category more prevalent in the training set for comparison to a curated gene
signature and a sophisticated machine learning algorithm.

4.3 Classification without a validation set: leave-one-out cross-
validation

coming soon...

5 Technical notes

5.1 Obtaining gene signatures from MSigDB

When checking a signature’s performance against known signatures (ie using the sigCheck

Known function), the gene signatures available at the Broad Institute’s MSigDB site (part
of GSEQ [4]). These are located at the following URL: http://software.broadinstitute.org/
gsea/downloads.jsp. Note that you must first register and accept the licence terms, which is
why the signatures are not distributed with this package.

14

http://bioconductor.org/packages/SigCheck
http://bioconductor.org/packages/MSigDB
http://bioconductor.org/packages/GSEQ
http://software.broadinstitute.org/gsea/downloads.jsp
http://software.broadinstitute.org/gsea/downloads.jsp

Checking gene expression signatures against random and known signatures with SigCheck

The gene sets can be downloaded in .gmt format. This can be read in using the read.gmt

function from the qusage package. For example, if you download the oncogenic signatures
file, you can retrieve the signatures as follows:
> c6.oncogenic <- read.gmt('c6.all.v5.0.symbols.gmt')

> check.c6 <- sigCheckKnown(check, c6.oncogenic)

> sigCheckPlot(check.c6)

5.2 Use of BiocParallel and parallel

This note shows how to control the parallel processing in SigCheck.
There are two different aspects of SigCheck that are able to exploit parallel processing.
The primary one is when multiple signatures or datasets are being evaluated independently.
This include the iterations random signatures in sigCheckRandom, the database of known
signatures in sigCheckKnown, and the iterations permuted datasets in sigCheckPermuted.
In this case, the BiocParallel package is used to carry out these comparisons in parallel. By
default, BiocParallel uses parallel to run in multicore mode, but it can also be configured to
schedule a compute task across multiple computers. In the default multicore mode, it will
use all of the cores on your system, which can result in a heavy load (especially if there is
inadequate memory). You can manually set the number of cores to use as follows:
> CoresToUse <- 6

> library(BiocParallel)

> mcp <- MulticoreParam(workers=CoresToUse)

> register(mcp, default=TRUE)

which limits the number of cores in use at any one time to six. If you want to use only one
core (serial mode), you can set CoresToUse <- 1, or register(SerialParam()).
The other aspect of processing that can use multiple processor cores is when performing
leave-one-out cross-validation (LOO-XV). In this case, the underlying MLInterfaces package
takes care of the parallelization using the parallel package. You can set the number of cores
that will be used for this as follows:
> options(mc.cores=CoresToUse)

Note that in the LOO-XV case, as every random or known signature, or permuted dataset,
requires parallel evaluation of cross-validated classifiers, the parallelization at the level of
iterations is disabled automatically.

6 Acknowledgements

We would like to acknowledge everyone in the Bioinformatics Core at Cancer Research UK’s
Cambridge Institute at the University of Cambridge, as well as members of the Ponder group
(particularly Kerstin Meyer), for their support and contributions.

15

http://bioconductor.org/packages/SigCheck
http://bioconductor.org/packages/qusage
http://bioconductor.org/packages/BiocParallel
http://bioconductor.org/packages/SigCheck
http://bioconductor.org/packages/SigCheck
http://bioconductor.org/packages/BiocParallel
http://bioconductor.org/packages/BiocParallel
http://bioconductor.org/packages/MLInterfaces

Checking gene expression signatures against random and known signatures with SigCheck

7 Session Info

> toLatex(sessionInfo())

• R version 3.6.1 (2019-07-05), x86_64-pc-linux-gnu
• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8,

LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

• Running under: Ubuntu 18.04.3 LTS

• Matrix products: default
• BLAS: /home/biocbuild/bbs-3.10-bioc/R/lib/libRblas.so
• LAPACK: /home/biocbuild/bbs-3.10-bioc/R/lib/libRlapack.so
• Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4,

utils
• Other packages: AnnotationDbi 1.48.0, Biobase 2.46.0, BiocGenerics 0.32.0,

BiocParallel 1.20.0, IRanges 2.20.0, MLInterfaces 1.66.0, S4Vectors 0.24.0,
SigCheck 2.18.0, XML 3.98-1.20, annotate 1.64.0, breastCancerNKI 1.23.0,
cluster 2.1.0, e1071 1.7-2, survival 2.44-1.1

• Loaded via a namespace (and not attached): BiocManager 1.30.9, BiocStyle 2.14.0,
DBI 1.0.0, DEoptimR 1.0-8, MASS 7.3-51.4, Matrix 1.2-17, R6 2.4.0,
RColorBrewer 1.1-2, RCurl 1.95-4.12, RSQLite 2.1.2, Rcpp 1.0.2, assertthat 0.2.1,
backports 1.1.5, base64enc 0.1-3, bit 1.1-14, bit64 0.9-7, bitops 1.0-6, blob 1.2.0,
class 7.3-15, compiler 3.6.1, crayon 1.3.4, crosstalk 1.0.0, digest 0.6.22,
diptest 0.75-7, dplyr 0.8.3, evaluate 0.14, fastmap 1.0.1, flexmix 2.3-15, fpc 2.2-3,
gbm 2.1.5, gdata 2.18.0, genefilter 1.68.0, ggvis 0.4.5, glue 1.3.1, grid 3.6.1,
gridExtra 2.3, gtable 0.3.0, gtools 3.8.1, htmltools 0.4.0, htmlwidgets 1.5.1,
httpuv 1.5.2, hwriter 1.3.2, igraph 1.2.4.1, kernlab 0.9-27, knitr 1.25, later 1.0.0,
lattice 0.20-38, magrittr 1.5, mclust 5.4.5, memoise 1.1.0, mime 0.7, mlbench 2.1-1,
modeltools 0.2-22, nnet 7.3-12, pillar 1.4.2, pkgconfig 2.0.3, pls 2.7-2,
prabclus 2.3-1, promises 1.1.0, purrr 0.3.3, rda 1.0.2-2.1, rlang 0.4.1,
rmarkdown 1.16, robustbase 0.93-5, rpart 4.1-15, sfsmisc 1.1-4, shiny 1.4.0,
splines 3.6.1, threejs 0.3.1, tibble 2.1.3, tidyselect 0.2.5, tools 3.6.1, vctrs 0.2.0,
xfun 0.10, xtable 1.8-4, yaml 2.2.0, zeallot 0.1.0

References

[1] David Venet, Jacques E Dumont, and Vincent Detours. Most random gene expression
signatures are significantly associated with breast cancer outcome. PLoS computational
biology, 7(10):e1002240, 2011.

[2] Laura J van’t Veer, Hongyue Dai, Marc J Van De Vijver, Yudong D He, Augustinus AM
Hart, Mao Mao, Hans L Peterse, Karin van der Kooy, Matthew J Marton, Anke T
Witteveen, et al. Gene expression profiling predicts clinical outcome of breast cancer.
nature, 415(6871):530–536, 2002.

16

http://bioconductor.org/packages/SigCheck

Checking gene expression signatures against random and known signatures with SigCheck

[3] Marc J Van De Vijver, Yudong D He, Laura J van’t Veer, Hongyue Dai, Augustinus AM
Hart, Dorien W Voskuil, George J Schreiber, Johannes L Peterse, Chris Roberts,
Matthew J Marton, et al. A gene-expression signature as a predictor of survival in
breast cancer. New England Journal of Medicine, 347(25):1999–2009, 2002.

[4] Arthur Liberzon, Aravind Subramanian, Reid Pinchback, Helga Thorvaldsdóttir, Pablo
Tamayo, and Jill P Mesirov. Molecular signatures database (msigdb) 3.0.
Bioinformatics, 27(12):1739–1740, 2011.

17

http://bioconductor.org/packages/SigCheck

	1 Introduction
	2 Example dataset: NKI Breast Cancer Data and the van't Veer Signature
	3 Example: Survival analysis
	3.1 Call: [functioncolor]sigCheck
	3.2 Call: [functioncolor]sigCheckAll
	3.3 Scoring methods for dividing samples into survival groups

	4 Example: Classification Analysis
	4.1 Classifiers for scoring survival groups
	4.2 Checking classifier performance independently of survival
	4.3 Classification without a validation set: leave-one-out cross-validation

	5 Technical notes
	5.1 Obtaining gene signatures from MSigDB
	5.2 Use of BiocParallel and parallel

	6 Acknowledgements
	7 Session Info

