CORE_bagging {scGPS}R Documentation

Main clustering SCORE (CORE V2.0) Stable Clustering at Optimal REsolution with bagging and bootstrapping

Description

CORE is an algorithm to generate reproduciable clustering, CORE is first implemented in ascend R package. Here, CORE V2.0 uses bagging analysis to find a stable clustering result and detect rare clusters mixed population.

Usage

CORE_bagging(mixedpop = NULL, bagging_run = 20,
  subsample_proportion = 0.8, windows = seq(from = 0.025, to = 1, by =
  0.025), remove_outlier = c(0), nRounds = 1, PCA = FALSE,
  nPCs = 20, ngenes = 1500)

Arguments

mixedpop

is a SingleCellExperiment object from the train mixed population.

bagging_run

an integer specifying the number of bagging runs to be computed.

subsample_proportion

a numeric specifying the proportion of the tree to be chosen in subsampling.

windows

a numeric vector specifying the ranges of each window.

remove_outlier

a vector containing IDs for clusters to be removed the default vector contains 0, as 0 is the cluster with singletons.

nRounds

an integer specifying the number rounds to attempt to remove outliers.

PCA

logical specifying if PCA is used before calculating distance matrix.

nPCs

an integer specifying the number of principal components to use.

ngenes

number of genes used for clustering calculations.

Value

a list with clustering results of all iterations, and a selected optimal resolution

Author(s)

Quan Nguyen, 2018-05-11

Examples

day5 <- day_5_cardio_cell_sample
cellnames<-colnames(day5$dat5_counts)
cluster <-day5$dat5_clusters
cellnames <- data.frame('cluster' = cluster, 'cellBarcodes' = cellnames)
#day5$dat5_counts needs to be in a matrix format
mixedpop2 <-new_summarized_scGPS_object(ExpressionMatrix = day5$dat5_counts, 
    GeneMetadata = day5$dat5geneInfo, CellMetadata = day5$dat5_clusters)
test <- CORE_bagging(mixedpop2, remove_outlier = c(0), PCA=FALSE,
    bagging_run = 2, subsample_proportion = .7)

[Package scGPS version 1.0.0 Index]