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Abstract
This vignette describes how to apply different functions from the proBatch package to diagnose and

correct for batch effects. Most of the functions are applicable any ‘omic’ data, however, the package has a
number of functions, designed specifically for mass spectrometry-based proteomics, and has been tested
on SWATH data.

The proBatch package provides a complete functionality for batch correction workflow: to prepare the
data for analysis, diagnose and correct batch effects and finally, to evaluate the correction with quality
control metrics.

The proBatch package was programmed and intended for use by researchers without extensive
programming skills, but with basic R knowledge.
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1 Introduction

1.1 Batch effects analysis in large-scale data

Recent advances in mass-spectrometry enabled fast and near-exhaustive identification and quantification
of proteins in complex biological samples [1], allowing for the profiling of large-scale datasets. Obtaining a
sufficiently large dataset is, however, associated with considerable logistics efforts. Often multiple handlers
at the sample preparation and data acquisition steps are involved e.g. protein extraction, peptide digestion,
instrument cleaning. This introduces systematic technical variations known as batch effects.

Batch effects can alter or obscure the biological signal in the data [2, 3]. Thus, the presence and severity of
batch effects should be assessed, and, if necessary, corrected.

The fundamental objective of the batch effects adjustment procedure is to make all measurements of samples
comparable for a meaningful biological analysis. Normalization brings the measurements into the same scale.
Bias in the data, however, can persist even after normalization, as batch effects might affect specific features
(peptides, genes) thus requiring additional batch correction procedures. This means, that the correction of
technical bias has often two steps: normalization and batch effects correction.

The improvement of the data is best assessed visually at each step of the correction procedure. The initial
assessment sets the baseline, before any correction is executed. After normalization, batch effects diagnostics
allow to determine the severity of the remaining bias. Finally, the quality control step allows to determine
whether the correction improved the quality of the data.

The pipeline, summarizing this workflow, is shown in Fig.1.

##Analysis of large-scale data: steps before and after batch correction

We recommend users to follow this batch correction workflow to ensure all measurements are comparable for
downstream analysis. We provide step-by-step illustrations to implement this workflow in the next sections.

Before starting the description, we give a few hints about the steps preceding and following batch effects
analysis and correction.

• It is assumed that the initial data processing is completed. In mass spectrometry- based proteomics,
this involves primarily peptide-spectrum matching [4, 5] and FDR control [6].

• Data filtering is commonly the next step of data processing. In the context of batch effects correction,
both peptide and sample filtering need to be approached with caution. First of all, decoy measurements
should be filtered out to ensure correct sample intensity distribution alignment. However, non-proteotypic
peptides should be retained. Filtering out low-quality samples,also substantially alters normalization
and batch effects correction. The ‘bad’ samples, usually identified by the total intensity of identified
peptides or correlation of samples, can be removed either before or after the correction for technical
bias. Which option is best for a given dataset, should be decided in each case individually.

• We strongly advocate not to impute missing values before correction and to exclude ‘requant’ values,
inferred from SWATH data. Two common strategies to impute values use either ‘average’ measurements,
or random noise-level measurements. Both strategies bias the mean/median estimate of the peptide
and are detrimental to both normalization and batch effects correction.
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Figure 1: proBatch in batch correction workflow

• We suggest to perform protein quantification after batch effects correction, as the correction procedure
alters the abundances of peptides and peptide transitions, and these abundances are critical for protein
quantity inference. Instead, we do recommend to correct the technical noise at the level, which is used
to infer the proteins (thus, fragment-level for inference tools such as aLFQ or MSstats).

2 Preparation for the analysis

2.1 Installing dependencies and proBatch

proBatch is primarily a wrapper of functions from other packages, therefore it has numerous dependencies.
If some of these dependencies are not installed, you will need to do that before running proBatch.
bioc_deps <- c("GO.db", "impute", "preprocessCore", "pvca","sva" )
cran_deps <- c("corrplot", "data.table", "ggplot2", "ggfortify","lazyeval",

"lubridate", "pheatmap", "reshape2","readr", "rlang",
"tibble", "dplyr", "tidyr", "wesanderson","WGCNA")

if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")

BiocManager::install(bioc_deps)
install.packages(cran_deps)

3 Installation

To install the latest version of proBatch package, you need devtools:
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#install the development version from GitHub:
install.packages('devtools')
devtools::install_github('symbioticMe/proBatch', build_vignettes = TRUE)
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3.1 Preparing the data for analysis

3.1.1 Loading the libraries

In this vignette, we use functions from dplyr, tibble , ggplot2 and other tidyverse package family to
transform some data frames
require(dplyr)
require(tibble)
require(ggplot2)

3.1.2 Input data formats

To analyze an experiment for batch effects, three tables need to be loaded into environment:

The package typically requires three datasets: 1) measurement (data matrix), 2) sample annotation, and 3)
feature annotation (optional) tables. If you are familiar with the Biobase package, these correspond to 1)
assayData, 2) joined phenoData and protocolData, and 3)featureData.

1) Measurement table

Either a wide data matrix or long format data frame. In the wide (matrix) format, referred in this vignette as
data_matrix, rows represent features (for proteomics, peptides/fragments) and columns represent samples. In
the long format, referred in this vignette as df_long, each row is a measurement of a specific feature (peptide,
fragment) in the specific sample. At least three columns are required: feature ID column, measurement
(intensity) column and sample ID column. For batch correction, we also assume, that the imputed values,
e.g. requant values from OpenSWATH output, are flagged in quality column, such as m_score, so that they
can be filtered out (see below).

In this vignette, the essential columns have the following names:
feature_id_col = 'peptide_group_label'
measure_col = 'Intensity'
sample_id_col = 'FullRunName'
essential_columns = c(feature_id_col, measure_col, sample_id_col)

The names of the columns can be technology-specific. These column names are specific to the OpenSWATH
tsv output format.

In the package, we provide the functionality to convert from long to matrix format (see section 2.2.4.1 ‘Utility
functions’).

Note that the sample IDs (column names in data_matrix) should match the values of the sample ID column
in sample_annotation and the feature ID column values should match the feature annotation table (here -
peptide_annotation). For OpenSWATH tsv file, which is a long format data frame, peptide_annotation
can be generated in the beginning of the analysis.

2) Sample annotation

A data frame, where one row corresponds to one sample (run/file), and the columns contain information
on biological and technical factors. Minimally, sample annotation has to contain a sample ID column, at
least one technical and one biological factor column, and a biological ID column (unique ID for the biological
replicate, which is repeated for each technical replicate).

In our example data, these columns are:

1. sample_id_col = 'FullRunName'
2. technical covariates:

• digestion_batch - date when samples were prepared
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• RunDate (and RunTime, if available) - will be used to determine run order;
• MS_batch - number of MS batches (in this case, sets of runs between machine cleaning)

3. biological covariates:
• Strain
• Diet
• Sex

4. biospecimen_id_col = 'EarTag'

For the analysis, we also need order_col. This column is inferred from RunDate and RunTime, creating a
joined DateTime column. Although both order (the default name of order_col) and DateTime columns
can be created with the package function date_to_sample_order (see Utility functions below), here they
are provided already in the examples to allow user to skip this function, if order is defined already or not
relevant/unknown for the specific dataset.

Thus, technical and biological factors are:
technical_factors = c('MS_batch', 'digestion_batch')
biological_factors = c('Strain', 'Diet', 'Sex')
biospecimen_id_col = 'EarTag'

For illustration purposes, we will focus on one technical factor:
batch_col = 'MS_batch'

3) Feature (peptide) annotation

A dataframe, where one row corresponds to one feature (in MS proteomics - peptide or fragment), and
the columns are names of proteins and corresponding genes. Thus, the minimum columns are feature ID
(peptide_group_id) and name of corresponding protein (in this vignette, we use Gene name).

3.1.3 Example dataset

The proBatch package can be applied to any dataset, for which an intensity matrix and a sample annotation
tables are available. However, the package was primarily designed with proteomic data in mind, and thoroughly
tested on SWATH data. Thus, as and example dataset we include a reduced SWATH-MS measurement file,
generated from a BXD mouse aging study. In this study, the liver proteome of mouse from BXD reference
population have been profiled to identify proteome changes associated with aging. The animals of each strain
were subjected to Chow and High-Fat Diet and sacrificed at different ages (the age factor is excluded from
the example data as age-related differences are the focus of an unpublished manuscript).

This dataset has a few features, that make it a good illustrative example: 1. This is a large dataset of
371 samples, that was affected by multiple technical factors, described above in the sample_annotation
subsection. Specifically, 7 MS batches drive the similarity of the samples. 2. The technical factors bias the
data in at least two ways: discrete shifts (affecting different peptides in a batch-specific way), and continuous
shifts from MS drift associated with sample running order. We will illustrate, how such biases can be corrected.
3. Replicate structure: samples from two animals were injected in the MS instrument every 10-15 samples.
Additionally, several samples were repeated back-to-back in the end and in the beginning of two consecutive
batches. This replication scheme allows to evaluate the coefficient of variation and is highly beneficial for
assessment of sample correlation.

The example SWATH data and annotation files can be loaded from the package with the function data().
library(proBatch)
data('example_proteome', 'example_sample_annotation', 'example_peptide_annotation',

package = 'proBatch')
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3.1.4 Preparing sample and peptide annotations

proBatch provides utility functions to facilitate the preparation of sample and peptide annotation. Feel free
to skip this section if you don’t require them.

3.1.4.1 Defining the order of samples from running date and time

In proteomics, sequential measurement of samples may introduce order-related effects. To facilitate the
examination of such effects, it is necessary to define an order column in the sample annotation. Using the
date_to_sample_order() function one can infer sample order from the date and time of the measurements.

You can specify the columns illustrating date and time with time_column and their formats with the
dateTimeFormat parameters (see POSIX date format for reference).
generated_sample_annotation <- date_to_sample_order(example_sample_annotation,

time_column = c('RunDate','RunTime'),
new_time_column = 'generated_DateTime',
dateTimeFormat = c('%b_%d', '%H:%M:%S'),
new_order_col = 'generated_order',
instrument_col = NULL)

library(knitr)
kable(generated_sample_annotation[1:5,] %>%

select(c('RunDate', 'RunTime', 'order', 'generated_DateTime', 'generated_order')))

RunDate RunTime order generated_DateTime generated_order
Oct_05 18:35:00 1 2019-10-05 18:35:00 1
Oct_05 20:12:00 2 2019-10-05 20:12:00 2
Oct_05 21:50:00 3 2019-10-05 21:50:00 3
Oct_05 23:28:00 4 2019-10-05 23:28:00 4
Oct_06 01:51:00 5 2019-10-06 01:51:00 5

The new time and order columns have been generated. Note that the generated_order has the same order as
the manually annotated order column.

3.1.4.2 Generating peptide annotation from OpenSWATH data

From the OpenSWATH output, you can generate peptide annotation using create_peptide_annotation()
by denoting the peptide ID with the feature_id_col and the annotation columns with the annotation_col
parameters.
generated_peptide_annotation <- create_peptide_annotation(example_proteome,

feature_id_col = 'peptide_group_label',
protein_col = 'Protein')

In practice, the generation of peptide annotation from proteomic data allows one to remove peptide annotation
columns from the intensity dataframe, thereby reducing the memory load, and can be achieved as follows:
example_proteome = example_proteome %>% select(one_of(essential_columns))
gc()
#> used (Mb) gc trigger (Mb) max used (Mb)
#> Ncells 4176974 223.1 7453821 398.1 7120287 380.3
#> Vcells 7155156 54.6 12255594 93.6 10146320 77.5

Additionally, smaller peptide annotation matrices allow for faster mapping of UniProt identifiers to gene
names and other IDs.
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3.1.5 Other utility functions

3.1.5.1 Transforming the data to long or wide format

Plotting functions accept data in either data matrix or long data frame formats. Our package provides the
helper functions long_to_matrix() and matrix_to_long() to conveniently convert datasets back and forth.
example_matrix <- long_to_matrix(example_proteome,

feature_id_col = 'peptide_group_label',
measure_col = 'Intensity',
sample_id_col = 'FullRunName')

3.1.5.2 Transforming the data to log scale

Additionally, if the data are expected to be log-transformed, one can:
log_transformed_matrix <- log_transform_dm(example_matrix,

log_base = 2, offset = 1)

3.1.5.3 Defining the color scheme

To guarantee uniform color annotation, function sample_annotation_to_colors() can be used. Using this
function biological and technical factor columns are mapped to qualitative colors (maximally distinct), while
date and numeric columns are mapped to sequential (gradient) colors.
color_list <- sample_annotation_to_colors(example_sample_annotation,

factor_columns = c('MS_batch', 'digestion_batch',
'EarTag', 'Strain',
'Diet', 'Sex'),

numeric_columns = c('DateTime','order'))
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4 Step-by-step workflow

4.1 Initial assessment of the raw data matrix

Before any correction, it is informative to set the baseline of the data quality by examining global quantitative
patterns in the raw data matrix. Commonly, batch effects manifest as batch-specific intensity distribution
changes.

In proteomics, batch-specific intensity drifts of sample mean can occur. Thus, it is important to carefully
keep track of the order of sample measurement. Order inference can be performed as shown in the previous
section ‘Defining the order of samples from running date and time’. If the order column is not available
(order_col = NULL), the samples order in the sample annotation is used for plotting.

4.1.1 Plotting the sample mean

The plot_sample_mean() function illustrates global average vs. sample running order. This can be helpful
to visualize the global quantitative pattern and to identify discrepancies within or between batches.
plot_sample_mean(log_transformed_matrix, example_sample_annotation, order_col = 'order',

batch_col = batch_col, color_by_batch = TRUE, ylimits = c(12, 16.5),
color_scheme = color_list[[batch_col]])
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We can clearly see down-sloping trends in the BXD aging dataset. In fact, during the data acquisition, the
mass-spectrometer had to be interrupted several times for tuning and/or column exchange as the signal was
decreasing.
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4.1.2 Plotting boxplots

Alternatively, plot_boxplots() captures the global distribution vs. the sample running order.
log_transformed_long <- matrix_to_long(log_transformed_matrix)
batch_col = 'MS_batch'
plot_boxplot(log_transformed_long, example_sample_annotation,

batch_col = batch_col, color_scheme = color_list[[batch_col]])
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In many cases, global quantitative properties such as sample medians or standard deviations won’t match. The
initial assessment via mean plots or boxplots can capture such information and hint at which normalization
method is better suitable. If the distributions are comparable, methods as simple as global median centering
can fix the signal shift, while quantile normalization can help in case of divergent distributions.
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4.2 Normalization

In large-scale experiments, the total intensity of the samples is likely to be different due to a number of
reasons, such as different amount of sample loaded or fluctuations in measurement instrument sensitivity.
To make samples comparable, they need to be scaled. This processed is called normalization. In proBatch,
two normalization approaches are used: median centering and quantile normalization. The normalization
function normalize_data() by default takes log-transformed data, and if needed, log-transformation can be
done on-the-fly by specifying log_base = 2 for log2-transformation.

4.2.1 Median normalization

Median normalization is a conservative approach that shifts the intensity of the sample to the global median
of the experiment. If the distributions of samples are dramatically different and this cannot be explained by
non-technical factors, such as heterogeneity of samples, other approaches, such as quantile normalization
need to be used.
median_normalized_matrix = normalize_data_dm(log_transformed_matrix,

normalize_func = 'medianCentering')

Same result will be achieved with:
median_normalized_matrix = normalize_data_dm(example_matrix,

normalize_func = 'medianCentering',
log_base = 2, offset = 1)

4.2.2 Quantile normalization

Quantile normalization sets different distributions of individual samples to the same quantiles, which forces
the distribution of the raw signal intensities to be the same in all samples. This method is computationally
effective and has simple assumption that the majority of features (genes, proteins) is constant among the
samples, thus also the distribution in principle are identical.
quantile_normalized_matrix = normalize_data_dm(log_transformed_matrix,

normalize_func = 'quantile')

After quantile or median normalization, you can easily check if the global pattern improved by generating
mean or boxplots and comparing them side by side. Here are the mean plots before and after normalization
of the log transformed dataset.
plot_sample_mean(quantile_normalized_matrix, example_sample_annotation,

color_by_batch = TRUE, ylimits = c(12, 16),
color_scheme = color_list[[batch_col]])
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4.3 Diagnostics of batch effects in normalized data

Now is the time to diagnose for batch effects and evaluate to what extent technical variance still exists in
the normalized data matrix. The positive effect of normalization is sometimes not sufficient to control for
peptide and protein-specific biases associated with a certain batch source. These biases can be identified via
diagnostic plots. Here, we describe our essential toolbox of batch effect diagnostic approaches. Note that
sample annotation and/or peptide annotation are necessary for the implementation of these plots.

4.3.1 Hierarchical clustering

Hierarchical clustering is an algorithm that groups similar samples into a tree-like structure called dendrogram.
Similar samples cluster together and the driving force of this similarity can be visualized by coloring the
leaves of the dendrogram by technical and biological variables.

Our package provides plot_sample_clustering() and plot_heatmap() to plot the dendrogram by itself or
with a heatmap. You can easily color annotations on the leaves of the dendrograms or heatmaps to identify
what is the driving force of the clustering.

Once your color annotation is ready, for the specific covariates of interest, you can subset the color dataset
and feed it into the clustering functions.
selected_annotations <- c('MS_batch', 'digestion_batch', 'Diet')

#Plot clustering between samples
plot_hierarchical_clustering(quantile_normalized_matrix,

sample_annotation = example_sample_annotation,
color_list = color_list,
factors_to_plot = selected_annotations,
distance = 'euclidean', agglomeration = 'complete',
label_samples = FALSE)
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Similarly, you can plot a heatmap by supplementing the color list. You decide whether to show anno-
tations in the column, row or both by specifying the required covariates with sample_annotation_col,
sample_annoation_row, or both.
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plot_heatmap_diagnostic(quantile_normalized_matrix, example_sample_annotation,
factors_to_plot = selected_annotations,
cluster_cols = TRUE,
color_list = color_list,
show_rownames = FALSE, show_colnames = FALSE)
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From the clustering analysis, we can clearly see that the driving force behind the sample clustering is the MS
batch.
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4.3.2 Principal component analysis (PCA)

PCA is a technique that identifies the leading directions of variation, known as principal components. The
projection of data on two principal components allows to visualize sample proximity. This technique is
particularly convenient to assess replicate similarity.

You can identify the covariate leading the direction of variations by coloring potential candidates.
pca1 = plot_PCA(quantile_normalized_matrix, example_sample_annotation, color_by = 'MS_batch',

plot_title = 'MS batch', color_scheme = color_list[['MS_batch']])
pca2 = plot_PCA(quantile_normalized_matrix, example_sample_annotation, color_by = 'digestion_batch',

plot_title = 'Digestion batch', color_scheme = color_list[['digestion_batch']])
pca3 = plot_PCA(quantile_normalized_matrix, example_sample_annotation, color_by = 'Diet',

plot_title = 'Diet', color_scheme = color_list[['Diet']])
pca4 = plot_PCA(quantile_normalized_matrix, example_sample_annotation, color_by = 'DateTime',

plot_title = 'DateTime', color_scheme = color_list[['DateTime']])

library(ggpubr)
ggarrange(pca1, pca2, pca3, pca4, ncol = 2, nrow = 2)
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By plotting the first two principal components and applying different color overlaps, we see once again that
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the clusters overlap nicely with the MS batches.

Note that when the color scheme is not provided, digestion_batch is mapped to continuous scale. Which is
why defining color scheme is so important.
pca_spec = plot_PCA(quantile_normalized_matrix, example_sample_annotation,

color_by = 'digestion_batch',
plot_title = 'Digestion batch')
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4.3.3 Principal variance component analysis (PVCA)

The main advantage of this approach is the quantification of the variance, associated with both technical
and biological covariates. Briefly, principal variance component analysis uses a linear model to match each
principal component to the sources of variation and weighs the variance of each covariate by the eigenvalue of
the PC [7]. Thus, the resulting value reflects the variance explained by that covariate.

NB: PVCA calculation is a computationally demanding procedure. For a data matrix of several hundred
samples and several thousands of peptides it can easily take several hours. So it is generally a good idea to
run this analysis as a stand-alone script on a powerful machine.
plot_PVCA(quantile_normalized_matrix, example_sample_annotation,

technical_factors = technical_factors,
biological_factors = biological_factors)
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The biggest proportion of variance in the peptide measurement was derived from mass spectrometry batches.
In a typical experiment, the overall magnitude of variances coming from biological factors should be high
while technical variance should be kept at minimum1.

1Application of hierarchical clustering, PCA and PVCA in their classical implementation is not possible if missing values are
present in the matrix. It has been noticed previously that missing values can be associated with technical bias [8], and most
commonly, it is suggested that missing values need to be imputed [8-9]. However, we would like to suggest to use missing value
imputation with extreme caution. First of all, missing value imputation alters the sample proximity. Additionally, imputed
missing values, which can be obtained for SWATH data, can alter the correction of the batches.
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4.3.4 Peptide-level diagnostics and spike-ins

Feature-level diagnostics are very informative for batch effect correction. To assess the bias in the data, one
can choose a feature (peptide, protein, gene), the quantitative behavior of which is known. In our package,
plot_peptides_of_one_protein() allows plotting peptides of interest e.g. from biologically well understood
protein. If spike-in proteins or peptides have been added to the mixture, one can use the plot_spike_ins()
function instead. In most DIA datasets iRT peptides [10] are added in controlled quantities and can be
visualized with the plot_iRT() function.

In mass-spectrometry, also the trends associated with this order can be assessed for a few representative
peptides, thus the order column is also important for this diagnostics.
quantile_normalized_long <- matrix_to_long(quantile_normalized_matrix)
plot_spike_in(quantile_normalized_long, example_sample_annotation,

peptide_annotation = example_peptide_annotation,
protein_col = 'Gene', spike_ins = 'BOVINE_A1ag',
plot_title = 'Spike-in BOVINE protein peptides',
color_by_batch = TRUE, color_scheme = color_list[[batch_col]])
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It is clear that while the pre-determined quantities of spike-ins or peptides of known biology have their
expected intensities, the trend is dominated by mass spectrometry signal drift. After confirming either
continuous or discrete batch effects exist in a dataset, by one or more of these methods, proceed by selecting
a batch correction method.
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4.4 Correction of batch effects

Depending on the type of batch effects, different batch correction methods should be implemented. In most
cases, batch-specific signal shift needs to be corrected. For this case, feature median-centering can be applied,
or, to use across-feature information in a Bayesian framework, the ComBat approach can be used. If there is
continuous drift in the data, one has to start from continuous drift correction.

4.4.1 Continuous drift correction

Continuous drifts are specific to mass-spectrometry, thus, the user-friendly methods for its correction have
not been implemented before. In this package, we suggest a novel procedure to correct for MS signal drift.
We developed a procedure based on nonlinear LOESS fitting. For each peptide and each batch, a non-linear
trend is fitted to the normalized data and this trend is subtracted to correct for within-batch variation. Note,
that the resulting data are not batch-free as within-batch means and variances are batch-dependent. However,
now the batches are discrete and thus can be corrected using discrete methods such as median-centering or
ComBat.
loess_fit_df <- adjust_batch_trend_df(quantile_normalized_long, example_sample_annotation)

One important parameter in LOESS fitting is span, which determines the degree of smoothing. The LOESS
span ranges from 0 to 1: the greater the value of span, the smoother is the fitted curve. Since we want the
curve to reflect signal drift, we want to avoid overfitting but be sensitive to fit the trend accurately. Currently,
we suggest to evaluate several peptides to determine the best smoothing degree for a given dataset.
loess_fit_30 <- adjust_batch_trend_df(quantile_normalized_long, example_sample_annotation,

span = 0.3)

plot_with_fitting_curve(feature_name = '10231_QDVDVWLWQQEGSSK_2',
fit_df = loess_fit_30, fit_value_col = 'fit',
df_long = quantile_normalized_long,
sample_annotation = example_sample_annotation,
color_by_batch = TRUE, color_scheme = color_list[[batch_col]],
plot_title = 'Span = 30%')
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loess_fit_70 <- adjust_batch_trend_df(quantile_normalized_long, example_sample_annotation,
span = 0.7)

plot_with_fitting_curve(feature_name = '10231_QDVDVWLWQQEGSSK_2',
fit_df = loess_fit_70, fit_value_col = 'fit',
df_long = quantile_normalized_long,
sample_annotation = example_sample_annotation,
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color_by_batch = TRUE, color_scheme = color_list[[batch_col]],
plot_title = 'Span = 70%')
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Curve fitting is largely dependent on the number of consecutive measurements. In proteomics, missing values
are not uncommon. If too many points are missing, a curve cannot be fit accurately. This is especially
common for small batches. In this case, we suggest to not fit the curve to the specific peptide within the
specific batch, and proceed directly to discrete correction methods. To identify such peptides, absolute and
relative thresholds (abs_threshold and pct_threshold) on the number of missing values for each peptide
can be passed as parameters to adjust_batch_trend_df().

4.4.2 Discrete batch correction: combat or peptide-level median centering

Once the data are normalized and corrected for continuous drift, only discrete batch effects is left to be
corrected.

Currently, two methods of batch correction are implemented: * median centering (per feature per batch) *
ComBat

4.4.2.1 Feature-level median centering

Feature-level median centering is the simplest approach for batch effects correction. However, if the variance
is different between batches, other approaches need to be used.
peptide_median_df <- center_feature_batch_medians_df(loess_fit_df, example_sample_annotation)
plot_single_feature(feature_name = '10231_QDVDVWLWQQEGSSK_2', df_long = peptide_median_df,

sample_annotation = example_sample_annotation, measure_col = 'Intensity',
plot_title = 'Feature-level Median Centered')
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4.4.2.2 ComBat

ComBat is well-suited for batches with distinct distributions, but restricted to peptides that don’t have
missing batch measurements. ComBat, uses parametric and non-parametric empirical Bayes framework
for adjusting data for batch effects [11]. The function correct_with_ComBat_df() can incorporate several
covariates and make data comparable across batches.
comBat_df <- correct_with_ComBat_df(loess_fit_df, example_sample_annotation)
#> Standardizing Data across genes

To illustrate the correction we use the ‘10231_QDVDVWLWQQEGSSK_2’ spike-in peptide.
plot_single_feature(feature_name = '10231_QDVDVWLWQQEGSSK_2',

df_long = loess_fit_df,
sample_annotation = example_sample_annotation,
plot_title = 'Loess Fitted')

plot_single_feature(feature_name = '10231_QDVDVWLWQQEGSSK_2',
df_long = comBat_df,
sample_annotation = example_sample_annotation,
plot_title = 'ComBat corrected')
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ComBat fixed the discrete batch effects and also made the distributions between batches similar to one
another.
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4.4.3 Correct batch effects: universal function

We provide a convenient all-in-one function for batch correction. The function correct_batch_effects_df()
corrects MS signal drift and discrete shift in a single function call. Simply specify which discrete correction
method is preferred at discrete_func either “ComBat” or “MedianCentering” and supplement other
arguments such as span, abs_threshold or pct_threshold as in adjust_batch_trend_df().
batch_corrected_df <- correct_batch_effects_df(df_long = quantile_normalized_long,

sample_annotation = example_sample_annotation,
discrete_func = 'ComBat',
continuous_func = 'loess_regression',
abs_threshold = 5, pct_threshold = 0.20)

#> Standardizing Data across genes
batch_corrected_matrix = long_to_matrix(batch_corrected_df)
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4.5 Quality control on batch-corrected data matrix

In most cases, the batch effects correction method is evaluated by its ability to remove technical confounding,
visible on hierarchical clustering or PCA. However, it is rarely shown whether the biological signal is not
destroyed, or, better even, improved. Often, and increase in the number of differentially expressed genes is
presented as an improvement. However, every reasonably designed experiment has replicates that can serve
as an excellent control. In addition, peptides within a given protein should behave similarly and correlation
of these peptides should improve after batch correction.

4.5.1 Heatmap of selected replicate samples

In this study, 10 samples were run in the same order before and after the tuning of the mass-spectrometer,
which marks the boundary between batches 2 and 3. The correlation between these replicates can be
illustrated by correlation plot heatmap.

First, we specify, which samples we want to correlate
earTags <- c('ET1524', 'ET2078', 'ET1322', 'ET1566', 'ET1354', 'ET1420', 'ET2154',

'ET1515', 'ET1506', 'ET2577', 'ET1681', 'ET1585', 'ET1518', 'ET1906')

replicate_filenames = example_sample_annotation %>%
filter(MS_batch %in% c('Batch_2', 'Batch_3')) %>%
filter(EarTag %in% earTags) %>%
pull(!!sym('FullRunName'))

We plot the ‘exploratory’ correlation matrix, which can be further beautified, see the next chunks.
p1_exp = plot_sample_corr_heatmap(log_transformed_matrix,

samples_to_plot = replicate_filenames,
plot_title = 'Correlation of selected samples')
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Correlation of selected samples
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To ensure the color scale for correlation is consistent between two plots, we create a color vector and breaks
breaksList <- seq(0.7, 1, by = 0.01) # color scale of pheatmap
heatmap_colors = colorRampPalette(

rev(RColorBrewer::brewer.pal(n = 7, name = 'RdYlBu')))(length(breaksList) + 1)

# Plot the heatmap with annotations for the chosen samples
factors_to_show = c(batch_col, biospecimen_id_col)

p1 = plot_sample_corr_heatmap(log_transformed_matrix,
samples_to_plot = replicate_filenames,
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sample_annotation = example_sample_annotation,
factors_to_plot = factors_to_show,
plot_title = 'Log transformed correlation matrix of
\nselected replicated samples',
color_list = color_list,
heatmap_color = heatmap_colors, breaks = breaksList,
cluster_rows= FALSE, cluster_cols=FALSE,fontsize = 4,
annotation_names_col = TRUE, annotation_legend = FALSE,
show_colnames = FALSE)

p2 = plot_sample_corr_heatmap(batch_corrected_matrix,
samples_to_plot = replicate_filenames,
sample_annotation = example_sample_annotation,
factors_to_plot = factors_to_show,
plot_title = 'Batch Corrected

\nselected replicated samples',
color_list = color_list,
heatmap_color = heatmap_colors, breaks = breaksList,
cluster_rows= FALSE, cluster_cols=FALSE,fontsize = 4,
annotation_names_col = TRUE, annotation_legend = FALSE,
show_colnames = FALSE)

library(gridExtra)
grid.arrange(grobs = list(p1$gtable, p2$gtable), ncol=2)
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I171022_Run143_C57BL6J_CD_ET1585
I171022_Run144_BXD51_CD_ET1518
I171022_Run146_BXD73_CD_ET1906
I171022_Run166_BXD98_CD_ET1524_CTRL
I171025_Run200_BXD98_CD_ET1524
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Before the correction, samples from one batch correlate better and of ten higher than the replicates. However,
after the correction, the correlation between replicates becomes higher than the correlation between non-related
samples regardless of the batch.
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4.5.2 Correlation distribution of samples

For example, in the mice aging experiment, biological replicates, ET1506 and ET1524, were injected every
30-40 MS runs. The correlation between these biological replicates should improve after normalization and
batch correction.

The plot_sample_corr_distribution() function plots correlation distribution between biological replicates
and non-replicates in the same or different batches by plot_param = 'batch_replicate'. Alternatively,
you can compute the correlation between different batches by plot_param = 'batches'.

It should be noted, however, that the comparison of sample correlation should not be approached by
evaluating the individual examples of within-replicate vs within-batch corrections, but rather by comparing
the distribution. Unless these examples are shown in the context of the whole distribution structure, they can
lead to erroneous conclusion. The sample correlation is often used to prove the quality of the measurement, as
it is typically very high (examples of the replicate correlation above .95 are common for mass spectrometry).
sample_cor_raw <- plot_sample_corr_distribution(log_transformed_matrix,

example_sample_annotation,
#repeated_samples = replicate_filenames,
batch_col = 'MS_batch',
biospecimen_id_col = 'EarTag',
plot_title = 'Correlation of samples (raw)',
plot_param = 'batch_replicate')

raw_corr = sample_cor_raw +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
ylim(0.7,1) + xlab(NULL)

sample_cor_batchCor <- plot_sample_corr_distribution(batch_corrected_matrix,
example_sample_annotation,
batch_col = 'MS_batch',
plot_title = 'Batch corrected',
plot_param = 'batch_replicate')

corr_corr = sample_cor_batchCor +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
ylim(0.7, 1) + xlab(NULL)

library(gtable)
library(grid)
g2 <- ggplotGrob(raw_corr)
g3 <- ggplotGrob(corr_corr)
g <- cbind(g2, g3, size = 'first')
grid.draw(g)
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4.5.3 Correlation of peptide distributions within and between proteins

Peptides of the same protein are likely to correlate. Therefore, we can compare within- vs between-protein
peptide correlation before and after batch correction to check if the correlation of peptides between the same
proteins increases while that of different proteins stays the same.

NB: For a data matrix containing several thousands of peptides, calculation of peptide correlation is a
computationally demanding procedure. It can easily take several hours. Therefore, it is generally recommended
to run this analysis as a stand-alone script on a powerful machine.

The plot_peptide_corr_distribution() function plots correlation distribution between peptides of the
same protein. However, an improvement of peptide correlation may not be clearly exhibited for a reduced
dataset.
peptide_cor_raw <- plot_peptide_corr_distribution(log_transformed_matrix,

example_peptide_annotation,
protein_col = 'Gene',
plot_title = 'Peptide correlation (raw)')

peptide_cor_batchCor <- plot_peptide_corr_distribution(batch_corrected_matrix,
example_peptide_annotation,
protein_col = 'Gene',
plot_title = 'Peptide correlation (batch corrected)')

g2 <- ggplotGrob(peptide_cor_raw+
ylim(c(-1, 1)))

g3 <- ggplotGrob(peptide_cor_batchCor+
ylim(c(-1, 1)))

g <- cbind(g2, g3, size = 'first')
grid.draw(g)
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5 SessionInfo

sessionInfo()
#> R version 3.6.1 (2019-07-05)
#> Platform: x86_64-w64-mingw32/x64 (64-bit)
#> Running under: Windows Server 2012 R2 x64 (build 9600)
#>
#> Matrix products: default
#>
#> locale:
#> [1] LC_COLLATE=C
#> [2] LC_CTYPE=English_United States.1252
#> [3] LC_MONETARY=English_United States.1252
#> [4] LC_NUMERIC=C
#> [5] LC_TIME=English_United States.1252
#>
#> attached base packages:
#> [1] grid stats graphics grDevices utils datasets methods
#> [8] base
#>
#> other attached packages:
#> [1] gtable_0.3.0 gridExtra_2.3 ggpubr_0.2.3 magrittr_1.5
#> [5] knitr_1.25 proBatch_1.2.0 ggplot2_3.2.1 tibble_2.1.3
#> [9] dplyr_0.8.3
#>
#> loaded via a namespace (and not attached):
#> [1] minqa_1.2.4 colorspace_1.4-1 ggsignif_0.6.0
#> [4] dynamicTreeCut_1.63-1 htmlTable_1.13.2 base64enc_0.1-3
#> [7] rstudioapi_0.10 affyio_1.56.0 bit64_0.9-7
#> [10] AnnotationDbi_1.48.0 mvtnorm_1.0-11 lubridate_1.7.4
#> [13] codetools_0.2-16 splines_3.6.1 doParallel_1.0.15
#> [16] impute_1.60.0 robustbase_0.93-5 wesanderson_0.3.6
#> [19] zeallot_0.1.0 Formula_1.2-3 nloptr_1.2.1
#> [22] annotate_1.64.0 WGCNA_1.68 cluster_2.1.0
#> [25] vsn_3.54.0 GO.db_3.10.0 pheatmap_1.0.12
#> [28] BiocManager_1.30.9 rrcov_1.4-7 compiler_3.6.1
#> [31] backports_1.1.5 assertthat_0.2.1 Matrix_1.2-17
#> [34] lazyeval_0.2.2 limma_3.42.0 acepack_1.4.1
#> [37] htmltools_0.4.0 tools_3.6.1 glue_1.3.1
#> [40] affy_1.64.0 reshape2_1.4.3 Rcpp_1.0.2
#> [43] Biobase_2.46.0 vctrs_0.2.0 preprocessCore_1.48.0
#> [46] nlme_3.1-141 iterators_1.0.12 xfun_0.10
#> [49] fastcluster_1.1.25 stringr_1.4.0 lme4_1.1-21
#> [52] lifecycle_0.1.0 XML_3.98-1.20 DEoptimR_1.0-8
#> [55] MASS_7.3-51.4 zlibbioc_1.32.0 scales_1.0.0
#> [58] parallel_3.6.1 RColorBrewer_1.1-2 yaml_2.2.0
#> [61] memoise_1.1.0 rpart_4.1-15 latticeExtra_0.6-28
#> [64] stringi_1.4.3 RSQLite_2.1.2 highr_0.8
#> [67] genefilter_1.68.0 S4Vectors_0.24.0 corrplot_0.84
#> [70] pcaPP_1.9-73 foreach_1.4.7 checkmate_1.9.4
#> [73] pvca_1.26.0 BiocGenerics_0.32.0 boot_1.3-23
#> [76] BiocParallel_1.20.0 rlang_0.4.1 pkgconfig_2.0.3
#> [79] matrixStats_0.55.0 bitops_1.0-6 evaluate_0.14
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#> [82] lattice_0.20-38 purrr_0.3.3 labeling_0.3
#> [85] htmlwidgets_1.5.1 cowplot_1.0.0 bit_1.1-14
#> [88] tidyselect_0.2.5 robust_0.4-18.1 plyr_1.8.4
#> [91] R6_2.4.0 IRanges_2.20.0 Hmisc_4.2-0
#> [94] fit.models_0.5-14 DBI_1.0.0 pillar_1.4.2
#> [97] foreign_0.8-72 withr_2.1.2 mgcv_1.8-30
#> [100] survival_2.44-1.1 RCurl_1.95-4.12 nnet_7.3-12
#> [103] ggfortify_0.4.7 crayon_1.3.4 rmarkdown_1.16
#> [106] viridis_0.5.1 sva_3.34.0 data.table_1.12.6
#> [109] blob_1.2.0 digest_0.6.22 xtable_1.8-4
#> [112] tidyr_1.0.0 stats4_3.6.1 munsell_0.5.0
#> [115] viridisLite_0.3.0

6 Citation

To cite this package, please use:
citation('proBatch')
#>
#> To cite proBatch in publications use:
#>
#> Cuklina J., Lee C.H., Williams E.G., Collins B., Sajic T.,
#> Pedrioli P., Rodriguez-Martinez M., Aebersold R. Chapter 3:
#> Systematic overview of batch effects in proteomics Doctoral
#> thesis, ETH Zurich, 2018
#> https://doi.org/10.3929/ethz-b-000307772
#>
#> A BibTeX entry for LaTeX users is
#>
#> @PhdThesis{,
#> title = {Computational challenges in biomarker discovery from high-throughput proteomic data},
#> author = {Jelena Cuklina and Chloe H. Lee and Evan G. Willams and Ben Collins and Tatjana Sajic and Patrick Pedrioli and Maria Rodriguez-Martinez and Ruedi Aebersold},
#> url = {https://doi.org/10.3929/ethz-b-000307772},
#> school = {ETH Zurich},
#> year = {2018},
#> }

28



7 References

[1] O. T. Schubert, H. L. Röst, B. C. Collins, G.Rosenberger, and R. Aebersold. «Quantitative proteomics:
challenges and opportunities in basic and applied research». Nature Protocols 12:7 (2017), pp. 1289–1294.

[2] E. G. Williams, Y. Wu, P. Jha et al. «Systems proteomics of liver mitochondria function». Science
352:6291 (2016), aad0189.

[3] Y. Liu, A. Buil, B. C. Collins et al. «Quantitative variability of 342 plasma proteins in a human twin
population». Molecular Systems Biology 11:2 (2015), pp. 786–786.

[4] H. L. Röst, G. Rosenberger, P. Navarro et al. «OpenSWATH enables automated, targeted analysis of
data-independent acquisition MS data.» Nature biotechnology 32:3 (2014), pp. 219–23.

[5] P. G. Pedrioli, «Trans-Proteomic Pipeline: A Pipeline for Proteomic Analysis.» Methods in Molecular
Biology Proteome Bioinformatics, May 2009, pp. 213–238.

[6] G. Rosenberger et al. «Statistical control of peptide and protein error rates in large-scale targeted
data-independent acquisition analysis.» Nature Methods 14:9 (2017), pp. 921–927.

[7] P. R. Bushel. pvca: Principal Variance Component Analysis (PVCA). Package version 1.18.0. 2013.

[8] Y. V. Karpievitch, A. R. Dabney, and R. D. Smith. «Normalization and missing value imputation for
label-free LC-MS analysis». BMC Bioinformatics 13:Suppl 16 (2012), S5.

[9] S. Tyanova, T. Temu, P. Sinitcyn et al. «The Perseus computational platform for comprehensive analysis
of (prote)omics data». Nat Methods 13:9 (2016), pp. 731–740.

[10] C. Escher, L. Reiter, B. Maclean et al. «Using iRT, a normalized retention time for more targeted
measurement of peptides». Proteomics 12:8 (2012), pp. 1111–1121.

[11] A. W. B. Johnston, Y. Li, and L. Ogilvie. «Metagenomic marine nitrogen fixation–feast or famine?»
Trends in microbiology 13:9 (2005), pp. 416–20.

29


	Introduction
	Batch effects analysis in large-scale data

	Preparation for the analysis
	Installing dependencies and proBatch

	Installation
	Preparing the data for analysis
	Loading the libraries
	Input data formats
	Example dataset
	Preparing sample and peptide annotations
	Other utility functions


	Step-by-step workflow
	Initial assessment of the raw data matrix
	Plotting the sample mean
	Plotting boxplots

	Normalization
	Median normalization
	Quantile normalization

	Diagnostics of batch effects in normalized data
	Hierarchical clustering
	Principal component analysis (PCA)
	Principal variance component analysis (PVCA)
	Peptide-level diagnostics and spike-ins

	Correction of batch effects
	Continuous drift correction
	Discrete batch correction: combat or peptide-level median centering
	Correct batch effects: universal function

	Quality control on batch-corrected data matrix
	Heatmap of selected replicate samples
	Correlation distribution of samples
	Correlation of peptide distributions within and between proteins


	SessionInfo
	Citation
	References

