
RIPSeeker: a statistical package for identifying
protein-associated transcripts from RIP-seq

experiments

Yue Li
yueli@cs.toronto.edu

October 29, 2019

1 Introduction
Ribonucleoprotein (RNP) immunoprecipitation (IP) followed by high-throughput sequencing
(RIP-seq) has recently been developed to discover genome-wide RNA transcripts that
interact with a protein or protein complex. RIP-seq is similar to both RNA-seq and
ChIP-seq, but presents unique properties and challenges. Currently, no statistical tool
is dedicated to RIP-seq analysis. We developed RIPSeeker, an HMM-based R pack-
age for de novo RIP peak predictions. RIPSeeker infers and discriminate RIP peaks
from background or control (if available) using two-state HMM with negative binomial
emission probability followed by statistical tests for model confidence. To evaluate the
performance of RIPSeeker, we used the published RIP-seq data for PRC2 and also gen-
erated in-house data for CCNT1. Under an equal footing, RIPSeeker compares com-
petitively with ChIP-seq and transcript-based methods in predicting canonical protein-
associated transcripts with high statistical confidence. Importantly, RIPSeeker has the
ability to model reads on plus and minus strand separately, which allows identification
of strand-specific noncoding RNA (e.g., antisense transcripts). Comparing to the pub-
lished methods, RIPSeeker is adaptive to a larger dynamical range of peaks suitable for
detecting the entire transcripts with various lengths rather than the punctuated binding
sites.

While RIPSeeker is specifically tailored for RIP-seq data analysis, it also provides
a suite of bioinformatics tools integrated within this self-contained software package
comprehensively addressing issues ranging from post-alignments processing to visu-
alization and annotation. In addition, a rule-based approach is provided as an addi-
tional function named rulebaseRIPSeek for user to obtain RPKM/FPKM (and
fold-change) for the gene/transcripts expressions in RIP (and control) based on auto-
matically retrieved online Ensembl/UCSC annotation given single or paired-end align-
ments. This vignette provides a guide to the most common application of RIPSeeker
package.

2 RIPSeeker overview
Figure ?? in the manuscript (in press) for peer-review presents the workflow of RIPSeeker.
The input for RIPSeeker is a list of read alignments in BAM/BED/SAM format. Map-

1

ping reads to the reference genome can be performed by any RNA-seq aligner such as
TopHat Trapnell et al. [2009]. After post-processing the alignment input by combineAlignGals,
RIPSeeker first stratifies the genome into bins of automatically selected (selectBinSize)
or a fixed user-defined size. Each bin may contain more than one aligned read. Mul-
tiple bins may together correspond to a single RNA transcript that binds to the protein
of interest. Thus, these bins when treated as individual observations are not indepen-
dent identically distributed (i.i.d.) and need to be treated as dependent events. Hidden
Markov model (HMM) provides a sensible and efficient way to probabilistically model
the dependence between sequential events through hidden variables [Rabiner, 1989,
Bishop, 2006]. The adaptation of HMM is inspired by HPeak, which was specifically
designed for ChIP-seq [Qin et al., 2010].

As an overview, RIPSeeker consists of two major steps: probabilistic inference of
RIP regions (mainSeek) and significance test for the inferred RIP regions from HMM
(seekRIP). In the first step, we apply a two-state HMM to model the background and
RIP distributions (or emission probabilities) of RIP-seq read counts as negative bino-
mial distributions, which has been shown by Anders and Huber [2010] to be a more
realistic parametric model than Gaussian and Poisson models. The parameters of HMM
are learned from the data by expectation-maximization (EM). The intermediate quan-
tities required in the EM iterations are efficiently computed using forward-backward
algorithm. After the optimization, Viterbi algorithm is applied to derive the most prob-
able sequence of hidden states, which encodes whether each region is background (1)
or RIP (2) across the genome. The consecutive RIP bins are merged into a single RIP
region. In the second step, we compute the statistical significance of each RIP region
with or without a control library based on the posterior probabilities derived directly
from the HMM.

RIPSeeker is able to detect strand-specific RIP regions by running the same work-
flow on either plus and minus strand separately, making use of the strand-specific in-
formation retained in the original RIP-seq protocol [Cloonan et al., 2008, Zhao et al.,
2010]. In addition, RIPSeeker takes advantage of modern computational architecture
equipped with multiple processors by treating each chromosome as an independent
thread and computing multiple threads in parallel using mclapply from multicore
R package. Thus, the most time consuming step such as HMM inference operates
on per-chromosome basis each running on a separate CPU core. The parallel com-
puting is much more computationally and memory efficient than computing the entire
genome all at once by treating it as a single concatenated sequence. RIPSeeker has nu-
merous other features including disambiguating multihits (i.e., reads mapped to mul-
tiple loci with disambiguateMultihits), automatic annotation of RIP regions
(annotateRIP), GO enrichment analysis (annotateRIP), and UCSC visualiza-
tion (viewRIP).

Although the ultimate goal is to predict RIP regions, each step or component in the
workflow has been implemented as a stand-alone function. Please referred to ?? in the
manuscript (may not be available during peer-review) for the underlying algorithms
and the help manual for their usage:

> library(RIPSeeker)

> ?RIPSeeker

2

3 RIP-seq data

3.1 PRC2 in mouse embrynoic stem cell
Only a few RIP-seq datasets are available. In this tutorial, we will make use of part of
the dataset from Zhao et al. [2010] (GEO accession: GSE17064). The data was gen-
erated to identify transcripts phycially associated with Ezh2 (a PRC2 unique subunit)
in mouse embryonic stem cell (mESC). A negative control was also generated from
mutant mESC depleted of Ezh2 (Ezh2 -/-) (MT). Here we will use the RIP data con-
sisting of two techincal replicates (code ID: SRR039210-1, SRR039212) and the MT
control (code ID: SRR039214). Notably, the library construction and strand-specific
sequencing generated sequences from the opposite strand of the PRC2-bound RNA
[Zhao et al., 2010], consequently, each read will be treated as if it were reverse com-
plemented. After the quality control (QC) and alignments (?? and ?? in Supplementary
Datafor the manuscript), the technical replicates were merged, resulting in 1,022,474
and 208,445 reads mapped to unique loci of the mouse reference genome (mm9 build)
for RIP and control, respectively. To make the demonstration and the package size
more managable, only the alignments to chromosome X (chrX) were extracted to gen-
erate the test data stored in the package. The full data (containing all of the processed
alignments for the test data and another biological replicate SRR039213) are avail-
able as a Bioconductor data package RIPSeekerData. User can try the same command
below on the full dataset.

> BiocManager::install("RIPSeekerData")
> library(RIPSeekerData)
> extdata.dir <- system.file("extdata", package="RIPSeekerData")
> bamFiles <- list.files(extdata.dir, "\\.bam$",
+ recursive=TRUE, full.names=TRUE)
> bamFiles <- grep("PRC2/", bamFiles, value=TRUE)

3.2 CCNT1 in HEK293
The data for CCNT1 and GFP control were generated in-house in two experiments.
The pilot experimental data contain 5,853 and 4,556 uniquely mapped read after the
stringent QC for the CCNT1 and GFP control, respectively. Same as in the PRC2
data, the reads came from the second strand of the cDNA synthesis opposite to the
original RNA strand. The non-strand-specific library from the second screen has deeper
coverage with 26,859 and 45,024 uniquely aligned reads under QC for CCNT1 and
GFP, respectively. CCNT1 is known to only associate with RN7SK, which can be used
as an empirical measurement of senstivitiy and specificity of RIPSeeker. The data are
in RIPSeekerData package.

3.3 User-supplied data
For the following example, user may replace the extdata.dir with the directory
containing their own alignment data and change the cNAME to point to the specific
control (if applicable).

> # Retrieve system files
> # OR change it to the extdata.dir from the code chunk above
> # to get RIP predictions on the full alignment data

3

> extdata.dir <- system.file("extdata", package="RIPSeeker")
> bamFiles <- list.files(extdata.dir, "\\.bam$",
+ recursive=TRUE, full.names=TRUE)
> bamFiles <- grep("PRC2", bamFiles, value=TRUE)
> # RIP alignment for Ezh2 in mESC
> ripGal <- combineAlignGals(grep(pattern="SRR039214", bamFiles, value=TRUE, invert=TRUE),
+ reverseComplement=TRUE, genomeBuild="mm9")
> # Control RIP alignments for mutant Ezh2 -/- mESC
> ctlGal <- combineAlignGals(grep(pattern="SRR039214", bamFiles, value=TRUE, invert=FALSE),
+ reverseComplement=TRUE, genomeBuild="mm9")
> ripGal

GAlignments object with 31054 alignments and 1 metadata column:
seqnames strand cigar qwidth start end

<Rle> <Rle> <character> <integer> <integer> <integer>
SRR039210.4322179 chrX + 36M 36 3000326 3000361
SRR039210.5524106 chrX - 36M 36 3001293 3001328
SRR039210.5069294 chrX - 36M 36 3002790 3002825
SRR039210.1476279 chrX - 36M 36 3016328 3016363
SRR039210.711491 chrX + 36M 36 3021161 3021196

...
SRR039211.1427139 chrX - 36M 36 166443604 166443639
SRR039211.447965 chrX - 36M 36 166445241 166445276

SRR039211.1352670 chrX - 36M 36 166446255 166446290
SRR039211.918096 chrX - 36M 36 166446315 166446350
SRR039211.67451 chrX - 36M 36 166446621 166446656

width njunc | uniqueHit
<integer> <integer> | <logical>

SRR039210.4322179 36 0 | FALSE
SRR039210.5524106 36 0 | FALSE
SRR039210.5069294 36 0 | FALSE
SRR039210.1476279 36 0 | TRUE
SRR039210.711491 36 0 | FALSE

...
SRR039211.1427139 36 0 | FALSE
SRR039211.447965 36 0 | FALSE

SRR039211.1352670 36 0 | FALSE
SRR039211.918096 36 0 | FALSE
SRR039211.67451 36 0 | TRUE

seqinfo: 22 sequences from mm9 genome

> ctlGal

GAlignments object with 8276 alignments and 1 metadata column:
seqnames strand cigar qwidth start end

<Rle> <Rle> <character> <integer> <integer> <integer>
SRR039214.4949641 chrX + 36M 36 3028539 3028574
SRR039214.5310910 chrX - 35M 35 3039791 3039825
SRR039214.4625677 chrX - 36M 36 3084567 3084602
SRR039214.1854227 chrX + 36M 36 3139109 3139144

4

SRR039214.5753635 chrX + 36M 36 3139131 3139166
...

SRR039214.904524 chrX - 32M 32 166445788 166445819
SRR039214.2473565 chrX - 21M 21 166445960 166445980
SRR039214.576581 chrX - 36M 36 166446074 166446109

SRR039214.3756853 chrX - 36M 36 166446781 166446816
SRR039214.2347055 chrX + 36M 36 166650104 166650139

width njunc | uniqueHit
<integer> <integer> | <logical>

SRR039214.4949641 36 0 | FALSE
SRR039214.5310910 35 0 | FALSE
SRR039214.4625677 36 0 | FALSE
SRR039214.1854227 36 0 | FALSE
SRR039214.5753635 36 0 | FALSE

...
SRR039214.904524 32 0 | FALSE

SRR039214.2473565 21 0 | FALSE
SRR039214.576581 36 0 | FALSE

SRR039214.3756853 36 0 | FALSE
SRR039214.2347055 36 0 | TRUE

seqinfo: 22 sequences from mm9 genome

Note from the commands above that the RIP alignment files corresponding to the
techinical replicates are combined into a single GAlignments object[Aboyoun et al.].
The uniqueHit column from the output above indicate whether the read mapped to
a single locus or multiple loci. The latter is commonly referred as the “multihits". The
ambiguous alignments arise from the repetitive elements or gene duplication events in
the mammalian genomes. By default, the unique and multihits are flagged with binary
TRUE and FALSE value in column uniqueHit, respectively. In the later step, each
multihit will be assigned by the function disambiguateMultihits to a unique
locus based on the posterior probabilities of the loci of being at the background or read
enriched states of the two-state HMM (?? in the manuscript).

4 RIP-seq analysis

4.1 High-level visuzliation of alignments at chromosomal level
After processing the alignment files, we could first visualize the alignments by call-
ing plotStrandedCoverage to get a rough idea about the alignment quality and
where the reads aggregate within each chromosome. plotStrandedCoverage
first bins each chromosome by nonoverlapping windows of fixed size (1 kb in the exam-
ple below) and plots the number of alignments fall within these bins across the whole
chromosome. The function is implemented based on the vignette GenomicRanges Use
Cases from the GenomicRanges package [Aboyoun et al.].

> ripGR <- as(ripGal, "GRanges")
> ripGRList <- split(ripGR, seqnames(ripGR))
> # get only the nonempty chromosome
> ripGRList <- ripGRList[elementNROWS(ripGRList) != 0]

5

> ctlGR <- as(ctlGal, "GRanges")
> ctlGRList <- GRangesList(as.list(split(ctlGR, seqnames(ctlGR))))
> ctlGRList <- ctlGRList[lapply(ctlGRList, length) != 0]
> binSize <- 1000
> #c(bottom, left, top, right)
> par(mfrow=c(1, 2), mar=c(2, 2, 2, 0) + 0.1)
> tmp <- lapply(ripGRList, plotStrandedCoverage, binSize=binSize,
+ xlab="", ylab="", plotLegend=TRUE,
+ legend.cex=1.5, main="RIP", cex.main=1.5)
> tmp <- lapply(ctlGRList, plotStrandedCoverage, binSize=binSize,
+ xlab="", ylab="", plotLegend=TRUE,
+ legend.cex=1.5, main="CTL", cex.main=1.5)

Here we first converted the GAlignments object ripGal and ctlGal to Genomi-
cRangesList to have each list item represented by a chromosome. We then lapply the
function to all nonempty chromosomes, which in our case is chrX for both RIP (left)
and control (right). RIP represents the pooled alignments of the two technical repli-
cates. Read count on + and - strand are displayed as blue and red bars on the positive
and negative y-axis, respectively. Read counts are drawn to scale within a chromosome.
Unlike ChIP-seq on double-stranded DNA, no symmetry is observed for the peak for
the strand-specific sequencing data. However, considerable noise is observed within
the Ezh2 -/- mutant library (right panel), which ideally should not have any aligned
reads. This may also imply considerable noise within the wild type library and thus
a high false discovery rate if the RIP regions were simply determined based on read
counts. Please refer to Figure ?? and ?? in Supplementary Datafor similar RIP-seq
results on all chromosomes, which motivated the development of RIPSeeker.

6

4.2 ripSeek: the all-in-one function
The front-end main function ripSeek is in many cases the only function that users
need to run to get the RIP predictions and most of the relevant information out of the
alignment data. It requires a few important parameter settings:

> # specify control name
> cNAME <- "SRR039214"
> # output file directory
> outDir <- file.path(getwd(), "RIPSeeker_vigenette_example_PRC2")
> # Parameters setting
> binSize <- NULL # set to NULL to automatically determine bin size
> minBinSize <- 10000 # min bin size in automatic bin size selection
> maxBinSize <- 10100 # max bin size in automatic bin size selection
> multicore <- TRUE # use multicore
> strandType <- "-" # set strand type to minus strand
> biomart <- "ENSEMBL_MART_ENSEMBL" # use archive to get ensembl 65
> biomaRt_dataset <- "mmusculus_gene_ensembl" # mouse dataset id name
> host <- "dec2011.archive.ensembl.org" # use ensembl 65 for annotation for mm9
> goAnno <- "org.Mm.eg.db" # GO annotation database
> ################ run main function ripSeek to predict RIP ################
> seekOut.PRC2 <- ripSeek(bamPath = bamFiles, cNAME = cNAME,
+ reverseComplement = TRUE, genomeBuild = "mm9",
+ strandType = strandType,
+ uniqueHit = TRUE, assignMultihits = TRUE,
+ rerunWithDisambiguatedMultihits = TRUE,
+ binSize=binSize, minBinSize = minBinSize,
+ maxBinSize = maxBinSize,
+ biomart=biomart, host=host,
+ biomaRt_dataset = biomaRt_dataset, goAnno = goAnno,
+ multicore=multicore, outDir=outDir)

• bamPath saves the paths to the bam files;

• cNAME is a character string that distinguishes the control from the RIP among
the bamFiles;

• reverseComplement=TRUE indicates that the reads were sequenced from
the opposite strand of the original RNA molecule such that the original strand
signs of the alignments are switched (i.e. + to -, - to +);

• genomeBuild="mm9" specifiies the fact that the previous mouse genome
(mm9/NCBIM37) build was used as reference for the alignments;

• strandType is set to “-" to search for transcripts only on the minus strand
of chromosomes such as Xist, which is known to physically interact with PRC2
Zhao et al. [2010].

• uniqueHit = TRUE requires training HMM with only the unique hits.

• assignMultihits = TRUE enables disambiguateMultihits to as-
sign each multihit to a unique locus based on the posterior probabilitites derived
from HMM.

7

• rerunWithDisambiguatedMultihits = TRUE tells RIPSeeker to re-
train the HMM using the dataset with disambiguated multihits.

• binSize = NULL enables automatic bin size selection by the routine selectBinSize.

• minBinSize=10000, maxBinSize=12000 For demonstration puprose,
we set the lower and upper bounds of the search space for the optimal bin size
to 10 kb and 12 kb, respectively. Such choice may suffice if one just wants
to quickly look for some known long noncoding RNA (lncRNA) such as Xist
(22,843 nt) or Tsix (53,441 nt).

• biomart, host, biomaRt_dataset, goAnno are set to enable auto-
matic online annotation of RIP predictions via annotateRIP, which makes
use of the functions from ChIPpeakAnno [Zhu et al., 2010] and biomaRt [Dur-
inck et al., 2005, 2009]. Since the genome we used for the alignments is mm9
not the most recent build mm10, we need to retreive the archive annotation from
Ensembl by setting the host and biomart. If the user uses the most recent
assembly as reference genome for the alignments, then biomart should be set
to "ensembl" and host may be omitted.

• multicore = TRUE enables parallel computing on each chromosome sepa-
rately. It will greatly improve the computation time when used on a cluster.

• outDir the output directory to save the results (See Value section in ?ripSeek)

4.3 ripSeek outputs
The main function ripSeek returns a list which comprises four items outlined below.
The user may find annotatedRIPGR the most useful. In most cases, the other three
items can be considered as intermediate results.

> names(seekOut.PRC2)
> df <- elementMetadata(seekOut.PRC2$annotatedRIPGR$sigGRangesAnnotated)
> # order by eFDR
> df <- df[order(df$eFDR),]
> # get top 100 predictions
> df.top100 <- head(df, 100)
> head(df.top100)
> # examine known PRC2-associated lncRNA transcripts
> df.top100[grep("Xist", df$external_gene_id),]

• mainSeekOutputRIPA (inner) list containing three items:

– nbhGRList A GRangesList object of the HMM trained parameters for
each chromosome on RIP;

– alignGal, alignGalFilteredGAlignments objects of the RIP align-
ment outputs from combineAlignGals and disambiguateMultihits,
respectively. The former may contain multiple alignments due the same
reads whereas the latter contains a one-to-one mapping from read to align-
ment after disambiguating the multihits;

• mainSeekOutputCTL Same as mainSeekOutputRIP but for the control
library;

8

• RIPGRList The peaks in GRangesList. Each list item represents the RIP peaks
on a chromosome accompanied with statistical scores including (read) count,
logOddScore, pval, pvalAdj, eFDR for the RIP and control (if available).

• annotatedRIPGR A list containing two items:

– sigGRangesAnnotatedGRanges containing peaks and their scores (same
as in RIPGRList) accompanied with genomic information retrieved from
Ensembl database;

– enrichedGOA data.frame containing enriched GO terms associated with
the RIP peaks.

In addition, the (annotated) peaks and enriched GO annotations are saved in outDir
as text files in tab-delimted (viewable with Excel) or GFF3 (General Feature Format 3)
formats (?rtracklayer:io for details for the formats.).

> list.files(outDir)

File (1) and (4) can be imported to a dedicated genome browser such as Integrative
Genomic Viewer (IGV) Robinson et al. [2011] to visualize and interact with the puta-
tive RIP regions accompanied with all of the scores. Files (2) and (3) provide the most
detailed information directly viewable in Excel. File (5) stores all of the intermediate
results as RData for future reference or retrieval (with load command).

4.4 Visualization with UCSC browser
In addition, we could visualize the results using viewRIP, which launches online
UCSC genome browser with uploaded custom track corresponding to the loci of RIP
regions and scores (RIPScore, -log10(p-value), -log10(q-value), or -log10(eFDR)) gen-
erated from ripSeek. This task is accomplished seamlessly within the R console by
making use of the available functions from rtracklayer Lawrence et al.

> viewRIP(seekOut.PRC2$RIPGRList$chrX,
+ seekOut.PRC2$mainSeekOutputRIP$alignGalFiltered,
+ seekOut.PRC2$mainSeekOutputCTL$alignGalFiltered, scoreType="eFDR")

4.5 Compute RPKM and fold-change of RIP over control for known
genes or transcripts

User may want to know the abundance of all of the known coding or noncoding genes
or transcripts in their RIP libraries and how their expressions compare with the con-
trol. Given a list of single-end or paired-end read alignment files in BAM/SAM/BED
format, the function computeRPKM computes the read counts and normalized read
counts as expression of annotated transcripts in the unit of "reads per kilobase of exon
per million mapped reads" (RPKM) or "fragments per kilobase of exon per million
mapped reads" (FPKM), respectively.1 Furthermore, rulebaseRIPSeek computes
the fold-change difference of gene expression in terms of RPKM/FPKM between the
RIP and control libraries. rulebaseRIPSeek reports putative RIP genes/transcripts
if their RPKM expression and the ratio of RPKM[RIP]/RPKM[control] (on either + or
- strand) are above t1 and t2. By default, t1 = 0.4 and t2 = 3.0, consistent with the
thresholds applied in original method Zhao et al. [2010].

1The "fragments" refers to the long fragment sequneced on both ends by the short read pairs.

9

> # Retrieve system files
> extdata.dir <- system.file("extdata", package="RIPSeeker")
> bamFiles <- list.files(extdata.dir, ".bam$", recursive=TRUE, full.names=TRUE)
> bamFiles <- grep("PRC2", bamFiles, value=TRUE)
> # use biomart
> txDbName <- "biomart"
> biomart <- "ENSEMBL_MART_ENSEMBL" # use archive to get ensembl 65
> dataset <- "mmusculus_gene_ensembl"
> host <- "dec2011.archive.ensembl.org" # use ensembl 65 for annotation
> # compute transcript abundance in RIP
> ripRPKM <- computeRPKM(bamFiles=grep(pattern="SRR039214", bamFiles, value=TRUE, invert=TRUE),
+ dataset=dataset, moreGeneInfo=TRUE, justRPKM=FALSE,
+ idType="ensembl_transcript_id", txDbName=txDbName,
+ biomart=biomart, host=host, by="tx")
> # compute transcript abundance in RIP and control as well as
> # foldchnage in RIP over control
> rulebase.results <- rulebaseRIPSeek(bamFiles=bamFiles, cNAME=cNAME, myMin=1,
+ featureGRanges=ripRPKM$featureGRanges,
+ biomart=biomart, host=host, dataset=dataset)
> head(ripRPKM$rpkmDF)
> df <- rulebase.results$rpkmDF
> df <- df[order(df$foldchange, decreasing=TRUE),]
> # top 10 transcripts
> head(df, 10)

5 RIP-seq analysis on CCNT1 data
As promised earlier, we will apply ripSeek to the CCNT1 data and annotate the de
novo putative RIP regions with the latest online Ensembl annotation based on human
genome reference NCBI37/hg19.

> # Retrieve system files
> BiocManager::install("RIPSeekerData")
> extdata.dir <- system.file("extdata", package="RIPSeekerData")
> bamFiles <- list.files(extdata.dir, "\\.bam$",
+ recursive=TRUE, full.names=TRUE)
> bamFiles <- grep("CCNT1/firstscreen", bamFiles, value=TRUE)
> # specify control name
> cNAME <- "GFP"
> # output file directory
> outDir <- file.path(getwd(), "RIPSeeker_vigenette_example_CCNT1")
> # Parameters setting
> binSize <- 10000 # automatically determine bin size
> minBinSize <- NULL # min bin size in automatic bin size selection
> maxBinSize <- NULL # max bin size in automatic bin size selection
> multicore <- TRUE # use multicore
> strandType <- "+" # set strand type to minus strand
> biomart <- "ensembl" # use archive to get ensembl 65
> biomaRt_dataset <- "hsapiens_gene_ensembl" # human dataset id name

10

> goAnno <- "org.Hs.eg.db" # GO annotation database
> ################ run main function ripSeek to predict RIP ################
> seekOut.CCNT1 <- ripSeek(bamPath = bamFiles, cNAME = cNAME,
+ reverseComplement = TRUE, genomeBuild = "hg19",
+ strandType = strandType,
+ uniqueHit = TRUE, assignMultihits = TRUE,
+ rerunWithDisambiguatedMultihits = TRUE,
+ binSize=binSize, minBinSize = minBinSize,
+ maxBinSize = maxBinSize,
+ biomart=biomart, goAnno = goAnno,
+ biomaRt_dataset = biomaRt_dataset,
+ multicore=multicore, outDir=outDir)
> df <- elementMetadata(seekOut.CCNT1$annotatedRIPGR$sigGRangesAnnotated)
> # order by eFDR
> df <- df[order(df$eFDR),]
> # get top 100 predictions
> df.top20 <- head(df, 20)
> # examine known PRC2-associated lncRNA transcripts
> df.top20[grep("RN7SK", df$external_gene_id)[1],]
> list.files(outDir)

> viewRIP(seekOut.CCNT1$RIPGRList$chr6, seekOut.CCNT1$mainSeekOutputRIP$alignGalFiltered, seekOut.CCNT1$mainSeekOutputCTL$alignGalFiltered, scoreType="eFDR")

> # use biomart
> txDbName <- "biomart"
> biomart <- "ensembl"
> dataset <- "hsapiens_gene_ensembl"
> # compute transcript abundance in RIP
> ripRPKM <- computeRPKM(bamFiles=bamFiles[1],
+ dataset=dataset, moreGeneInfo=TRUE, justRPKM=FALSE,
+ idType="ensembl_transcript_id", txDbName=txDbName,
+ biomart=biomart, by="tx")
> # compute transcript abundance in RIP and control as well as
> # foldchnage in RIP over control
> rulebase.results <- rulebaseRIPSeek(bamFiles=bamFiles, cNAME=cNAME, myMin=1,
+ featureGRanges=ripRPKM$featureGRanges,
+ biomart=biomart, dataset=dataset)
> head(ripRPKM$rpkmDF)
> df <- rulebase.results$rpkmDF
> df <- df[order(df$foldchange, decreasing=TRUE),]
> # top 10 transcripts
> head(df, 10)

6 Session Info
> sessionInfo()

R version 3.6.1 (2019-07-05)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows Server 2012 R2 x64 (build 9600)

11

Matrix products: default

locale:
[1] LC_COLLATE=C
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252

attached base packages:
[1] parallel stats4 stats graphics grDevices utils datasets
[8] methods base

other attached packages:
[1] RIPSeeker_1.26.0 rtracklayer_1.46.0
[3] GenomicAlignments_1.22.0 Rsamtools_2.2.0
[5] Biostrings_2.54.0 XVector_0.26.0
[7] SummarizedExperiment_1.16.0 DelayedArray_0.12.0
[9] BiocParallel_1.20.0 matrixStats_0.55.0

[11] Biobase_2.46.0 GenomicRanges_1.38.0
[13] GenomeInfoDb_1.22.0 IRanges_2.20.0
[15] S4Vectors_0.24.0 BiocGenerics_0.32.0

loaded via a namespace (and not attached):
[1] zlibbioc_1.32.0 lattice_0.20-38 tools_3.6.1
[4] grid_3.6.1 Matrix_1.2-17 GenomeInfoDbData_1.2.2
[7] bitops_1.0-6 RCurl_1.95-4.12 compiler_3.6.1

[10] XML_3.98-1.20

References
P. Aboyoun, H. Pages, and M. Lawrence. GenomicRanges: Representation and ma-

nipulation of genomic intervals. R package version 1.8.9.

Simon Anders and Wolfgang Huber. Differential expression analysis for sequence
count data. Genome Biology, 11(10):R106, October 2010.

Christopher Bishop. Pattern recognition and machine learning. Number 605–631 in
Information Science and Statisitcs. Springer Science, 2006.

Nicole Cloonan, Alistair R R Forrest, Gabriel Kolle, Brooke B A Gardiner, Geof-
frey J Faulkner, Mellissa K Brown, Darrin F Taylor, Anita L Steptoe, Shivangi Wani,
Graeme Bethel, Alan J Robertson, Andrew C Perkins, Stephen J Bruce, Clarence C
Lee, Swati S Ranade, Heather E Peckham, Jonathan M Manning, Kevin J Mckernan,
and Sean M Grimmond. Stem cell transcriptome profiling via massive-scale mRNA
sequencing. Nature Methods, 5(7):613–619, July 2008. Strand specific protocol.

S Durinck, PT Spellman, and E Birney. Mapping identifiers for the integration of
genomic datasets with the R/Bioconductor package biomaRt. Nature protocols, 4
(8):1184–1191, 2009.

12

Steffen Durinck, Yves Moreau, Arek Kasprzyk, Sean Davis, Bart De Moor, Alvis
Brazma, and Wolfgang Huber. BioMart and Bioconductor: a powerful link be-
tween biological databases and microarray data analysis. Bioinformatics (Oxford,
England), 21(16):3439–3440, August 2005.

Michael Lawrence, Vince Carey, and Robert Gentleman. rtracklayer: R interface to
genome browsers and their annotation tracks. R package version 1.16.1.

Zhaohui S Qin, Jianjun Yu, Jincheng Shen, Christopher A Maher, Ming Hu, Shanker
Kalyana-Sundaram, Jindan Yu, and Arul M Chinnaiyan. HPeak: an HMM-based
algorithm for defining read-enriched regions in ChIP-Seq data. BMC Bioinformatics,
11:369, 2010.

L.R Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. In Proceedings of the IEEE, pages 257–286, 1989.

James T Robinson, Helga Thorvaldsdóttir, Wendy Winckler, Mitchell Guttman, Eric S
Lander, Gad Getz, and Jill P Mesirov. Integrative genomics viewer. Nature Publish-
ing Group, 29(1):24–26, 2011.

C Trapnell, L Pachter, and S L Salzberg. TopHat: discovering splice junctions with
RNA-Seq. Bioinformatics (Oxford, England), 25(9):1105–1111, May 2009.

Jing Zhao, Toshiro K Ohsumi, Johnny T Kung, Yuya Ogawa, Daniel J Grau, Kavitha
Sarma, Ji Joon Song, Robert E Kingston, Mark Borowsky, and Jeannie T Lee.
Genome-wide Identification of Polycomb-Associated RNAs by RIP-seq. Molecu-
lar Cell, 40(6):939–953, December 2010.

Lihua J Zhu, Claude Gazin, Nathan D Lawson, Hervé Pagès, Simon M Lin, David S
Lapointe, and Michael R Green. ChIPpeakAnno: a Bioconductor package to anno-
tate ChIP-seq and ChIP-chip data. BMC Bioinformatics, 11:–, 2010.

13

	Introduction
	RIPSeeker overview
	RIP-seq data
	PRC2 in mouse embrynoic stem cell
	CCNT1 in HEK293
	User-supplied data

	RIP-seq analysis
	High-level visuzliation of alignments at chromosomal level
	ripSeek: the all-in-one function
	ripSeek outputs
	Visualization with UCSC browser
	Compute RPKM and fold-change of RIP over control for known genes or transcripts

	RIP-seq analysis on CCNT1 data
	Session Info

