
HTSFilter : Data-based filtering for repli-
cated transcriptome sequencing experiments

Andrea Rau, Mélina Gallopin, Gilles Celeux, Flo-
rence Jaffrézic

Modified: July 26, 2017. Compiled: October 29, 2019

Abstract

This vignette illustrates the use of the HTSFilter package to filter replicated
data from transcriptome sequencing experiments (e.g., RNA sequencing data)
for a variety of different data classes: matrix, data.frame, the S3 classes asso-
ciated with the edgeR package (DGEExact and DGELRT), and the S4 class
associated with the DESeq2 package (DESeqDataSet).

Contents

1 Introduction . 2

2 Input data . 4

3 matrix and data.frame classes 4

4 edgeR package pipeline . 7

4.1 S3 class DGEExact . 7

4.2 S3 class DGELRT . 9

5 DESeq2 package pipeline: S4 class DESeqDataSet
10

6 Alternative normalization using EDAseq 11

7 Session Info . 12

http://bioconductor.org/packages/HTSFilter
http://bioconductor.org/packages/HTSFilter
http://bioconductor.org/packages/edgeR
http://bioconductor.org/packages/DESeq2
http://bioconductor.org/packages/edgeR
http://bioconductor.org/packages/DESeq2
http://bioconductor.org/packages/EDAseq

HTSFilter: Data-based filtering for replicated transcriptome sequencing experiments

1 Introduction

High-throughput sequencing (HTS) data, such as RNA-sequencing (RNA-seq)
data, are increasingly used to conduct differential analyses, in which statistical
tests are performed for each biological feature (e.g., a gene, transcript, exon)
in order to identify those whose expression levels show systematic covariation
with a particular condition, such as a treatment or phenotype of interest. For
the remainder of this vignette, we will focus on gene-level differential analyses,
although these methods may also be applied to differential analyses of (count-
based measures of) transcript- or exon-level expression.

Because hypothesis tests are performed for gene-by-gene differential analyses,
the obtained p-values must be adjusted to correct for multiple testing. How-
ever, procedures to adjust p-values to control the number of detected false
positives often lead to a loss of power to detect truly differentially expressed
(DE) genes due to the large number of hypothesis tests performed. To reduce
the impact of such procedures, independent data filters are often used to iden-
tify and remove genes that appear to generate an uninformative signal [1]; this
in turn moderates the correction needed to adjust for multiple testing. For in-
dependent filtering methods for microarray data, see for example the genefilter
Bioconductor package [2].

The HTSFilter package implements a novel data-based filtering procedure based
on the calculation of a similarity index among biological replicates for read
counts arising from replicated transcriptome sequencing (RNA-seq) data. This
technique provides an intuitive data-driven way to filter high-throughput tran-
scriptome sequencing data and to effectively remove genes with low, constant
expression levels without incorrectly removing those that would otherwise have
been identified as DE. The two fundamental assumptions of the filter imple-
mented in the HTSFilter package are as follows:

1. Biological replicates are present for each experimental condition, and

2. Data can be appropriately normalized (scaled) to correct for systematic
inter-sample biases.

Assuming these conditions hold, HTSFilter implements a method to identify a
filtering threshold that maximizes the filtering similarity among replicates, that
is, one where most genes tend to either have normalized counts less than or
equal to the cutoff in all samples (i.e., filtered genes) or greater than the cutoff
in all samples (i.e., non-filtered genes). This filtering similarity is defined using
the global Jaccard index, that is, the average Jaccard index calculated between
pairs of replicates within each experimental condition; see Rau et al. (2013) [3]
for more details.

2

http://bioconductor.org/packages/HTSFilter
http://bioconductor.org/packages/genefilter
http://bioconductor.org/packages/HTSFilter
http://bioconductor.org/packages/HTSFilter
http://bioconductor.org/packages/HTSFilter

HTSFilter: Data-based filtering for replicated transcriptome sequencing experiments

Log(counts+1)

F
re

qu
en

cy

0 2 4 6 8 10

0
20

00
40

00
60

00
80

00

Figure 1: Histogram of log transformed counts from the Sultan et al. data [9],
illustrating the large number of genes with very small counts as well as the large
heterogeneity in counts observed

For more information about between-sample normalization strategies, see [4];
in particular, strategies for normalizing data with differences in library size and
composition may be found in [5] and [6], and strategies for normalizing data
exhibiting sample-specific biases due to GC content may be found in [7] and
[8]. Within the HTSFilter package, the Trimmed Means of M-values (TMM)
[6] and DESeq [5] normalization strategies may be used prior to calculating an
appropriate data-based filter. If an alternative normalization strategy is needed
or desired, the normalization may be applied prior to filtering the data with nor

malization="none" in the HTSFilter function; see Section 6 for an example.

The HTSFilter package is able to accommodate unnormalized or normalized
replicated count data in the form of a matrix or data.frame (in which each row
corresponds to a biological feature and each column to a biological sample),
one of the S3 classes associated with the edgeR package (DGEList, DGEExact,
DGEGLM, and DGELRT), or DESeqDataSet (the S4 class associated with the
DESeq2 package), as illustrated in the following sections.

Finally, we note that the filtering method implemented in the HTSFilter pack-
age is designed to filter transcriptome sequencing, and not microarray, data; in
particular, the proposed filter is effective for data with features that take on
values over a large order of magnitude and with a subset of features exhibit-
ing small levels of expression across samples (see, for example, Figure 1). In
this vignette, we illustrate its use on count-based measures of gene expression,
although its use is not strictly limited to discrete data.

3

http://bioconductor.org/packages/HTSFilter
http://bioconductor.org/packages/HTSFilter
http://bioconductor.org/packages/HTSFilter
http://bioconductor.org/packages/edgeR
http://bioconductor.org/packages/DESeq2
http://bioconductor.org/packages/HTSFilter

HTSFilter: Data-based filtering for replicated transcriptome sequencing experiments

2 Input data

For the purposes of this vignette, we make use of data from a study of sex-
specific expression of liver cells in human and the DESeq and edgeR packages
for differential analysis. Sultan et al. [9] obtained a high-throughput sequencing
data (using a 1G Illumina Genome Analyzer sequencing machine) from a human
embryonic kidney and a B cell line, with two biological replicates each. The
raw read counts and phenotype tables were obtained from the ReCount online
resource [10].

To begin, we load the HTSFilter package, and attach the gene-level count data
contained in sultan:

> library(HTSFilter)

> library(edgeR)

> library(DESeq2)

> data("sultan")

> hist(log(exprs(sultan)+1), col="grey", breaks=25, main="",

+ xlab="Log(counts+1)")

> pData(sultan)

sample.id num.tech.reps cell.line

SRX008333 SRX008333 1 Ramos B cell

SRX008334 SRX008334 1 Ramos B cell

SRX008331 SRX008331 1 HEK293T

SRX008332 SRX008332 1 HEK293T

> dim(sultan)

Features Samples

9010 4

The unfiltered data contain 9010 genes in four samples (two replicates per
condition).

3 matrix and data.frame classes

To filter high-throughput sequencing data in the form of a matrix or data.frame,
we first access the expression data, contained in exprs(sultan), and create a
vector identifying the condition labels for each of the samples via the pData

Biobase function. We then filter the data using the HTSFilter function, speci-
fying that the number of tested thresholds be only 25 (s.len=25) rather than the
default value of 100 to reduce computation time for this example. Note that as

4

http://bioconductor.org/packages/HTSFilter
http://bioconductor.org/packages/DESeq
http://bioconductor.org/packages/edgeR
http://bioconductor.org/packages/HTSFilter

HTSFilter: Data-based filtering for replicated transcriptome sequencing experiments

●

● ●

●

●

● ●

●

●

●

● ● ●

●

●
●

● ●

●

●

●

●

●
●

●

1 2 5 10 20 50 100 200

0.
84

0.
85

0.
86

0.
87

0.
88

0.
89

0.
90

Threshold

G
lo

ba
l J

ac
ca

rd
 in

de
x

X

X s = 11.764

Figure 2: Global Jaccard index for the sultan data calculated for a variety of
threshold values after TMM normalization [6], with a loess curve (blue line) su-
perposed and data-based threshold values (red cross and red dotted line) equal
to 11.764

it is unspecified, the default normalization method is used for filtering the data,
namely the Trimmed Mean of M-values (TMM) method of Robinson and Osh-
lack [6]. To use the DESeq normalization method [5], normalization="DESeq"
may be specified.

> mat <- exprs(sultan)

> conds <- as.character(pData(sultan)$cell.line)

> ## Only 25 tested thresholds to reduce computation time

> filter <- HTSFilter(mat, conds, s.min=1, s.max=200, s.len=25)

> mat <- filter$filteredData

> dim(mat)

[1] 4995 4

> dim(filter$removedData)

[1] 4015 4

For this example, we find a data-based threshold equal to 11.764; genes with
normalized values less than this threshold in all samples are filtered from sub-
sequent analyses. The proposed filter thus removes 4015 genes from further
analyses, leaving 4995 genes.

5

http://bioconductor.org/packages/HTSFilter

HTSFilter: Data-based filtering for replicated transcriptome sequencing experiments

●
● ● ● ● ●

●
●

●

●

●

●
●

● ●
●

●

●

●
●

●

● ●
●

●

1 2 5 10 20 50 200

0.
86

0.
90

0.
94

0.
98

Threshold

G
lo

ba
l J

ac
ca

rd
 in

de
x

X

X s = 1.64

Log(counts+1)

F
re

qu
en

cy

0 2 4 6 8 10

0
50

0
15

00
25

00

Figure 3: (left) Global Jaccard index for the sultan data calculated for a variety
of threshold values after TMM normalization [6], with a loess curve (blue line)
superposed and data-based threshold values (red cross and red dotted line)
equal to 11.764
(right) Global Jaccard index for the previously filtered sultan data, with loess curve (blue
line) superposed as before.

We note that an important part of the filter proposed in the HTSFilter package
is a check of the behavior of the global similarity index calculated over a range of
threshold values, and in particular, to verify that a reasonable maximum value is
reached for the global similarity index over the range of tested threshold values
(see Figure 2); the maximum possible value for the global Jaccard index is
nearly 1. To illustrate the importance of this check, we attempt to re-apply the
proposed filter to the previously filtered data (in practice, of course, this would
be nonsensical):

> par(mfrow = c(1,2), mar = c(4,4,2,2))

> filter.2 <- HTSFilter(mat, conds, s.len=25)

> dim(filter.2$removedData)

[1] 0 4

> hist(log(filter.2$filteredData+1), col="grey", breaks=25, main="",

+ xlab="Log(counts+1)")

In the lefthand panel of Figure 3, we note a plateau of large global Jaccard index
values for thresholds less than 2, with a decrease thereafter; this corresponds
to filtering no genes, unsurprising given that genes with low, constant levels of
expression have already been filtered from the analysis (see the righthand panel
of Figure 3).

6

http://bioconductor.org/packages/HTSFilter
http://bioconductor.org/packages/HTSFilter

HTSFilter: Data-based filtering for replicated transcriptome sequencing experiments

4 edgeR package pipeline

We next illustrate the use of HTSFilter within the edgeR pipeline for differ-
ential analysis (S3 classes DGEList, DGEExact, DGEGLM, or DGELRT). For
the purposes of this vignette, we will consider the S3 classes DGEExact and
DGELRT. The former is the class containing the results of the differential ex-
pression analysis between two groups of count libraries (resulting from a call to
the function exactTest in edgeR); the latter is the class containing the results
of a generalized linear model (GLM)-based differential analysis (resulting from
a call to the function glmLRT in edgeR). Although the filter may be applied
earlier in the edgeR pipeline (i.e., to objects of class DGEList or DGEGLM),
we do not recommend doing so, as parameter estimation makes use of counts
adjusted using a a quantile-to-quantile method (pseudo-counts).

4.1 S3 class DGEExact

We first coerce the data into the appropriate class with the function DGEList,
where the group variable is set to contain a vector of condition labels for each
of the samples. Next, after calculating normalizing factors to scale library sizes
(calcNormFactors), we estimate common and tagwise dispersion parameters
using estimateDisp (using the quantile conditional likelihood for each gene)
and obtain differential analysis results using exactTest. Finally, we apply the
filter using the HTSFilter function, again specifying that the number of tested
thresholds be only 25 (s.len=25) rather than the default value of 100. Note
that as it is unspecified, the default normalization method is used for filtering the
data, namely the Trimmed Mean of M-values (TMM) method [6]; alternative
normalization, including "pseudo.counts" for the quantile-to-quantile adjusted
counts used for parameter estimation, may also be specified. We suppress the
plot of the global Jaccard index using plot = FALSE, as it is identical to that
shown in Figure 2.

> dge <- DGEList(counts=exprs(sultan), group=conds)

> dge <- calcNormFactors(dge)

> dge <- estimateDisp(dge)

Design matrix not provided. Switch to the classic mode.

> et <- exactTest(dge)

> et <- HTSFilter(et, DGEList=dge, s.len=25, plot=FALSE)$filteredData

> dim(et)

[1] 4995 3

7

http://bioconductor.org/packages/HTSFilter
http://bioconductor.org/packages/edgeR
http://bioconductor.org/packages/HTSFilter
http://bioconductor.org/packages/edgeR
http://bioconductor.org/packages/edgeR
http://bioconductor.org/packages/edgeR
http://bioconductor.org/packages/edgeR

HTSFilter: Data-based filtering for replicated transcriptome sequencing experiments

> class(et)

[1] "DGEExact"

attr(,"package")

[1] "edgeR"

> topTags(et)

Comparison of groups: Ramos B cell-HEK293T

logFC logCPM PValue

ENSG00000100721 14.399287 11.53328 0.000000e+00

ENSG00000133124 -14.394458 11.56789 0.000000e+00

ENSG00000105369 11.925779 11.23367 0.000000e+00

ENSG00000135144 10.921892 11.05896 2.600818e-309

ENSG00000110777 13.850554 10.97744 2.014098e-302

ENSG00000111348 13.797192 10.92306 6.278069e-298

ENSG00000118308 13.494132 10.61473 1.294723e-272

ENSG00000177606 -9.731885 10.81415 1.456204e-263

ENSG00000012124 10.171666 10.29617 3.995433e-247

ENSG00000149418 10.899611 10.19056 6.189743e-239

FDR

ENSG00000100721 0.000000e+00

ENSG00000133124 0.000000e+00

ENSG00000105369 0.000000e+00

ENSG00000135144 3.247771e-306

ENSG00000110777 2.012083e-299

ENSG00000111348 5.226492e-295

ENSG00000118308 9.238774e-270

ENSG00000177606 9.092173e-261

ENSG00000012124 2.217465e-244

ENSG00000149418 3.091777e-236

Note that the filtered data are of the class DGEExact, allowing for a call to the
topTags function.

> topTags(et)

Comparison of groups: Ramos B cell-HEK293T

logFC logCPM PValue

ENSG00000100721 14.399287 11.53328 0.000000e+00

ENSG00000133124 -14.394458 11.56789 0.000000e+00

ENSG00000105369 11.925779 11.23367 0.000000e+00

ENSG00000135144 10.921892 11.05896 2.600818e-309

ENSG00000110777 13.850554 10.97744 2.014098e-302

8

http://bioconductor.org/packages/HTSFilter

HTSFilter: Data-based filtering for replicated transcriptome sequencing experiments

ENSG00000111348 13.797192 10.92306 6.278069e-298

ENSG00000118308 13.494132 10.61473 1.294723e-272

ENSG00000177606 -9.731885 10.81415 1.456204e-263

ENSG00000012124 10.171666 10.29617 3.995433e-247

ENSG00000149418 10.899611 10.19056 6.189743e-239

FDR

ENSG00000100721 0.000000e+00

ENSG00000133124 0.000000e+00

ENSG00000105369 0.000000e+00

ENSG00000135144 3.247771e-306

ENSG00000110777 2.012083e-299

ENSG00000111348 5.226492e-295

ENSG00000118308 9.238774e-270

ENSG00000177606 9.092173e-261

ENSG00000012124 2.217465e-244

ENSG00000149418 3.091777e-236

4.2 S3 class DGELRT

We follow the same steps as the previous example, where the estimateDisp

function is now used to obtain per-gene dispersion parameter estimates using
the adjusted profile loglikelihood, the glmFit function is used to fit a negative
binomial generalized log-linear model to the read counts for each gene, and
the glmLRT function is used to conduct likelihood ratio tests for one or more
coefficients in the GLM. The output of glmLRT is an S3 object of class DGELRT
and contains the GLM differential analysis results. As before, we apply the filter
using the HTSFilter function, again suppressing the plot of the global Jaccard
index using plot = FALSE, as it is identical to that shown in Figure 2.

> design <- model.matrix(~conds)

> dge <- DGEList(counts=exprs(sultan), group=conds)

> dge <- calcNormFactors(dge)

> dge <- estimateDisp(dge, design)

> fit <- glmFit(dge,design)

> lrt <- glmLRT(fit,coef=2)

> lrt <- HTSFilter(lrt, DGEGLM=fit, s.len=25, plot=FALSE)$filteredData

> dim(lrt)

[1] 4995 4

> class(lrt)

9

http://bioconductor.org/packages/HTSFilter

HTSFilter: Data-based filtering for replicated transcriptome sequencing experiments

[1] "DGELRT"

attr(,"package")

[1] "edgeR"

Note that the filtered data are of the class DGEList, allowing for a call to the
topTags function.

> topTags(lrt)

Coefficient: condsRamos B cell

logFC logCPM LR PValue

ENSG00000100721 14.399291 11.53265 1711.214 0.000000e+00

ENSG00000133124 -14.394459 11.56849 1554.769 0.000000e+00

ENSG00000110777 13.850562 10.97659 1487.284 0.000000e+00

ENSG00000105369 11.925777 11.23291 1576.317 0.000000e+00

ENSG00000135144 10.921894 11.05814 1495.598 0.000000e+00

ENSG00000111348 13.797195 10.92217 1465.781 1.067182e-320

ENSG00000118308 13.494128 10.61369 1345.242 1.666173e-294

ENSG00000177606 -9.731884 10.81502 1222.977 6.192499e-268

ENSG00000012124 10.171667 10.29498 1199.883 6.468477e-263

ENSG00000149418 10.899617 10.18933 1171.186 1.115284e-256

FDR

ENSG00000100721 0.000000e+00

ENSG00000133124 0.000000e+00

ENSG00000110777 0.000000e+00

ENSG00000105369 0.000000e+00

ENSG00000135144 0.000000e+00

ENSG00000111348 8.884288e-318

ENSG00000118308 1.188933e-291

ENSG00000177606 3.866441e-265

ENSG00000012124 3.590005e-260

ENSG00000149418 5.570841e-254

5 DESeq2 package pipeline: S4 class DE-
SeqDataSet

The HTSFilter package allows for a straightforward integration within the DE-
Seq2 analysis pipeline, most notably allowing for p-values to be adjusted only
for those genes passing the filter. Note that DESeq2 now impelements an
independent filtering procedure by default in the results function; this filter

10

http://bioconductor.org/packages/HTSFilter
http://bioconductor.org/packages/DESeq2
http://bioconductor.org/packages/HTSFilter
http://bioconductor.org/packages/DESeq2
http://bioconductor.org/packages/DESeq2
http://bioconductor.org/packages/DESeq2

HTSFilter: Data-based filtering for replicated transcriptome sequencing experiments

is a potential alternative filtering technique and does not need to be used in
addition to the one included in HTSFilter . In fact, each filter is targeting the
same weakly expressed genes to be filtered from the analysis. As such, if the
user wishes to make use of HTSFilter within the DESeq2 pipeline, the argu-
ment independentFiltering=FALSE should be used when calling the results

function in DESeq2 .

To illustrate the application of a filter for high-throughput sequencing data in
the form of a DESeqDataSet (the class used within the DESeq2 pipeline for dif-
ferential analysis), we coerce sultan into an object of the class DESeqDataSet
using the function DESeqDataSetFromMatrix. Once again, we specify that the
number of tested thresholds be only 25 (s.len=25) rather than the default value
of 100 to reduce computation time. For objects in the form of a DESeqDataSet,
the default normalization strategy is "DESeq", although alternative normaliza-
tion strategies may also be used. Note that below we replace the spaces in
condition names with "." prior to creating a "DESeqDataSet" object.

> conds <- gsub(" ", ".", conds)

> dds <- DESeqDataSetFromMatrix(countData = exprs(sultan),

+ colData = data.frame(cell.line = conds),

+ design = ~ cell.line)

> dds <- DESeq(dds)

> filter <- HTSFilter(dds, s.len=25, plot=FALSE)$filteredData

> class(filter)

> dim(filter)

> res <- results(filter, independentFiltering=FALSE)

> head(res)

>

The filtered data remain an object of class DESeqDataSet, and subsequent
functions from DESeq2 (such as the results summary function results) may
be called directly upon it.

6 Alternative normalization using EDAseq

As a final example, we illustrate the use of the HTSFilter package with an al-
ternative normalization strategy, namely the full quantile normalization method
in the EDASeq package; such a step may be useful when the TMM or DESeq
normalization methods are not appropriate for a given dataset. Once again, we
create a new object of the appropriate class with the function newSeqExpres

sionSet and normalize data using the betweenLaneNormalization function
(with which="full") in EDASeq.

11

http://bioconductor.org/packages/HTSFilter
http://bioconductor.org/packages/HTSFilter
http://bioconductor.org/packages/HTSFilter
http://bioconductor.org/packages/DESeq2
http://bioconductor.org/packages/DESeq2
http://bioconductor.org/packages/DESeq2
http://bioconductor.org/packages/DESeq2
http://bioconductor.org/packages/EDAseq
http://bioconductor.org/packages/HTSFilter
http://bioconductor.org/packages/EDASeq
http://bioconductor.org/packages/EDASeq

HTSFilter: Data-based filtering for replicated transcriptome sequencing experiments

> library(EDASeq)

> ses <- newSeqExpressionSet(exprs(sultan),

+ phenoData=pData(sultan))

> ses.norm <- betweenLaneNormalization(ses, which="full")

Subsequently, HTSFilter is applied to the normalized data (again using s.len=25),
and the normalization method is set to norm="none". We may then make use
of the on vector in the results, which identifies filtered and unfiltered genes
(respectively) with 0 and 1, to identify rows in the original data matrix to be
retained.

> filter <- HTSFilter(counts(ses.norm), conds, s.len=25, norm="none",

+ plot=FALSE)

> head(filter$on)

> table(filter$on)

7 Session Info

> sessionInfo()

R version 3.6.1 (2019-07-05)

Platform: x86_64-w64-mingw32/x64 (64-bit)

Running under: Windows Server 2012 R2 x64 (build 9600)

Matrix products: default

locale:

[1] LC_COLLATE=C

[2] LC_CTYPE=English_United States.1252

[3] LC_MONETARY=English_United States.1252

[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.1252

attached base packages:

[1] parallel stats4 stats graphics grDevices

[6] utils datasets methods base

other attached packages:

[1] DESeq2_1.26.0 SummarizedExperiment_1.16.0

[3] DelayedArray_0.12.0 BiocParallel_1.20.0

12

http://bioconductor.org/packages/HTSFilter

HTSFilter: Data-based filtering for replicated transcriptome sequencing experiments

[5] matrixStats_0.55.0 Biobase_2.46.0

[7] GenomicRanges_1.38.0 GenomeInfoDb_1.22.0

[9] IRanges_2.20.0 S4Vectors_0.24.0

[11] BiocGenerics_0.32.0 edgeR_3.28.0

[13] limma_3.42.0 HTSFilter_1.26.0

loaded via a namespace (and not attached):

[1] bit64_0.9-7 splines_3.6.1

[3] Formula_1.2-3 assertthat_0.2.1

[5] BiocManager_1.30.9 latticeExtra_0.6-28

[7] blob_1.2.0 GenomeInfoDbData_1.2.2

[9] yaml_2.2.0 pillar_1.4.2

[11] RSQLite_2.1.2 backports_1.1.5

[13] lattice_0.20-38 glue_1.3.1

[15] digest_0.6.22 checkmate_1.9.4

[17] RColorBrewer_1.1-2 XVector_0.26.0

[19] colorspace_1.4-1 htmltools_0.4.0

[21] Matrix_1.2-17 XML_3.98-1.20

[23] pkgconfig_2.0.3 genefilter_1.68.0

[25] zlibbioc_1.32.0 purrr_0.3.3

[27] xtable_1.8-4 scales_1.0.0

[29] htmlTable_1.13.2 tibble_2.1.3

[31] annotate_1.64.0 ggplot2_3.2.1

[33] nnet_7.3-12 lazyeval_0.2.2

[35] survival_2.44-1.1 magrittr_1.5

[37] crayon_1.3.4 memoise_1.1.0

[39] evaluate_0.14 foreign_0.8-72

[41] data.table_1.12.6 tools_3.6.1

[43] BiocStyle_2.14.0 stringr_1.4.0

[45] munsell_0.5.0 locfit_1.5-9.1

[47] cluster_2.1.0 AnnotationDbi_1.48.0

[49] compiler_3.6.1 DESeq_1.38.0

[51] rlang_0.4.1 grid_3.6.1

[53] RCurl_1.95-4.12 rstudioapi_0.10

[55] htmlwidgets_1.5.1 base64enc_0.1-3

[57] bitops_1.0-6 rmarkdown_1.16

[59] gtable_0.3.0 DBI_1.0.0

[61] R6_2.4.0 gridExtra_2.3

[63] knitr_1.25 dplyr_0.8.3

[65] bit_1.1-14 zeallot_0.1.0

[67] Hmisc_4.2-0 stringi_1.4.3

[69] Rcpp_1.0.2 rpart_4.1-15

13

http://bioconductor.org/packages/HTSFilter

HTSFilter: Data-based filtering for replicated transcriptome sequencing experiments

[71] vctrs_0.2.0 geneplotter_1.64.0

[73] acepack_1.4.1 tidyselect_0.2.5

[75] xfun_0.10

References

[1] Richard Bourgon, Robert Gentleman, and Wolfgang Huber. Independent
filtering increases detection power for high-throughput experiments.
PNAS, 107(21):9546–9551, 2010.

[2] R. Gentleman, V. Carey, W. Huber, and F. Hahne. genefilter: methods
for filtering genes from microarray experiments. R package version 1.38.0.

[3] A. Rau, M. Gallopin, G. Celeux, and F. Jaffrézic. Data-based filtering for
replicated high-throughput transcriptome sequencing experiments.
Bioinformatics, doi: 10.1093/bioinformatics/btt350, 2013.

[4] Marie-Agnès Dillies, Andrea Rau, Julie Aubert, Christelle
Hennequet-Antier, Marine Jeanmougin, Nicolas Servant, Céline Keime,
Guillemette Marot, David Castel, Jordi Estelle, Gregory Guernec, Bernd
Jagla, Luc Jouneau, Denis Laloë, Caroline Le Gall, Brigitte Schaëffer,
Stéphane Le Crom, and Florence Jaffrézic. A comprehensive evaluation
of normalization methods for Illumina high-throughput RNA sequencing
data analysis. Briefings in Bioinformatics, (in press), 2012.

[5] Simon Anders and Wolfgang Huber. Differential expression analysis for
sequence count data. Genome Biology, 11(R106):1–28, 2010.

[6] Mark D. Robinson and Alicia Oshlack. A scaling normalization method
for differential expression analysis of RNA-seq data. Genome Biology,
11(R25), 2010.

[7] Davide Risso, Katja Schwartz, Gavin Sherlock, and Sandrine Dudoit.
GC-content normalization for RNA-seq data. BMC Bioinformatics,
12(480), 2011.

[8] Kasper D. Hansen, Rafael A. Irizarry, and Zhijin Wu. Removing technical
variability in RNA-seq data using conditional quantile normalization.
Biostatistics, (in press)(227), 2012.

14

http://bioconductor.org/packages/HTSFilter

HTSFilter: Data-based filtering for replicated transcriptome sequencing experiments

[9] M. Sultan, M. H. Schulz, H. Richard, A. Magen, A. Klingenhoff,
M. Scherf, M. Seifert, T. Borodina, A. Soldatov, D. Parkhomchuk,
D. Schmidt, S. O’Keeffe, S. Haas, M. Vingron, H. Lehrach, and M. L.
Yaspo. A global view of gene activity and alternative splicing by deep
sequencing of the human transcriptome. Science, 15(5891):956–60, 2008.

[10] A. C. Frazee, B. Langmead, and J. T. Leek. ReCount: a
multi-experiment resource of analysis-ready RNA-seq gene count
datasets. BMC Bioinformatics, 12(449), 2011.

15

http://bioconductor.org/packages/HTSFilter

	1 Introduction
	2 Input data
	3 matrix and data.frame classes
	4 edgeR package pipeline
	4.1 S3 class DGEExact
	4.2 S3 class DGELRT

	5 DESeq2 package pipeline: S4 class DESeqDataSet
	6 Alternative normalization using EDAseq
	7 Session Info

