
A Computational Bayesian Approach to Ternary
Network Estimation (ternarynet)

Matthew N. McCall and Anthony Almudevar

October 29, 2019

Contents

1 Introduction 2

2 Getting Started 2

2.1 Basic Input Data . 2

2.2 Model Fitting . 3

2.3 Posterior Sampling . 3

2.4 Summary Results . 3

3 Session Info 6

1

1 Introduction

This document describes ternarynet, which implements a computational Bayesian algo-
rithm to estimate a ternary network from perturbation data. We strong recommend
reading the paper, Fitting Boolean Networks from Steady State Perturbation Data (Al-
mudevar et. al 2011) before proceeding with this vignette.

2 Getting Started

First begin by downloading and installing the ternarynet package.

> library(ternarynet)

2.1 Basic Input Data

The input data to the main ternarynet functions are a matrix of steady state observa-
tions and a matrix of perturbation experiments, where columns represent perturbation
experiments and rows represent measured genes. The perturbation matrix consists of
all zeros except for those genes experimentally perturbed, which are denoted by 1 if
overexpressed or -1 if underexpressed. The steady state matrix consists of the response
of each measured gene to each perturbation. Note that the perturbed gene(s) in each
experiment are forced to response. For example if we perturb each of five genes by
over-expressing each one, the perturbation matrix would be:

> perturbationObj

[,1] [,2] [,3] [,4] [,5]

[1,] 1 0 0 0 0

[2,] 0 1 0 0 0

[3,] 0 0 1 0 0

[4,] 0 0 0 1 0

[5,] 0 0 0 0 1

A potential steady state matrix based on the perturbation experiments above is:

> steadyStateObj

2

[,1] [,2] [,3] [,4] [,5]

[1,] 1 0 0 0 0

[2,] 0 1 1 1 0

[3,] 0 1 1 1 0

[4,] 0 1 1 1 0

[5,] 1 0 0 0 1

We can interpret the first perturbation experiment, persistent over-expression of
gene 1 (column 1), as resulting in over-expression of gene 5.

2.2 Model Fitting

There are numerous modeling parameters that we could alter (these are outlined in the
help files and described in Almudevar et al. (2011)), but in this example, we will call the
ternary network fit using the default parameters (except for setting the random seed):

> tnfit <- tnetfit(steadyStateObj, perturbationObj, xSeed=11235)

This creates a ternaryFit object, tnfit, that contains the results of the model fitting.
We can assess the model fit by examining the traces of four key parameters:

> plotTraces(tnfit)

2.3 Posterior Sampling

Once we have fit the ternary network model, we can sample from the posterior density
on the model space:

> tnpost <- tnetpost(tnfit, xSeed=11235)

2.4 Summary Results

The ternaryPosterior object contains a wealth of information that can be used to answer
a wide variety of statistical and biological questions; however, it is often convenient
to summarize this information. The first summarization we will consider is reporting
the posterior probabilities of the attractors resulting from either transient or persistent
perturbations. These summaries can be produced as follows:

3

> attractorSummary(tnpost)

index 1 2 3 4 5 PostProb

[1,] 1 1 0 0 0 1 0

[2,] 1 0 0 0 0 0 1

[3,] 2 0 1 1 1 0 0

[4,] 2 0 1 1 1 0 1

[5,] 3 0 1 1 1 0 0

[6,] 3 0 1 1 1 0 1

[7,] 4 0 1 1 1 0 0

[8,] 4 0 1 1 1 0 1

[9,] 5 0 0 0 0 1 0

[10,] 5 0 0 0 0 0 1

> attractorSummary(tnpost, wildtype=FALSE)

index 1 2 3 4 5 PostProb

[1,] 1 1 0 0 0 1 0

[2,] 1 1 0 0 0 1 1

[3,] 2 0 1 1 1 0 0

[4,] 2 0 1 1 1 0 1

[5,] 3 0 1 1 1 0 0

[6,] 3 0 1 1 1 0 1

[7,] 4 0 1 1 1 0 0

[8,] 4 0 1 1 1 0 1

[9,] 5 0 0 0 0 1 0

[10,] 5 0 0 0 0 1 1

The first summary provides the attractors for a transient perturbation (the response
of the wildtype network) and second summary for a persistent perturbation. The first col-
umn provides the number of the perturbation experiment (corresponding to the columns
in the perturbation matrix), and the last column provide the posterior probability of
each attractor. The middle columns are a summary of each attractor, as described in
Almudevar et al. (2011).

In addition to investigating the attractor structure, one might also want to examine
the network topology. A simple summary of the topology can be generated as follows:

> graphPosterior(tnpost)

0 1 2 3 4 5

1 0.4745 0 0.13 0.123 0.146 0.1265

4

2 0.0000 0 0.00 1.000 0.000 0.0000

3 0.0000 0 0.00 0.000 1.000 0.0000

4 0.0000 0 1.00 0.000 0.000 0.0000

5 0.0000 1 0.00 0.000 0.000 0.0000

This produces a matrix where rows are children and columns are parents of regulatory
relationships. The values in the matrix are the marginal posterior probabilities of each
relationship. The first column represents the probability of a given gene having no
parents.

5

3 Session Info

> sessionInfo()

R version 3.6.1 (2019-07-05)

Platform: x86_64-apple-darwin15.6.0 (64-bit)

Running under: OS X El Capitan 10.11.6

Matrix products: default

BLAS: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib

LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib

locale:

[1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] ternarynet_1.30.0

loaded via a namespace (and not attached):

[1] compiler_3.6.1 magrittr_1.5 tools_3.6.1 igraph_1.2.4.1

[5] pkgconfig_2.0.3

6

	Introduction
	Getting Started
	Basic Input Data
	Model Fitting
	Posterior Sampling
	Summary Results

	Session Info

