
Using the geneRecommender Package

Greg Hather

October 29, 2019

1 What is geneRecommender?

geneRecommender is a package used to identify coexpressed genes in microarray data. In particular,
the package ranks genes according to how strongly they correlate with a set of query genes over the
experiments for which the query genes behave in a similar fashion. The query genes, which are chosen
by the user, are intended to be genes known to be involved in a process of interest. Since genes which are
coexpressed are more likely to be functionally related, the ranked list produced by geneRecommender
will suggest other genes which are involved in or related to the process of interest. The package is an
implementation of the Gene Recommender algorithm developed by Owen et al [1]. geneRecommender
is designed to work even with a significant amount of missing data.

2 An Example

Suppose we are analyzing the geneData dataset in the Biobase package. The data consists of gene
expression levels for 500 probesets across 26 experiments. As a fictional example, suppose that the
probe sets “31613 at”, “31712 at”, and “31497 at” correspond to genes known to have closely related
functions. Suppose that we wish to use the set for a geneRecommender query. The first step is to
normalize the dataset with the gr.normalize function. The second step is to apply the gr.main

function to the normalized data.

> library(geneRecommender)

> data(geneData)

> my.query <- c("31613_at", "31712_at", "31497_at")

> normalized.data <- gr.normalize(geneData)

> gr.main(normalized.data, my.query, ngenes = 10)

$main.result

[,1] [,2]

[1,] "31712_at" "Within query"

[2,] "31736_at" "Not within query"

[3,] "31613_at" "Within query"

[4,] "31668_f_at" "Not within query"

[5,] "31497_at" "Within query"

[6,] "31558_at" "Not within query"

[7,] "31485_at" "Not within query"

[8,] "31679_at" "Not within query"

[9,] "31455_r_at" "Not within query"

[10,] "AFFX-LysX-3_at" "Not within query"

1

The result is a list containing a single item named main.result. main.result is a matrix with
ngenes rows and two columns. The first column tabulates the top ngenes identified by the algorithm,
listed in the order of decreasing score. The second column identifies the genes in the result that were
in the query.

3 Cross Validation

In some cases, the user will be interested in judging the performance of geneRecommender for a given
query. To this end, the function gr.cv performs leave-one-out cross validation. The input for gr.cv

is the normalized dataset and the query. The output for gr.cv is a vector containing the rank of each
element in the query produced by applying gr.main to the query with that element removed.

> gr.cv(normalized.data, my.query)

[1] 6 10 9

In addition to measuring performance, the results of the cross validation can be used to determine
if some element(s) in the query might not belong. If one of the elements in the above vector had been
very large, one would suspect that the associated gene was regulated differently than the other genes
in the query.

4 Additional Options

For users interested in modifying the workings of the algorithm or seeing additional output, the geneRe-
commender package is fairly accommodating. This is explained in the following subsections, some of
which use notation from the Owen et al paper [1].

4.1 Normalization

gr.normalize normalizes the dataset so that for each gene, the normalized expression values of the
experiments are distributed uniformly between -1 and 1. However, alternative normalizations are cer-
tainly possible, either by writing one’s own normalization function, or by further processing the output
of gr.normalize. For example, the data could be normalized so that for each gene, the normalized
expression values of the experiments have a standard normal distribution. This can be easily done by
applying qnorm to the result of gr.normalize.

> normal.normalized.data <- qnorm((normalized.data + 1)/2)

> gr.main(normal.normalized.data, my.query, ngenes = 10)

This type of normalization may be better, but no one knows with certainty at the time of this
writing.

4.2 Scoring function

The scoring function allows the algorithm to choose how many experiments to include in the calculation.
It is a function applied to the ranks in SG(i) of the query genes. The algorithm selects the number
of experiments which minimizes the result of the scoring function, breaking ties in favor of the largest
experiment set. The default scoring function is median, which is the same choice used in the paper.
However, other choices of the scoring function are possible.

2

> my.fun.1 <- function(input.vector){

+ sum(input.vector^(1/2), na.rm = T)

+ }

> gr.main(normalized.data, my.query, ngenes = 10, fun = my.fun.1)

This type of scoring function may be better, but no one knows with certainty at the time of this
writing.

4.3 Including all experiments

Suppose that out of curiosity, the user wishes to include ALL experiments in the calculation. Based
on the discussion in the previous subsection, it should be apparent that setting fun to be a constant
function will achieve this goal.

> my.fun.2 <- function(input.vector){

+ 1

+ }

> gr.main(normalized.data, my.query, ngenes = 10, fun = my.fun.2)

4.4 Extra output

When the gr.main parameter extra is set to TRUE, the function will calculate several additional items
and include these items in the result. Thus, the function will take slightly longer to execute.

> options(digits = 2)

> gr.main(normalized.data, my.query, ngenes = 10, extra = T)

$main.result

[,1] [,2]

[1,] "31712_at" "Within query"

[2,] "31736_at" "Not within query"

[3,] "31613_at" "Within query"

[4,] "31668_f_at" "Not within query"

[5,] "31497_at" "Within query"

[6,] "31558_at" "Not within query"

[7,] "31485_at" "Not within query"

[8,] "31679_at" "Not within query"

[9,] "31455_r_at" "Not within query"

[10,] "AFFX-LysX-3_at" "Not within query"

$fifty.percent.recall

[1] 3

$experiments.included

[1] "A" "B" "D" "E" "G" "H" "M" "N" "P" "R" "S" "T" "U" "V" "W"

$experiments.excluded

[1] "C" "F" "I" "J" "K" "L" "O" "Q" "X" "Y" "Z"

$s.g.i

31712_at 31736_at 31613_at 31668_f_at 31497_at

0.49 0.48 0.47 0.47 0.47

3

31558_at 31485_at 31679_at 31455_r_at AFFX-LysX-3_at

0.46 0.46 0.44 0.44 0.43

$z.g.i

31712_at 31736_at 31613_at 31668_f_at 31497_at

4.7 4.6 4.5 4.5 4.5

31558_at 31485_at 31679_at 31455_r_at AFFX-LysX-3_at

4.4 4.4 4.2 4.2 4.1

$contribution

A B D E G H M N P R S T

31712_at 0.53 0.590 0.28 0.200 0.78 0.78 0.33 0.33 0.377 0.65 0.20 0.92

31736_at 0.59 0.422 0.15 0.173 0.58 0.85 0.38 0.47 0.377 0.71 0.42 0.85

31613_at 0.53 0.365 0.18 0.120 0.78 0.65 0.43 0.38 0.244 0.65 0.33 0.92

31668_f_at 0.59 0.478 0.21 0.146 0.85 0.78 0.43 0.16 0.200 0.71 0.42 0.92

31497_at 0.53 0.534 0.15 0.093 0.85 0.78 0.58 0.16 0.333 0.47 0.47 0.78

31558_at 0.65 0.703 0.24 0.040 0.44 0.37 0.63 0.38 0.466 0.59 0.38 0.85

31485_at 0.59 0.422 0.21 0.013 0.78 0.85 0.43 0.16 0.422 0.47 0.55 0.78

31679_at 0.59 0.365 0.11 0.013 0.78 0.85 0.28 0.20 0.466 0.78 0.42 0.85

31455_r_at 0.48 0.646 0.21 0.120 0.71 0.58 0.38 0.29 0.022 0.71 0.42 0.92

AFFX-LysX-3_at 0.59 0.028 0.21 0.120 0.85 0.65 0.38 0.33 0.244 0.53 0.51 0.85

U V W

31712_at 0.24 0.92 0.179

31736_at 0.24 0.92 0.081

31613_at 0.33 0.92 0.212

31668_f_at 0.47 0.55 0.114

31497_at 0.55 0.63 0.081

31558_at 0.29 0.78 0.081

31485_at 0.29 0.70 0.179

31679_at 0.24 0.63 0.081

31455_r_at 0.16 0.92 0.081

AFFX-LysX-3_at 0.38 0.70 0.049

fifty.percent.recall is the number of genes found at 50 percent recall.

experiments.included is a vector containing the names of the experiments included in the analysis.

experiments.excluded is a vector containing the names of the experiments excluded from the anal-
ysis.

s.g.i represents the values SG(i). s.g.i is an array used as a measure of biological significance for each
gene. The output is ranked by this quantity.

z.g.i represents the values ZG(i). z.g.i is an array used as a measure of statistical significance for
each gene.

contribution is a matrix indicating the contribution of each experiment to each gene result. For a
given gene and a given experiment, contribution indicates how strongly the experiment suggests
that the gene should be high ranking. Using notation from the article, contribution is defined
as ȲQ,j × Yij .

4

5 Notes

The results from this package will differ somewhat from the results generated from the code used in
[1]. This is because geneRecommender uses an incremental method for determining the number of
experiments to include, whereas the code described in [1] uses a less accurate grid approach. Also, for
the sake of robustness, geneRecommender sets ȲQ,j to be median(Yi,j : i ∈ Q) rather than mean(Yi,j :
i ∈ Q).

6 Session Information

The version number of R and packages loaded for generating the vignette were:

• R version 3.6.1 (2019-07-05), x86_64-apple-darwin15.6.0

• Locale: C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

• Running under: OS X El Capitan 10.11.6

• Matrix products: default

• BLAS:
/Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib

• LAPACK:
/Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib

• Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, utils

• Other packages: Biobase 2.46.0, BiocGenerics 0.32.0, geneRecommender 1.58.0

• Loaded via a namespace (and not attached): compiler 3.6.1, tools 3.6.1

References

[1] Art B. Owen, Josh Stuart, Kathy Mach, Anne M. Villeneuve, and Stuart Kim. “A Gene Recom-
mender Algorithm to Identify Coexpressed Genes in C. elegans.” Genome Research 13:1828-1837,
2003.

5

