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1 Citation

We have developed an R package able to analyze the variability in a set of candidate tran-
scription factor binding sites (TFBSs) obtained by chromatin immunoprecipitation followed by
high-throughput sequencing (ChIP-seq). The goal of this document is to introduce ChIP-seq
data analysis by means of functional principal component analysis (FPCA). An application
of the package for Arabidopsis datasets is described in:

http://bioconductor.org/packages/NarrowPeaks
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Mateos JL, Madrigal P, Tsuda K, Rawat V, Richter R, Romera-Branchat M, Fornara F,
Schneeberger K, Krajewski P and Coupland G (2015). Combinatorial activities of SHORT
VEGETATIVE PHASE and FLOWERING LOCUS C define distinct modes of flowering regu-
lation in Arabidopsis. Genome Biology 16: 31. http://doi.org/10.1186/s13059-015-0597-1.

2 Introduction and motivation

Next-generation sequencing enables the scientific community to go a step further in the un-
derstanding of molecular mechanisms controlling transcriptional regulation. Comprehensive
ChIP-seq data analyses are carried out by many software tools [1]. Some of these bioinfor-
matic tools [3, 7, 11] are used to detect TFBSs in ChIP-seq data. Data analysis is usually
based on peak-search criteria of the local maxima over the read-enriched candidate regions,
but other approaches do exist [1]. For computation purposes, several assumptions are made
regarding the distribution of sample and control reads [1]. Although most sites reported by
peak finders could be narrowed down to 100-400bp using merely visual inspection, this reduc-
tion is not typically reflected by the regions provided by current methods, therefore degrading
the resolution [9].

Here we present the R package NarrowPeaks, able process data in WIG format (one of the
most popular standard formats for visualisation of next-generation sequencing data is the
wiggle track (WIG), and its indexed version bigWig) data, and analyze it based on statistics
of Functional Principal Component Analysis (FPCA) [8]. Instructions on how to generate
WIG/bigWig coverage tracks can be found in ‘TextS1’ in [1]. The aim of this novel approach
is to extract the most significant regions of ChIP-seq peaks according to their primary modes
of variation in the (binding score) profiles. It allows to charaterise the ChIP-seq peak using
shape-based information, and could allow the user of this package to discriminate between
binding regions in close proximity and shorten the length of the transcription factor binding
sites preserving the information present in the the dataset at a user-defined level of variance.
Without the trimming mode (see below), it also serves to describe peak shapes using a
set of statistics (FPCA scores) directly liked to the principal components of the dataset,
which is useful for post-processing ChIP-seq peaks after generic peak calling, and to analyze
differential binding of transcription factors across several conditions or treatments [5, 1].

3 Methodology

The functional version of PCA establishes a method for estimating orthogonal basis func-
tions (principal components or eigenfunctions) from functional data [8], in order to capture
as much of the variation as possible in as few components as possible. We can highlight
the genomic locations contributing to maximum variation (measured by an aproximation of
the variance-covariance function) from a list of peaks of a ChIP-seq experiment. We have
presented the basics of this methodology in Madrigal and Krajewski (2015) [4].

The algorithm first converts a continuous signal of enrichment from a WIG file, and extracts
signal profiles of candidate TFBSs. Secondly, it characterises the binding signals using a B-
spline basis functions expansion. Finally, FPCA is performed in order to measure the variation
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of the ChIP-seq signal profiles under study. The output consists of a score-ranked list of sites
according to their contribution to the total variation. A more detailed description of the
method and its application to TF ChIP-seq data can be found below.

3.1 Post-processing, splitting or trimming ChIP-seq peaks

Consider a situation in which a number of peaks have been called in a ChIP-seq experiment.
The (read) enrichment signals (peaks) in n candidate TF binding sites of arbitrary length
and shape are denoted by the functions xi(t), i = 1, . . . , N , centered in a common interval
(1, L), and a profile x0(t) ≡ 0, representing the null enrichment. These are considered as a
family of curves χ = {xi(t); t ∈ (1, L); i ∈ (0, N)}, approximated by linear combinations of
K B-spline basis functions φk(t) with coefficients cik, i = 0, . . . , n; k = 1, . . . ,K, as

xi(t) =

K∑
k=1

cikφk(t). 1

The coefficients can be estimated by either least squares or penalized residual sum of squares
criterion (for further details see [8]). The input list of sites defined in χ may include also
low-enriched regions (weak peaks). For example, using the Bioconductor package CSAR
[6], candidate binding sites can be selected as those broad regions separated by a maximum
allowed gap of g bp, and profile values higher than r. Alternatively, other initial set of
candidate regions, such as those obtained using general peak-calling tools [1], is also allowed
as an input file in BED format.

Subsequently, FPCA is run to estimate J ≤ K mutually orthogonal and normalized eigen-
functions ξj(t), j = 1, . . . , J capturing as much of the variation as possible in χ, thus finding
the subintervals in which the data present the highest variability. This is done solving the
equation: ∫

v(s, t)ξj(t)dt = δjξj(s) 2

for the appropriate eigenvalues δj . The covariance function v(s, t), is defined as

v(s, t) =
1

N

N∑
i=0

xi(s)xi(t). 3

For each element of χ the FPCA scores are computed as sij =
∫
γij(t)dt, where γij(t) =

ξj(t)[xi(t)− x(t)], with x(t) being the average ChIP-seq read-enriched profile, defined as:

x(t) =
1

N

N∑
i=0

xi(t). 4

Then, an overall binding score is obtained for each peak as:

f2i =

J∑
j=1

(sij − s0j)2 =

J∑
j=1

(∫
γij(t)dt−

∫
γ0j(t)dt

)2

, 5

that is, as the squared distance of a site from the null enrichment profile in the FPC space.
The null profile included in χ serves to introduce a reference in the FPC space representing
non-enrichment (zero mapped tags). The higher the value of f2i , the higher the contribution
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of the site i to the total variability among the shapes of the functions in χ. Candidate peaks
are then ordered according to the value of f2i , which allows selecting the subset of those
presenting the majority of variation in the data. After that, a modified score f̃2ih can be
optionally computed for each subpeak h = 1, . . . ,H of a candidate site i by means of eq.(5),
using instead of γij(t) its trimmed version

γ̃ij(t) =

{
γij(t) if t ∈ (Aih, Bih),

0 otherwise, 6

where (Aih, Bih) are the intervals in which

γi(t) =

P∑
j=1

[
γij(t)

]2 ≥ βT , 7

βT =
( T

100

)
× max

t,i=1,...,n

{
γi(t)

}
, 8

where the narrowing threshold T ∈ [0, 100], and P is the number of principal components
accounting for at least α% of the total variation. In practice, the subpeaks are split and
trimmed peaks from the initial list defined in χ. Note that if narrowing threshold T = 0 the
input list is not modified, whereas if T = 100 just a single punctate source of variation would
be reported. Using T = 0 is also useful, as shape-based analyses reported by NarrowPeaks
can be combined with results obtained with other peak calling tools, thus providing additional
evidence of the peak calls [5], that can increase true positive rate [10].

3.2 Differential transcription factor binding analysis

Once confident and reproducible estimates of ChIP-seq peaks are determined for a set of
samples, the next question of interest in ChIP-seq data analysis is determining whether the
peak regions are bound by other TF, or by the same TF across w distinct time-, stress-
, or tissue-specific conditions, in z1, z2, . . . , zw sequenced samples (that have technical or
biological replications) [1]. In order to determine those regions of divergent ("variant") binding
for multiple treatments, we take as input a consensus list of aggregated peak regions, coming
from independent peak calls at each condition, and then apply FPCA for the normalized
read-enrichment signal of those regions across experiments. First, each genomic region for
a sample is represented as a linear combination of B-spline basis functions, then FPCA is
performed independently for each site across samples as in Equations (1-5) but discarding
the reference null profile, i.e.:

f2i =

J∑
j=1

s2ij =

J∑
j=1

(∫
γij(t)dt

)2

9

In order to detect pairwise differences between conditions, NarrowPeaks uses Hotelling’s T2

tests in the FPC space, with the number of components chosen to encapsulate at least α%
of variation. The chi-square approximation can be used in the Hotelling’s T2 test to relax the
assumption of data normality (test="chi" in HotellingsT2, R package ICSNP). To control
for multiple testing, p-values are corrected using the Benjamini-Hochberg adjustment. The
number of tested samples must be larger than the number of functional principal components
considered (z > j). If there is no significant difference (at a p-value cut-off) between the
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scores, then a chromosomal location is declared as being an "invariant binding event" in terms
of measured variability across conditions; if significant differences between the FPC scores
are detected, then the site is declared as a "variant binding event" (see [5] for an application
of this method).

4 Example

We will use the example data set included in the NarrowPeaks package for this demonstration.
The data represents a small subset of a WIG file storing continuous value scores based on a
Poisson test [6] for the chromosome 1 of Arabidopsis thaliana [2].

First, we load the NarrowPeaks package and the data NarrowPeaks-dataset, which contains
a subsample of first 49515 lines of the original WIG file for the full experiment. Using
the function wig2CSARScore a set of binary files is constructed storing the enrichment-score
profiles.
R> library(NarrowPeaks)

R> data("NarrowPeaks-dataset")

R> head(wigfile_test)

[1] "track type=wiggle_0 autoScale=on name=\"CSAR track\" description=\"CSAR track\""

[2] "variableStep chrom=Chr1 span=1"

[3] "18732\t3.4"

[4] "18733\t3.4"

[5] "18734\t3.4"

[6] "18735\t3.4"

R> writeLines(wigfile_test, con="wigfile.wig")

R> wigScores <- wig2CSARScore(wigfilename="wigfile.wig", nbchr = 1, chrle=c(30427671))

READING [ wigfile.wig ] : done

-NB_Chr = 1

-Summary :

| Chr1 | 1 | 30427671 |

CREATING BINARY FILES [CSAR Bioconductor pkg format] :

- Chr1 : done

R> print(wigScores$infoscores$filenames)

[1] "Chr1_ChIPseq.CSARScore"

Next, the candidate binding site regions are extracted using the Bioconductor package CSAR
[6]. CSAR predictions are contiguous genomic regions separated by a maximum allowed of
g base pairs, and score enrichment values greater than t. Candidate regions are stored in a
GRanges object (see Bioconductor package GenomicRanges). Alternatively, ChIP-seq peaks
obtained using other peak-callers can be provided building an analogous GRanges object. In
this case, the metadata ’score’ must represent a numeric value directly proportional to the
confidence of the peak (p-value) or the strength of the binding (fold-change).
R> library(CSAR)

R> candidates <- sigWin(experiment=wigScores$infoscores, t=1.0, g=30)

R> head(candidates)

GRanges object with 6 ranges and 2 metadata columns:
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seqnames ranges strand | posPeak score

<Rle> <IRanges> <Rle> | <numeric> <numeric>

[1] Chr1 18732-19486 * | 19046 38

[2] Chr1 20117-21252 * | 20691 50

[3] Chr1 26477-26580 * | 26544 4

[4] Chr1 27881-27890 * | 27881 3

[5] Chr1 52613-52620 * | 52613 3

[6] Chr1 52659-52665 * | 52659 3

-------

seqinfo: 1 sequence from an unspecified genome

If CSAR [6] is used first to analyze ChIP-seq data, from the results we can obtain the false
discovery rate (FDR) for a given threshold. For example, for the complete experiment de-
scribed in [2], t = 10.81 corresponds to FDR = 0.01 and t = 6.78 corresponds to FDR = 0.1.

Now we could narrow down the candidate sites with the function narrowpeaks to obtain
shortened peaks, representing each candidate signal as a linear combination of nbf B-spline
basis functions with no derivative penalization [8]. We can specify the amount of miminum
variance pv we want to describe in form of npcomp principal components, and establish a
cutoff pmaxscor for trimming of scoring functions of the candidate sites.

We will run the function for three different values of the cutoff: pmaxscor = 0 (no cutoff),
pmaxscor = 3 (cutoff is at 3% level of the maximum value relative to the scoring PCA
functions) and pmaxscor = 100 (cutoff is at the maximum value relative to the scoring PCA
functions).
R> shortpeaksP0 <- narrowpeaks(inputReg=candidates, scoresInfo=wigScores$infoscores, lmin=0, nbf=25,

rpenalty=0, nderiv=0, npcomp=2, pv=80, pmaxscor=0.0, ms=0)

R> head(shortpeaksP0$broadPeaks)

GRanges object with 6 ranges and 3 metadata columns:

seqnames ranges strand | max average fpcaScore

<Rle> <IRanges> <Rle> | <integer> <numeric> <numeric>

[1] Chr1 18732-19486 * | 38 15.71 255256.46

[2] Chr1 20117-21252 * | 50 15.91 421981.16

[3] Chr1 26477-26580 * | 4 2.4 255.68

[4] Chr1 27881-27890 * | 3 3 3.46

[5] Chr1 52613-52620 * | 3 3 2.21

[6] Chr1 52659-52665 * | 3 3 1.69

-------

seqinfo: 1 sequence from an unspecified genome

R> head(shortpeaksP0$narrowPeaks)

GRanges object with 6 ranges and 4 metadata columns:

seqnames ranges strand | broadPeak.subpeak trimmedScore narrowedDownTo merged

<Rle> <IRanges> <Rle> | <character> <numeric> <character> <logical>

[1] Chr1 18732-19486 * | 1.1 493.65 100% FALSE

[2] Chr1 20117-21252 * | 2.1 646.27 100% FALSE

[3] Chr1 26477-26580 * | 3.1 13.41 100% FALSE

[4] Chr1 27881-27890 * | 4.1 0.32 100% FALSE

[5] Chr1 52613-52620 * | 5.1 0.21 100% FALSE

[6] Chr1 52659-52665 * | 6.1 0.16 100% FALSE

-------

seqinfo: 1 sequence from an unspecified genome
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R> shortpeaksP3 <- narrowpeaks(inputReg=candidates, scoresInfo=wigScores$infoscores, lmin=0, nbf=25,

rpenalty=0, nderiv=0, npcomp=2, pv=80, pmaxscor=3.0, ms=0)

R> head(shortpeaksP3$broadPeaks)

GRanges object with 6 ranges and 3 metadata columns:

seqnames ranges strand | max average fpcaScore

<Rle> <IRanges> <Rle> | <integer> <numeric> <numeric>

[1] Chr1 18732-19486 * | 38 15.71 255256.46

[2] Chr1 20117-21252 * | 50 15.91 421981.16

[3] Chr1 26477-26580 * | 4 2.4 255.68

[4] Chr1 27881-27890 * | 3 3 3.46

[5] Chr1 52613-52620 * | 3 3 2.21

[6] Chr1 52659-52665 * | 3 3 1.69

-------

seqinfo: 1 sequence from an unspecified genome

R> head(shortpeaksP3$narrowPeaks)

GRanges object with 6 ranges and 4 metadata columns:

seqnames ranges strand | broadPeak.subpeak trimmedScore narrowedDownTo merged

<Rle> <IRanges> <Rle> | <character> <numeric> <character> <logical>

[1] Chr1 18996-19142 * | 1.1 249.61 19.47% FALSE

[2] Chr1 20590-20787 * | 2.1 422.45 17.43% FALSE

[3] Chr1 78229-78300 * | 20.1 98.98 9.47% FALSE

[4] Chr1 188854-189165 * | 35.1 602.76 22.27% FALSE

[5] Chr1 200838-200964 * | 40.1 202.38 25.87% FALSE

[6] Chr1 300275-300450 * | 56.1 272.69 28.25% FALSE

-------

seqinfo: 1 sequence from an unspecified genome

R> shortpeaksP100 <- narrowpeaks(inputReg=candidates, scoresInfo=wigScores$infoscores, lmin=0, nbf=25,

rpenalty=0, nderiv=0, npcomp=2, pv=80, pmaxscor=100, ms=0)

R> head(shortpeaksP100$broadPeaks)

GRanges object with 6 ranges and 3 metadata columns:

seqnames ranges strand | max average fpcaScore

<Rle> <IRanges> <Rle> | <integer> <numeric> <numeric>

[1] Chr1 18732-19486 * | 38 15.71 255256.46

[2] Chr1 20117-21252 * | 50 15.91 421981.16

[3] Chr1 26477-26580 * | 4 2.4 255.68

[4] Chr1 27881-27890 * | 3 3 3.46

[5] Chr1 52613-52620 * | 3 3 2.21

[6] Chr1 52659-52665 * | 3 3 1.69

-------

seqinfo: 1 sequence from an unspecified genome

R> head(shortpeaksP100$narrowPeaks)

GRanges object with 1 range and 4 metadata columns:

seqnames ranges strand | broadPeak.subpeak trimmedScore narrowedDownTo merged

<Rle> <IRanges> <Rle> | <character> <numeric> <character> <logical>

[1] Chr1 725297 * | 158.1 6.17 0.16% FALSE

-------

seqinfo: 1 sequence from an unspecified genome
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As one can see, there is no difference between broadPeaks and narrowPeaks for pmaxscor =

0, whereas for pmaxscor = 100 just one punctual source of variation is reported. The number
of components (reqcomp) required, as well as the variance (pvar) achieved, are the same for
all three cases (pmaxscor of 0, 3 and 100). As our goal was to combine evidence ([1, 10]) of
peak calls provided by MACS [12] and NarrowPeaks, we used pmaxscor = 0 in [5].
R> print(shortpeaksP0$reqcomp)

[1] 1

R> print(shortpeaksP0$pvar)

[1] 80.3107

Now, we can do the same for pmaxscor = 90 and the result consists of 3 peaks very close to
each other. We can tune the parameter ms to merge the sites into a unique peak:
R> shortpeaksP90 <- narrowpeaks(inputReg=candidates,scoresInfo=wigScores$infoscores, lmin=0, nbf=25,

rpenalty=0, nderiv=0, npcomp=2, pv=80, pmaxscor=90, ms=0)

R> shortpeaksP90ms20 <- narrowpeaks(inputReg=candidates,scoresInfo=wigScores$infoscores, lmin=0, nbf=25,

rpenalty=0,nderiv=0, npcomp=2, pv=80, pmaxscor=90, ms=20)

We could make use of the class GRangesLists in the package GenomicRanges to create a
list:
R> library(GenomicRanges)

R> exampleMerge <- GRangesList("narrowpeaksP90"=shortpeaksP90$narrowPeaks,

"narrowpeaksP90ms20"=shortpeaksP90ms20$narrowPeaks);

R> exampleMerge

GRangesList object of length 2:

$narrowpeaksP90

GRanges object with 1 range and 4 metadata columns:

seqnames ranges strand | broadPeak.subpeak trimmedScore narrowedDownTo merged

<Rle> <IRanges> <Rle> | <character> <numeric> <character> <logical>

[1] Chr1 725260-725327 * | 158.1 413.67 10.76% FALSE

-------

seqinfo: 1 sequence from an unspecified genome

$narrowpeaksP90ms20

GRanges object with 1 range and 4 metadata columns:

seqnames ranges strand | broadPeak.subpeak trimmedScore narrowedDownTo merged

<Rle> <IRanges> <Rle> | <character> <numeric> <character> <logical>

[1] Chr1 725260-725327 * | 158.1 413.67 10.76% FALSE

-------

seqinfo: 1 sequence from an unspecified genome

Finally, we can export GRanges objects or GRangesLists into WIG, bedGraph, bigWig or
other format files using the package rtracklayer . For example:
R> library(GenomicRanges)

R> names(elementMetadata(shortpeaksP3$broadPeaks))[3] <- "score"

R> names(elementMetadata(shortpeaksP3$narrowPeaks))[2] <- "score"

R> library(rtracklayer)

R> export.bedGraph(object=candidates, con="CSAR.bed")

R> export.bedGraph(object=shortpeaksP3$broadPeaks, con="broadPeaks.bed")

R> export.bedGraph(object=shortpeaksP3$narrowPeaks, con="narrowpeaks.bed")
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5 Details

This document was written using:
R> sessionInfo()

R version 3.6.1 (2019-07-05)

Platform: x86_64-apple-darwin15.6.0 (64-bit)

Running under: OS X El Capitan 10.11.6

Matrix products: default

BLAS: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib

LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib

locale:

[1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:

[1] parallel stats4 splines stats graphics grDevices utils datasets methods

[10] base

other attached packages:

[1] rtracklayer_1.46.0 CSAR_1.38.0 GenomicRanges_1.38.0 GenomeInfoDb_1.22.0

[5] IRanges_2.20.0 S4Vectors_0.24.0 BiocGenerics_0.32.0 NarrowPeaks_1.30.0

loaded via a namespace (and not attached):

[1] ICSNP_1.1-1 Rcpp_1.0.2 compiler_3.6.1

[4] BiocManager_1.30.9 XVector_0.26.0 bitops_1.0-6

[7] tools_3.6.1 zlibbioc_1.32.0 digest_0.6.22

[10] evaluate_0.14 lattice_0.20-38 rlang_0.4.1

[13] Matrix_1.2-17 DelayedArray_0.12.0 DBI_1.0.0

[16] yaml_2.2.0 mvtnorm_1.0-11 xfun_0.10

[19] GenomeInfoDbData_1.2.2 fda_2.4.8 knitr_1.25

[22] Biostrings_2.54.0 mitools_2.4 ICS_1.3-1

[25] grid_3.6.1 Biobase_2.46.0 BiocParallel_1.20.0

[28] XML_3.98-1.20 survival_2.44-1.1 rmarkdown_1.16

[31] matrixStats_0.55.0 GenomicAlignments_1.22.0 Rsamtools_2.2.0

[34] htmltools_0.4.0 SummarizedExperiment_1.16.0 BiocStyle_2.14.0

[37] survey_3.36 RCurl_1.95-4.12
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